Testing of ENDF/B-VIII.0 in the GNDS format: update

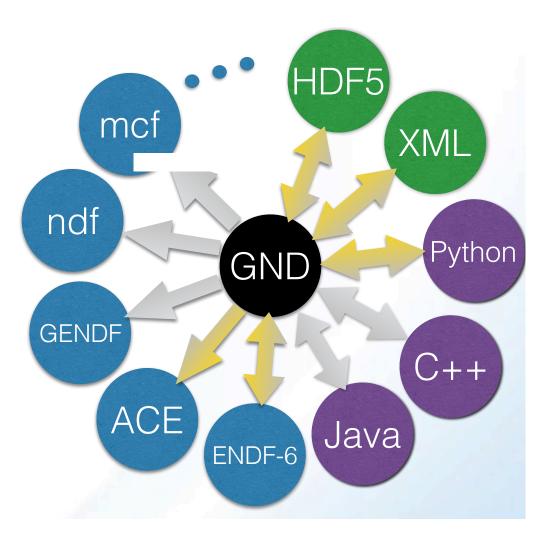
CSEWG2018 NOV 5, 2018

> Marie-Anne Descalle, Bret Beck, Caleb Mattoon, Eric Jurgenson, Scott McKinley, Teresa Bailey, Bujar Tagani

Lawrence Livermore National Laboratory

LLNL-PRES-757053

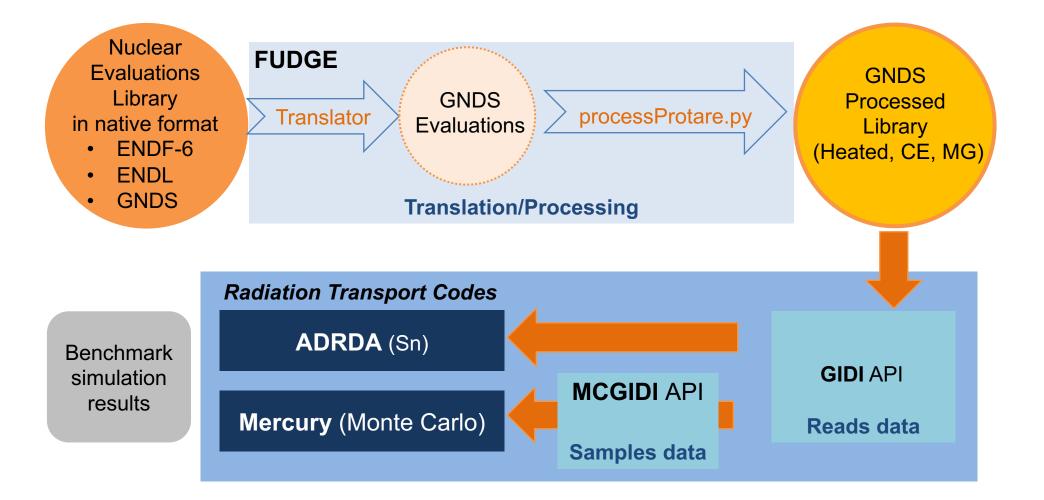
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC


Outline

- Translation from GNDS data to ACE format
- Integral testing with ENDF/B-VIII.0
- Status: LLNL pulsed spheres

Generalized Nuclear Data Structure

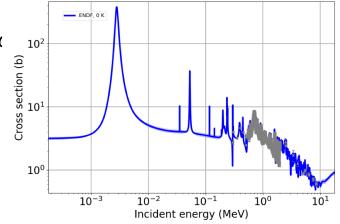
- Initially, LLNL wanted to replace its own ENDL format
- GNDS international effort under OECD/NEA/WPEC/SG3 8, SG43 (2017-2020) and EG-GNDS
- Adapted to both evaluated and processed data

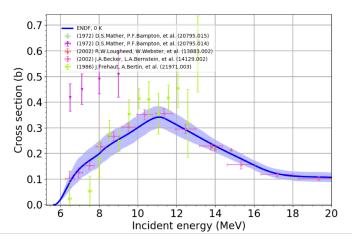


slide based on slide from D. Brown/F. Malvagi

Motivation: to easily share evaluated and processed data across institutions within a modern framework

GNDS: from evaluated nuclear data to transport simulations




FUDGE: For Updating Data and Generating Evaluation

- FUDGE toolkit, now
 - Python 2.7 with extension in C and C++ to handle computationally expensive tasks (->soon conversion to 3.6)
 - Translate LLNL ENDL and ENDF-6 to GNDS, and GNDS to ENDF-6
 - Manage, manipulate, view, check and process GNDS data
- LLNL production code for managing and processing Nuclear Data
 - Point of contact: Caleb Mattoon
- **Open source**: released under BSD license

Na23(n,el)

Pu239(n,2n)

Download fudge via http://www.nndc.bnl.gov/endf/codes/FUDGE/index.html

Status of Translation/Processing of ENDF to GNDS

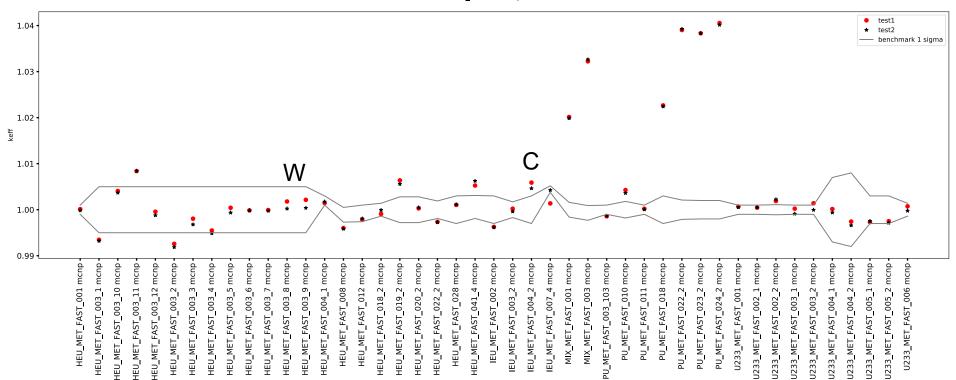
- **Translation** of the following ENDF sub-libraries
 - Note that the definition for nfy and sfy is not finalized in GNDS

neutrons	protons	deuterons	tritons
helium3s	gammas	photoat	standards
electrons	decay	atomic_relax	thermal_scatt
nfy	sfy	alphas	

- FUDGE handles all properly formatted ENDF-6 formatted files
 - In ENDF/B-VII.1, VIII.0
 - *Except* for new data format for fission in ENDF/B-VIII.0

Processing of the following ENDF sub-libraries

neutrons	protons	deuterons	tritons
gammas	helium3	photoat	alphas


FUDGE can translate GNDS data to ACE format for use in MCNP

TO DO LIST (partial)

- Thermal scattering laws
- URR probability tables

FUDGE processing to ACE format

Comparison: Benchmarks against keff1, keff2 results test1 = ../run_decks/FUDGE_Criticality_Tests/Mosteller_Suite10/ test2 = ../run_decks/NewNJOYfromLANL5/

Fairly good agreement for 45 fast critical assemblies. Differences for W, C, ²³⁸U reflectors

case

Lawrence Livermore National Laboratory

LLNL-PRES-XXXXXX

GIDI & MCGIDI: General Interaction Data Interface

- GIDI version 3
 - C++ API to read GNDS files for transport codes
 - Can get data at any level in GNDS structure
 - Multi-group collapsing
 - For vectors and matrices
 - Transport correction
 - Calculates multi-group energy deposition
 - Complete for neutrons, photons and charged particles

- Open Source will be released soon under BSD license
 - Point of contact: Bret Beck

- MCGIDI version 3: Monte Carlo GIDI
 - C++ API to store and sample for Monte Carlo transport codes
 - Uses GIDI to read data, then puts it into better form for optimal MC sampling
 - Handles point-wise cross sections and pdf/cdf distributions
 - Supports GPUs
 - Will sample a reaction for a protare and outgoing distribution
 - Angular biasing
 - multi-group support for cross sections
- Currently working on:
 - point-wise energy deposition
 - fixed-grid support for cross sections, deposition energy, etc.

GIDI & MCGIDI: General Interaction Data Interface

- GIDI version 3
 - C++ API to read GNDS files for transport codes
 - Can get data at any level in GNDS structure
 - Multi-group collapsing
 - For vectors and matrices
 - Transport correction
 - Calculates multi-group energy deposition
 - Complete for neu charged particles
 TO DO LIST (partial)

- MCGIDI version 3: Monte Carlo GIDI
 - C++ API to store and sample for Monte Carlo transport codes
 - Uses GIDI to read data, then puts it into better form for optimal MC sampling
 - Handles point-wise cross sections and pdf/cdf distributions
 - Supports GPUs
 - Will sample a reaction for a protare and outgoing distribution
 - Angular biasing

support for cross sections

- Thermal scattering laws
- URR probability tables
- prking on:

fixed-grid support for cross sections,

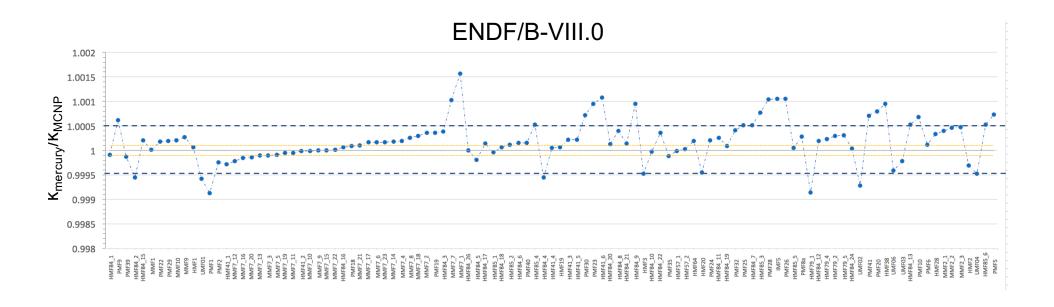
point-wise energy deposition

deposition energy, etc.

- Open Source will be released soon under BSD license
 - Point of contact: Bret Beck

Testing ENDF/B libraries in GNDS format

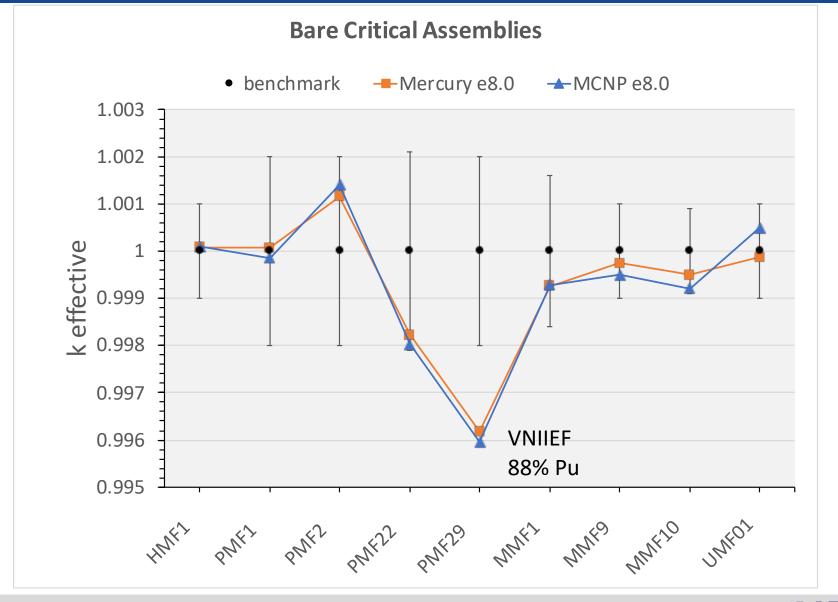
- Two ENDF libraries were translated and processed with FUDGE into GNDS format
 - ENDF/B-VII.1
 - ENDF/B-VIII.0
- V&V with LLNL Codes


Code	Code Type	Run mode	Data Format/API	Benchmark tests	Cross- sections
Mercury	Monte Carlo	Batch	GNDS/ GIDI/ MCGIDI	Criticality: 123 fast assemblies Reaction ratios: 3 assemblies 16 Pulsed spheres	Continuous Energy
Ardra	Deterministic Sn	Interactive	GNDS/ GIDI	Criticality:79 assemblies	Multigroup: 230 groups

 Results were compared to MCNP6 - ENDF/B-VII.1 and VIII.0 results (2017)

Criticality

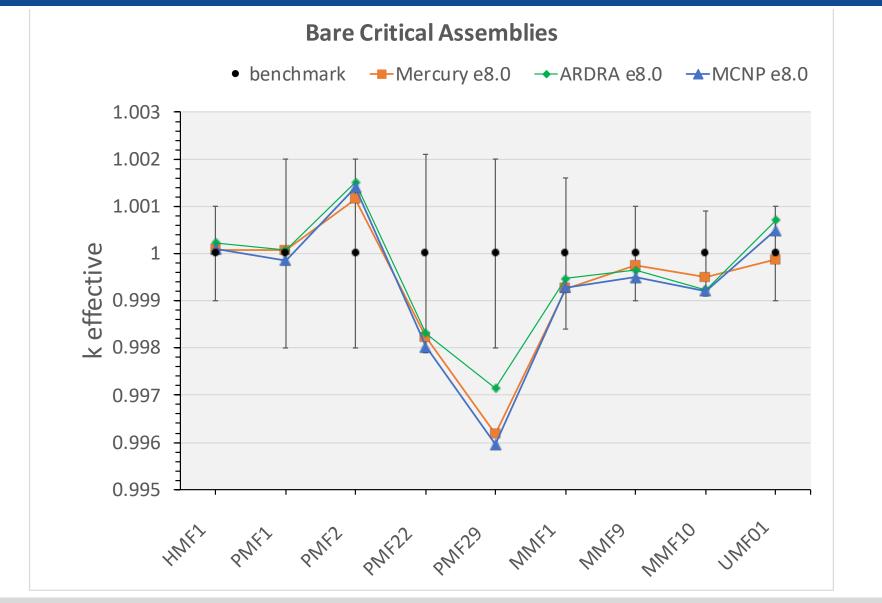
107 fast benchmarks



Mercury/GNDS' k_{eff} are within 5e-4 of ENDF's for 80/107 fast critical assemblies

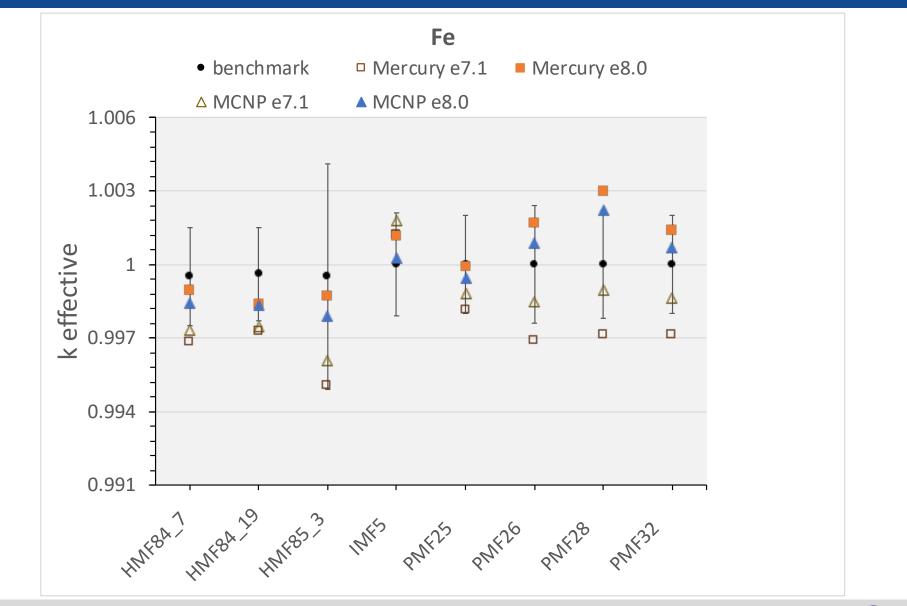
Lawrence Livermore National Laboratory

Bare assemblies: Godiva, Jezebel, Jezebel240,...



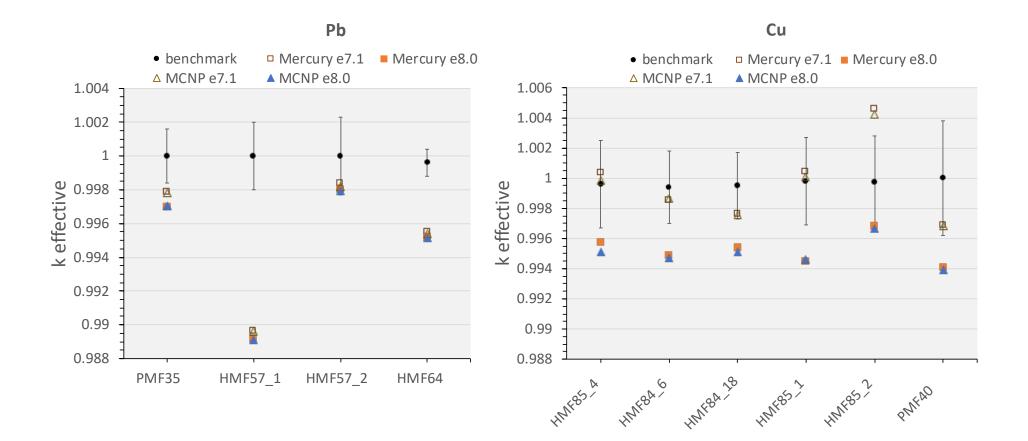
Lawrence Livermore National Laboratory

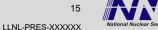
...Adding Ardra results



Lawrence Livermore National Laboratory

LLNL-PRES-XXXXXX


Fe



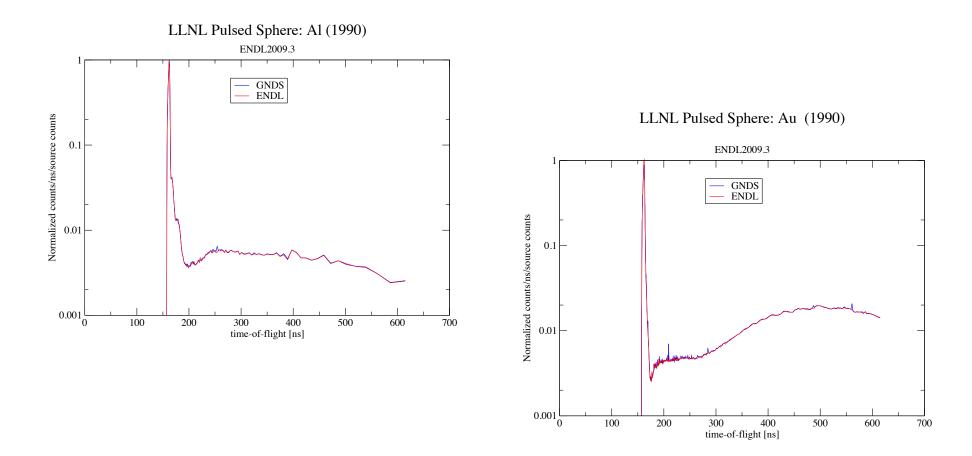
Lawrence Livermore National Laboratory

Pb and Cu

Reaction ratios

- ENDF/B-VIII.0 library
- Mercury/GNDS MCNP6.2/ACE
- Reaction rates are normalized by ²³⁵U(n,f)

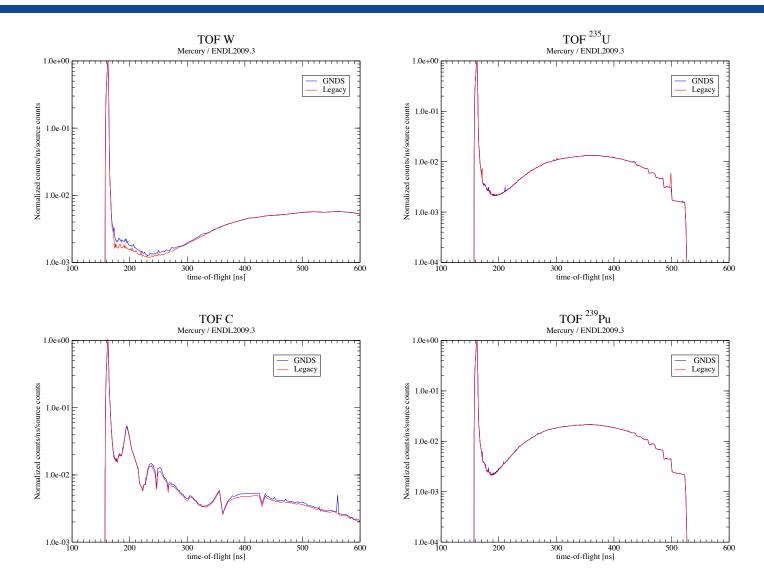
•


Benchmark	Reaction Ratio	233U(n,f)	238U(n,f)	237 _{Np(n,f})	239Pu(n,f)	Simulated k _{eff}
Godiva	Mercury	1.5793	0.1583	0.8314	1.3844	1.00016 +/-0.00010
	MCNP	1.5793	0.1583	0.8318	1.3846	1.00009 +/-0.00008
	Mercury/MCNP	1.0000	1.0001	0.9995	0.9998	
Jezebel	Mercury	1.5660	0.2120	0.9772	1.4275	0.99986 +/-0.00010
	MCNP	1.5560	0.2121	0.9770	1.4273	1.00073 +/-0.00008
	Mercury/MCNP	1.0064	0.9997	1.0002	1.0001	
Flattop25	Mercury	1.5776	0.1450	0.7737	1.3621	1.00115 +/-0.00010
	MCNP	1.5664	0.1451	0.7735	1.3622	1.00082 +/-0.00009
	Mercury/MCNP	1.0072	0.9990	1.0003	0.9999	

We are still investigating possible sources of differences for U233(n,f) in Jezebel and Flattop25.

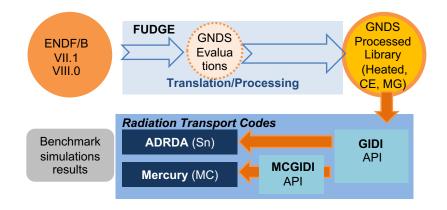
Lawrence Livermore National Laboratory

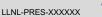
TOF experiment – LLNL pulsed spheres


We have implemented angular biasing in MCGIDI and tested with LLNL's library in GNDS for 16 LLNL pulsed spheres. Different models - Testing ENDF/B-VIII.0 in GNDS format is next

Lawrence Livermore National Laboratory

TOF experiment – LLNL pulsed spheres




Lawrence Livermore National Laboratory

LLNL-PRES-XXXXXX

Summary

- LLNL implemented the GNDS format for evaluated and processed nuclear data
- FUDGE Processing
 - significantly faster compared to previous tools
 - Recently added: GNDS to ACE translator (n sub-library, outgoing n)
- GIDI/MCGIDI APIs
 - Recently added: multi group (group collapsing); angular biasing model (MCNP)
- The process was tested on ENDF/B-VIII.0 and VII.1 libraries and compared to MCNP6 results published in ENDF/B-VIII.0 release paper

Future work

FUDGE Processing

- Unresolved resonance region probability tables
- Neutron thermal scattering laws
- Multi-band (Sn and Monte Carlo)
- GNDS to NDI, etc.
- GIDI / MCGIDI
 - Unresolved resonance region probability tables
 - Neutron thermal scattering laws
 - Hybrid angular biasing model (more memory, better statistics)
- CODES: ARDRA & Mercury
 - Multi-band
- Kiwi creates realizations for Uncertainty Quantification
 - Include Kiwi in FUDGE
 - Update for GNDS data

