Nuclear Data Testing / Evaluating at CNL (Canada) and CAB (Argentina)

D. Roubtsov, J.C. Chow (CNL, Chalk River, Canada) J. I. Marquez Damian (CAB, Bariloche, Argentina)

CSEWG 2018

November 5-7, 2018

Canadian Nuclear | Laboratoires Nucléaires aboratories | Canadiens

Plan

- TSL for H₂O and D₂O: old/new experimental data for thermal scattering at T > T_room (293.6 K, p > 0.1 MPa); V&V.
- ND library for MCNP / SERPENT based on ENDF/B-VIII.0 : from LANL ace files (2018) to CNL version;
- ZED-2 reactor at CNL.

-2-

TSL for H_2O : $\sigma_{tot}(E; T)$

Power reactor applications: T ~ 550 - 600 K, p ~ 15.5 MPa / p ~ 7.3 MPa New measurements underway (data sets are not in EXFOR yet)

Experimental activities from CAB

- In June 2018, researchers from Centro Atomico Bariloche performed an experiment at the VESUVIO spectrometer in the ISIS neutron source (UK).
- Samples of light water, ice, and three different types of graphite were used in transmission and diffraction experiments.
- Data is currently being analyzed and it will be published when ready.

-4-

Preliminary results for light water (H₂O)

- The experiment on light water was designed to test the temperature dependence of the total cross sections σ_{tot}(E; T), as predicted by the CAB Model adopted in ENDF/B-VIII.0.
- The total cross section was measured at 10°C and 80°C, with high statistics over the whole thermal energy range, E ~ 1 meV 1 eV.

Preliminary results for light water (H₂O)

Difference in total cross sections between 80°C and 10°C,

 $\sigma_{tot}(E; T_2) - \sigma_{tot}(E; T_1)$ vs. E, $T_2 > T_1$

spectrum: ρ_{ph}(ω; T) for H-in-H₂O is "input parameter" in NJOY, leapr Laboratories Canadiens UNRESTRICTED / ILLIMITÉ

Preliminary results for light water (H₂O), T < 100 $^{\circ}$ C

- Results confirm that the temperature dependence predicted by the ENDF/B-VIII.0 model is correct (reliable).
- Additional measurements were performed at T = 4, 20, 40, and 60 °C that confirm the trend.
- The sample was frozen and measurements were performed at T = -40 and -1 °C.

Results for light water (H_2O), **T > 100** °**C**

- EXFOR: Dritsa data sets at T = 200 $^{\circ}$ C and 20 $^{\circ}$ C (1967)
- Calculate the ratio, $\sigma_{tot}(E; T_2) / \sigma_{tot}(E; T_1)$, $T_2 > T_1$

Canadian Nuclear | Laboratoires Nucléaires

aboratories

Canadiens

[$\sigma_{tot}(E; T)$: no new data in EXFOR as of October 2018]

Results for light water (H_2O), **T > 100** °**C**

• $\sigma_{tot}(E; T_2) / \sigma_{tot}(E; T_1)$ vs. E

- TSL for H-in-H₂O : ENDF/B-VIII.0 vs. ENDF/B-VII / JEFF-3.3
- V&V : ND-2019

Canadian Nuclear | Laboratoires Nucléaires Laboratories | Canadiens

TSL for $D_2O : \sigma_{tot}(E; T)$

Power reactor applications: T ~ 550 - 600 K, p ~ 10 MPa (D_2O coolant). New measurements underway : ?

TSL for D_2O : $\sigma_{tot}(E; T)$, T ~ 20°C

Room Temperature data:

For Zaitsev data set for D_2O (Zaitsev 1991), agreement with ENDF/B-VIII.0 is poor.

Model or data ?

TSL for $D_2O : \Sigma_{tot}(E; T)$

Zaitsev data for H_2O , D_2O , at 20 °C < T \leq 60 °C

Laboratories

Canadiens

Zaitsev data for D_2O , purity 99.8%, in EXFOR (41622003) :

 Σ_{tot} (in cm⁻¹, not ARB-UNITS) vs. λ (in MILLI-MU = nm ; 1 nm = 10 Å), D₂O : 4 nm < λ < 20 nm \rightarrow 2*10⁻⁶ eV < E < 5*10⁻⁵ eV

TSL for $D_2O : \Sigma_{tot}(E; T)$

Zaitsev data for H_2O , D_2O , at T= 23 °C.

Test: how Σ_{tot} changes if Egelstaff diffusion model is **not** used (black lines); also compare $P(E \rightarrow E')$ vs. E' at E = 0.0253 eV; see figure on the right. Here, c = 0 means: in leapr, we have card13 = twt, 0, tbeta . UNRESTRICTED / ILLIMITÉ -13-

E', eV

TSL for $D_2O : \Sigma_{tot}(E; T)$

Zaitsev data for H_2O and D_2O , at 20 °C < T \leq 60 °C Zaitsev data for D_2O , at T > T-room : ?

(no overlap with other measurements ?)

TSL for D_2O : $\sigma_{tot}(E; T)$, $T = 20 \rightarrow 50$ °C

EXFOR: Marquez-Damian (2015), T = 20 and 50 °C,

Low Energy Neutron Source (LENS) at Indiana University, http://www.indiana.edu/~lens/

TSL for D_2O : $\sigma_{tot}(E; T)$, $T = 20 \ ^{\circ}C \rightarrow 50 \ ^{\circ}C$

EXFOR: Marquez-Damian (2015);

TSL for D_2O in ENDF/B-VIII.0 = D-in- D_2O and O-in- D_2O (H-2 and O-16) Model improvements \rightarrow better agreement with data/measurements

TSL for D_2O : $\sigma_{tot}(E; T)$, $T = 22 \ ^\circ C \rightarrow 200 \ ^\circ C$

EXFOR: Dritsa (1967), T = 22 and 200 °C;

TSL for D_2O in ENDF/B-VII.0 = D-in- D_2O and O is free gas model at T

TSL for D_2O : $\sigma_{tot}(E; T)$, $T = 22 \ ^{\circ}C \rightarrow 200 \ ^{\circ}C$

EXFOR: Dritsa (1967), T = 22 and 200 °C; (D_2O : NEW measurements at high T , high p ?) TSL for D_2O in ENDF/B-VIII.0 = D-in- D_2O and O-in- D_2O , better agreement with Dritsa-1967 (200 °C) than ENDF/B-VII.0.

TSL for D_2O : ratio of $\sigma_{tot}(E; T)$

NEW measurements at high T?

TSL for D_2O in ENDF/B-VIII.0 = D-in- D_2O and O-in- D_2O at the following T :

..., 523.6 K, 550.0 K, 573.6 K, 600.0 K, 623.6 K, ...

LANL ACE Files based on ENDF/B-VIII.0

LANL thermal ace files, ENDF80SaB.pdf (2018) reads :

ENDF/B VIII.0	B(1)	B(6)	THERMR
tsl files	total xs	Мо	natom
tsl-OinD2O.endf	7.5878	2	2

Actually, for O-in-D₂O, option "B(1) = σ_{free} = 3.794 b and B(6)=1 in MF7, MT4" with **natom** = 1 in thermr [card2, natom] work as well (see slide 11).

Discussion:

```
how to choose cut-off E (in eV) in
```

thermr [card4, emax] and acer [card8, emax] to generate thermal ace files for UO_2 (U-in-UO₂ and O-in-UO₂) with NJOY for MCNP / SERPENT. For UO₂, the main scatterers are U-238 (U-in-UO₂) and O-16 (O-in-UO₂).

ENDF80SaB.pdf (2018) reads: emax (u-uo2) = 5.0 eV, emax (o-uo2) = 5.0 eV TSL \rightarrow ACE for materials with U (UO₂, UN, ...): be careful and check the result ... es inucleanes Laboratories Canadiens

LANL ACE Files based on ENDF/B-VIII.0

tsl-UinUO2.endf:

```
1.480000+2 2.360058+2 0 1
                                                                           4874
                                                        0
                                                               0
                              0
                                                                           4874
0.000000+0 0.000000+0
                                      0
                                                        6
                                                                0
9.283302+0 1.976285+2 2.360058+2 5.000001+0 0.000000+0 1.000000+0 48 7 4 [B(1) B(2) B(3) ...]
...
For U-in-UO<sub>2</sub>, B(2) = 197.628 (dimensionless), B(4) = 5.0 \text{ eV} [MF7, MT4 of mat=48]
This is \beta_{max} (= B(2)) \rightarrow E<sup>*</sup> (= B(4)). MF7, MT4 was generated by NJOY. Therefore, see
     leapr, subroutine endout :
...
!--write inelastic part
• • •
                                                    ! This is B(1) = natom * \sigma_{free}
scr(7) = npr * spr
scr(8) = beta(nbeta)
                                                    ! This is B(2) = \beta_{max}
scr(10) = sigfig(therm * beta(nbeta), 7, 0) ! This is B(4) = 0.0253 * \beta_{max}
•••
Although the current ENDF-6 Manual interprets B(4) as "upper limit for constant"
\sigma_{\text{free}}" (see pp. 161,162), subroutine endout assigns it as B(4) = 0.0253 * \beta_{\text{max}} eV.
For example, for Al-met, B(2) = 90 \& B(4) = 2.277 \text{ eV} (< 5.0 \text{ eV});
```

Canadian Nuclear Laboratories for H-H₂O, B(2)= 395.26 & B(4) = 10.0 eV (> 5.0 eV). UNRESTRICTED / ILLIMITÉ -21-

cut-off E: from TSL of UO₂ to thermal ACE files (1)

ENDF/B-VIII.0, U-238

Plot $\sigma_s(E)$ for U-238(n,n) at T = 0 K, and, say, T = 1000 K (T_{max} = 1200 K for UO₂ TSL), and B(1) = σ_{free} from MF7, MT4 (natom = 1 for U-in-UO₂). NOTE: use lin-lin scale ; $\sigma_s(E) \rightarrow 9.224$ b as $E \rightarrow 0$ (T = 0 K) ; σ_{free} = 9.238 b. Canadian Nuclear Laboratories Nucléaires UNRESTRICTED / ILLIMITÉ -22-

cut-off E: from TSL of UO₂ to thermal ACE (2)

Plot $\sigma_s(E)$ for U-238(n,n) at T = 0 K, and, say, T = 1000 K (T_{max} = 1200 K for UO₂ TSL), and B(1) = σ_{free} from MF7, MT4 (natom = 1 for U-in-UO₂); Add thermal scattering cross sections, n + U-in-UO₂ : σ_{inel} (E;T) + σ_{el} (E;T), ENDF/B-VIII.0. If E (cut-off) ~ 4.0 eV mismatch between σ_{el} (E;T) fee-gas and σ_{el} (E;T) + σ_{el} (E;T) : ~ 10 %

If E (cut-off) ~ 4.0 eV, mismatch between σ_s (E; T) fee-gas and σ_{inel} (E;T) + σ_{el} (E; T) : ~ 10 %. (acceptable ?)

cut-off E: from TSL of UO₂ to thermal ACE (3)

Plot $\sigma_s(E)$ for U-238(n,n) at T = 0 K, and, say, T = 1000 K (T_{max} = 1200 K for UO₂ TSL), and B(1) = σ_{free} from MF7, MT4 (natom = 1 for U-in-UO₂); add thermal scattering cross sections, n + U-in-UO₂, σ_{inel} (E;T) + σ_{el} (E; T), ENDF/B-VIII.0. Here, we use log - log scale (otherwise the same data sets are shown in slide 23), E < 5 - 6 eV. So, for U-in-UO₂, E (cut-off) ~ 2.0 eV (?)

cut-off E: from TSL of UO_2 to thermal ACE (4)

ENDF/B-VIII.0, O-16

Plot $\sigma_s(E)$ for O-16(n,n) at T = 0 K, and, say, T = 1000 K (T_{max} = 1200 K for UO₂ TSL), and B(1) = σ_{free} from MF7, MT4 (natom = 1 for O-in-UO₂). $\sigma_s(E) \rightarrow 3.794$ b as $E \rightarrow 0$ (T = 0 K); σ_{free} = 3.842 b. Then, add thermal scattering cross sections, n + O-in-UO₂: $\sigma_{inel}(E;T) + \sigma_{el}(E;T)$, ENDF/B-VIII.0;

cut-off E: from TSL of UO_2 to thermal ACE (5)

Plot $\sigma_s(E)$ for O-16(n,n) at T = 0 K, and, say, T = 1000 K (T_{max} = 1200 K for UO₂ TSL), and B(1) = σ_{free} from MF7, MT4 (natom = 1 for O-in-UO₂); added thermal scattering cross sections, n + O-in-UO₂, $\sigma_{inel}(E;T) + \sigma_{el}(E;T)$, ENDF/B-VIII.0; If E (cut-off) ~ 4 - 5 eV, mismatch between $\sigma_s(E;T)$ fee-gas and $\sigma_{inel}(E;T) + \sigma_{el}(E;T)$: ~ 2-4 % (acceptable ?)

cut-off E: from TSL of UO_2 to thermal ACE (6)

Plot $\sigma_s(E)$ for O-16(n,n) at T = 0 K, and, say, T = 1000 K (T_{max} = 1200 K for UO₂ TSL), and B(1) = σ_{free} from MF7, MT4 (natom = 1 for O-in-UO₂). Add thermal scattering cross sections, n + O-in-UO₂, σ_{inel} (E;T) + σ_{el} (E; T), ENDF/B-VIII.0. If E (cut-off) ~ 4.5 eV, mismatch between σ_s (E; T) fee-gas and σ_{inel} (E;T) + σ_{el} (E; T) : ~ 2-4 %; it can not be seen in log-log scale.

Canadian Nuclear Laboratoires Nucléaires Laboratories Canadiens

TSL of UO_2 , ENDF/B-VIII.0 (1)

Now we can discuss applications of TSL model, *e.g.*, V&V (benchmarking, *etc.*). Note: one can add U and O into UO₂ (*i.e.*, use normalization per UO₂). Then, we have some physical meaning of σ_{el} (E; T) for UO₂.

Work in progress ...

Canadian Nuclear | Laboratoires Nucléaires Laboratories | Canadiens

cut-off E: from TSL of UO_2 to thermal ACE (7)

To compare performance of UO_2 TSL, ENDF/B-VIII.0 vs. ENDF/B-VII, (MCNP/SEREPNT), first, consistency check for TSL \rightarrow ACE processing options with NJOY (NJOY2016). ENDF/B-VII : if E(cut-off) ~ 4 eV for U-238-in-UO2, mismatch ~ 10% (acceptable ?); if E(cut-off) ~ 4 eV for O-16-in-UO2, mismatch <~ 1% (acceptable ?). UNRESTRICTED / ILLIMITÉ -29-

New ND library for MCNP5 / SERPENT

We converted ENDF/B-VIII.0 library created by LANL for MCNP6, <u>https://nucleardata.lanl.gov</u> for MCNP5 and SERPENT applications.

ACE files created by LANL are for MCNP6 applications.

LANL fast ace files are in ACE-2 format (see ace file headers; we converted them to ACE). LANL thermal ace files were generated with iwt=2 option (NJOY, acer, card9); we re-created (most important) thermal ace files with iwt=0 (default iwt),

and LANL/CNL library nodes are

- *.01c T = 0.1 K
- *.02c T = 250.0 K
- *.03c T = 293.6 K
- *.06c T = 600.0 K
- *.09c T = 900.0 K
- *.12c T = 1200.0 K
- *.25c T = 2500.0 K

SERPENT

set acelib "/scratch/lib80xs/e80ace.xsdata"
set declib "/scratch/lib80xs/sss_endfb80.dec"
set nfylib "/scratch/lib80xs/sss_endfb80.nfy"
set sfylib "/scratch/lib80xs/sss_endfb80.sfy"

http://serpent.vtt.fi/mediawiki/index.php/Input_syntax_manual

ZED-2 reactor in CRL: experiments and modeling to be continued

First criticality: 7 September 1960

Tank type:

reactor control via moderator (D₂O) level

Integral part of the reactor physics design of **all Canadian power reactors**

Canadian Nuclear | Laboratoires Nucléaires Laboratories | Canadiens

ZED-2 reactor in CRL: 2521 cores built Fuel Lattices

Canadiens

Laboratories

ZED-2 capabilities for benchmarking

In summary, ZED-2 measures critical configurations using its

- Large test region (3.36 m in diameter, 3.35 m in height)
- Variable lattice pitch (from 20 to 40 cm)
- Variable driver fuel
- Zero power (up to ~ 200 W (thermal))
 - negligible activation
- Practically, this lets us
- Measure reactor physics phenomena (*e.g.*, fuel/coolant temperature coefficient of reactivity, absorber worth, kinetics parameters)
- Validate reactor physics codes (MCNP, KENO, SERPENT, ...)
- Validate nuclear data, including TSL at different T.

Conclusion

New measurements of TSL for H₂O, D₂O at different T : progress with H₂O, but more effort is necessary, especially in high (T, p) domain + EXFOR entries ?

Left for future studies:

- high-temperature benchmarks sensitive to TSL (H₂O, D₂O, ...)
- selection of and studying ZED-2 high-temperature configurations to be analysed with ENDF/B-VIII, JEFF, etc.;
- MCNP and SERPENT : consistent models for ZED-2 benchmarks using ZED2MCNP and ZED2Serpent generator

Acknowledgement

At CNL, this study was funded by Atomic Energy of Canada Limited (AECL), under the auspices of the Federal Nuclear Science and Technology Program (Canada).

