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Outline

• SAMMY history and overview of features
• SAMMY modernization review and update

– SAMMY 8.1 release
– Modernization strategy 
– Example: Coulomb functions
– SAMMY 8.2 features (early 2019)

• SAMMY future directions
– Simultaneous optimization of thermal and resolved R-matrix
– Bayesian generalized data optimization for defective models
– Direct capture parameterization by imaginary channel radius
– Generalized Reich-Moore approximation and its Brune transform

• Summary and outlook
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History of SAMMY
• Developed by Dr. Nancy Larson since 1970s
• Includes SAMMY + 25 auxiliary codes (e.g., SAMRML 

shared by AMPX and NJOY)
• Architecture is a large Fortran (77) container array for 

memory management
• Includes 185 multi-step test cases + 10 tutorial examples
• Comprehensive documentation available at: 

http://info.ornl.gov/sites/publications/files/Pub13056.pdf
• Employed for resolved resonance evaluations in ENDF
• SAMMY 8.1 distributed via RSICC https://rsicc.ornl.gov/

http://info.ornl.gov/sites/publications/files/Pub13056.pdf
https://rsicc.ornl.gov/
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SAMMY capabilities
• Multilevel, multichannel R-matrix code
• Bayesian fitting of R-matrix resonance parameters (RPs)

– Also known as generalized least squares 
– Yields covariance matrix of RPs

• Data reduction:
– Experimental facility resolution functions: ORELA, RPI, GELINA; used for nTOF
– Normalization, background 

• Detector resolution functions: configurable for variety of detectors
• Doppler broadening: Solbrig’s kernel, Leal-Hwang method
• Multiple scattering effects and other target effects
• Charged projectiles (p,a)
• Unresolved resonance range (FITACS by F. Froehner)
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SAMMY features introduced in 8.1 (2017):

• SAMINT: integral benchmark experiments inform research 
parameter evaluations (V. Sobes, L. Leal, G. Arbanas, 
https://info.ornl.gov/sites/publications/Files/Pub50343.pdf )

• SAMMY was integrated into SCALE software quality assurance 
(SQA) in AMPX footsteps
– Automated cmake/ctest suite, revision control repository, FogBugz
– Platforms supported: Linux/gfortran, Mac/gfortran, Windows/ifort

• New detector resolution functions were developed in 
collaboration with Rensselaer Polytechnic Institute (RPI)

• Updated physical constants, which are identical in SAMMY and 
SAMRML

• Implemented several other bug fixes and added 6 test cases

https://info.ornl.gov/sites/publications/Files/Pub50343.pdf
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SAMMY++ high-level application programming interface (API)

• Defines APIs before implementation
– Enables interchangeable implementations for each API
– Leverages input/output (I/O) and resonance API in modernized AMPX

• SAMMY parameter and GND file reader/writer under development
• Will replace SAMMY I/O routines 

Resonance 
API

Fit API

I/O API
Experimental 

effects 
API

SAMMY++
driver
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Modular modernization of SAMMY using APIs
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Example: modernization of Coulomb functions
• Background: Coulomb functions are used in SAMMY to compute the 

R-matrix Shift and Penetrability functions needed to compute cross sections for 
charged-particle projectiles

• Problem: Shift functions are needed at negative energies for evaluations 
spanning channel thresholds but cannot be computed by SAMMY

• Solution: Coulomb functions will be modernized via the C++ API method 
outlined on the previous slide: 
(Leverage modern C++ Coulomb functions published by N. Michel 
10.1016/j.cpc.2006.10.004

• Issues: 3 variants of Coulomb, Shift, and Penetrability functions are called in the 
legacy SAMMY depending on the values of input parameters; negotiated an 
Oak Ridge National Laboratory (ORNL) lab-wide license for use and distribution 
of Coulomb functions 

• Benefit: Enables inclusion of channels below their thresholds (next); enables 
conversion from R-matrix parameters to (and from) the Brune’s alternative R-
matrix, or the S-matrix poles, also known as Hwang “multipole” representations 

https://arxiv.org/ct?url=http://dx.doi.org/10.1016/j.cpc.2006.10.004&v=4581a3b9
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Example: modernization of Coulomb functions
• Code sharing of Coulomb functions with AMPX/SCALE

• N. Michel, "Precise Coulomb wave functions for a wide range of complex ℓ, η and z", 
Computer Physics Communications, Volume 176, Issue 3, 1 February 2007, Pages 232-
249, http://doi.org/10.1016/j.cpc.2006.10.004.

• Several test cases re-baselined with more accurate solutions

• NEW test case added for Coulomb functions using high precision tabulated values

• Analytical simplifications for eta >> rho were retained to avoid numerical difficulties

• Analytical expressions for derivatives of the R-matrix shift function, penetrability, and the 
phase shift for charged particles have been implemented for the first time in SAMMY

– Previously computed numerically for charged particles, 

– already computed analytically for neutrons

http://doi.org/10.1016/j.cpc.2006.10.004
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Replacing COMMON blocks by F90 MODULES

• Few weeks of concentrated efforts by Wiarda, Holcomb, Arbanas, Chapman
• On the order of ~100 COMMON blocks in separate files

– Each common block could have up to ~100 variables or arrays
– Each subroutine INCLUDEs several of these files

• Replaced each COMMON block file by a corresponding F90 module
• In-house Perl Script to globally replace each INCLUDE by a USE module statement
• SAMMY test cases re-run after global replace for each file

– Any failing tests would then be resolved
– The last few particularly difficult ones were resolved by Doro

• All COMMON block replaced and all test cases passing
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Modernization of SAMMY methods

• Background: Nuclear theories, measured data, and optimization methods are 
becoming more sophisticated

• Problem: Although SAMMY is robust, its methods must advance

• Solution: Conceptual advances in evaluations methods are needed for cross 
section models and data optimization methods

• Benefits: Conceptual advances pave the way for advanced functionality

Simultaneous 
evaluations of 
thermal and 

resolved 
resonance 

region (RRR)

Bayesian 
optimization of 

defective models
and incomplete 

data covariances
(GLS and MC)

Generalized 
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approximation 
and its Brune

transform;
direct capture
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Simultaneous evaluation of S(a,b) and RRR

• Problem: S(a,b) and RRR are evaluated separately by different evaluators/codes
– Covariance between the two is absent; may lead to discontinuity at the interface
– Caused by distinct physical theories and codes used in respective evaluations

• Solution:
– Developed S(a,b) expertise (C. Chapman) and couple with RRR expertise at ORNL
– Relate parameters in S(a,b) and RRR and evaluate simultaneously 
– Coding is required to interface the optimization code to the S(a,b) and RRR codes

• Benefits:
– Consistent evaluations of S(a,b) and RRR, including cross-covariances
– Thermal S(a,b) cross sections include T-effects cf. conventional Doppler broadening
– Similar problems exist at the interface of RRR and URR
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Scattering length for S(a,b) and RRR

• This expression relates the bound scattering length used in S(a,b) 
evaluations to SAMMY RRR R-matrix parameters

SIMULTANEOUS EVALUATION OF THERMAL NEUTRON
SCATTERING AND RESOLVED RESONANCE RANGES

GORAN ARBANAS

1. Theory

The quantity that appears in thermal neutron scattering and in the R-matrix resolved

resonance range (RRR) is the bound state scattering length. A relationship between the

bound scattering length and the R-matrix resonance parameters is

(1) b(E) =

A+1
A a(E)

whose incoming neutron energy dependence has been made explicit in anticipation of sharp

energy-dependence introduced by a resonance appearing in the thermal neutron range.

(2) a(E) = as-wave(1�R1 � �21s
E1 � E � i�1�/2� ik�21s

)

where as-wave is the R-matrix s-wave channel scattering radius in the center-of-mass frame,

E1 is the resonance energy of a thermal s-wave resonance, �1s is its scattering reduced

width amplitude, �� is its Reich-Moore resonance capture width. The thermal resonance

is labeled by index “1” that indicates it is the lowest energy resonance.

(3) R1 ⌘
1X

r=2

�2rs
Er � i�r�/2� ik�2rs

,

where the energy dependence in R1 from distant resonances is negligible when E ⌧ Er

and has been omitted. Note that ac could be a complex parameters whose imaginary part

would be responsible for direct capture cross section. Similarly the imaginary parts of R1
and of R1 contribute to resonant capture. This could lead to a welcome interference e↵ect

between direct and resonant capture of thermal neutronsl
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• Complex scattering lengths model thermal neutron absorption
– Complex R-matrix channel radius to model direct capture introduced on the next slide

• Also, SAMMY module DOPUSHx computes crystal lattice effects on low energy 
resonances
– Naberejnev (1999)
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Direct capture parameterization by complex channel radii
• Motivated by an expression for thermal neutron capture cross section

• Where
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(1) b(E) =

A+1
A a(E)

whose incoming neutron energy dependence has been made explicit in anticipation of sharp

energy-dependence introduced by a resonance appearing in the thermal neutron range.

(2) a(E) = a0(1�R(E))

(3) a0 ! ar � iai

(4) R(E) = Rr(E) + iRi(E)

(5) a(E) = ar(E)� iai(E)

(6) ai(E) = aiRr(E)� arRi(E)

(7) b(E) = br(E)� ibi(E)

(8) lim

E!0+
��(E) =

4⇡

k
bi(E) =

4⇡

k

✓
A+ 1

A

◆
ai(E)
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�s(E) =
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|b(E)|2 = 4⇡
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A+ 1

A

◆2

|a(E)|2

(10) �̃ = a|�
1
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where as-wave is the R-matrix s-wave channel scattering radius in the center-of-mass

frame, E1 is the resonance energy of a thermal s-wave resonance, �1s is its scattering

reduced width amplitude, �1� is its Reich-Moore resonance capture width. The thermal

resonance is labeled by index “1” that indicates it is the lowest energy resonance.

(11) R(E) ⌘
X

�

�2�s
E� � E � i�r�/2� ik�2�s

,

In practice, contributions from distant resonances in the sum above are treated as constants

over the thermal range when E ⌧ Er and has been omitted.

(12) Rr ⌘
�2rs

E1 � E � i�1�/2� ik�2rs

(13) R1 ⌘
�21s

E1 � E � i�1�/2� ik�21s
Note that ac could be a complex parameters whose imaginary part would be responsible

for direct capture cross section. Similarly the imaginary parts of R1 and of R1 contribute

to resonant capture. This could lead to a welcome interference e↵ect between direct and

resonant capture of thermal neutronsl
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• It follows:                                                              ;   interference in the last term!
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S-wave (complex!) R-matrix channel radius
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Direct capture (DC) parameterization by complex channel radii

• Provides a simple phenomenological R-matrix parameterization of DC
– Works for conventional or generalized Reich-Moore approximation
– Alternative to physical modeling of direct capture, e.g. single-particle potential model:

• No need for energies or spectroscopic factors of capturing bound states 

– Could be encoded by a straightforward extension of the current ENDF format

• Can be applied to:
– Westcott factors: an integral measure of deviation of thermal capture c.s. from ~1/k
– Interference effects: estimated by Raman and Lynn for thermal neutron capture as: 

• Unitarity is still enforced as in the Reich-Moore Approximation:
– Direct and resonant capture channels are now eliminated together
– Total cross section = (total capture cross section) + (total particle channel cross section)

= (         eliminated channels ) + (         retained channels )
– Unitarity of the total scattering matrix (including eliminated capture) is enforced exactly



1616

Thermal scattering cross sections at 0 K with complex radii
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(11) |a(E)|2 = ar(E)

2
+ ai(E)

2

(12) |a(E)|2 = |a0|2|1�R(E)|2

(13) �̃ = a|�

where as-wave is the R-matrix s-wave channel scattering radius in the center-of-mass

frame, E1 is the resonance energy of a thermal s-wave resonance, �1s is its scattering

reduced width amplitude, �1� is its Reich-Moore resonance capture width. The thermal

resonance is labeled by index “1” that indicates it is the lowest energy resonance.

(14) R(E) ⌘
X

�

�2�s
E� � E � i�r�/2� ik�2�s

,

In practice, contributions from distant resonances in the sum above are treated as constants

over the thermal range when E ⌧ Er and has been omitted.

(15) Rr ⌘
�2rs

E1 � E � i�1�/2� ik�2rs

(16) R1 ⌘
�21s

E1 � E � i�1�/2� ik�21s
Note that ac could be a complex parameters whose imaginary part would be responsible

for direct capture cross section. Similarly the imaginary parts of R1 and of R1 contribute

to resonant capture. This could lead to a welcome interference e↵ect between direct and

resonant capture of thermal neutronsl

• High precision measurements of thermal neutron capture and scattering 
data provide useful constraints on (complex) R-matrix channel radii and 
resonance parameters

• Contribution from loosely bound resonances may affect thermal c.s.
– A single loosely bound narrow resonance conventionally added to fit thermal c.s. data

• Phenomenological R-matrix formalism can accommodate complex channel 
radii by analytical continuation
– To parameterize direct capture at all energies, and for l>0 capture channels
– N.B. Imaginary part of R-matrix channel radius could exhibit slow variation with energy 
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Bayesian optimization of defective models
• Background: Bayes theorem takes prior information:

– model parameters AND 
– measured data 

and yields posterior probability distribution functions of parameters and data 
– model parameters AND
– measured data 

• Problem: Bayes theorem assumes
– perfect model AND 
– perfect covariances

violation of either one yields incorrect posterior values or unreasonably small uncertainties

• Two pronged solution: 
– Formally introduce model defect into the Bayes’ theorem (cf. Georg Schnabel’s Ph.D. Thesis, 2015) 
– Introduce scaling of chi^2 in the Bayesian MC weight to yield expected number of DOF

• Benefits: 
– Intuitive generalization of Bayesian theorem for model defects

• posterior data values are no longer forced to equal posterior model prediction
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Bayesian optimization of generalized data for defective models

• Expressed as a conventional minimization of the cost function (chi2)
– G. Arbanas et al., CW2017; overlap with Schnabel (Ph.D. Thesis, TTU, Vienna, 2015)

Goran Arbanas et al.: Bayesian Optimization of Generalized Data for Defective Models 3

5. Posterior expectation values are indicated by a prime,
hzi0 and C

0, while unprimed ones represent prior ex-
pectation values, hzi and C.

The following expressions are referenced within the pa-
per by assigning a context-dependent meaning to generic
variables ↵, �, and � used below. A generic Bayes theorem
could be stated as

p(↵|��) = p(↵|��) / p(↵|�)p(�|↵�), (1)

while a generic product rule of probability theory is

p(↵�|�) = p(↵|��)p(�|�). (2)

Integrating Eq. (2) over � yields the law of total proba-
bility,

p(↵|�) =
Z

d� p(↵|��)⇥ p(�|�), (3)

that is equivalent to marginalization of nuisance parame-
ter � by integrating over its all possible values.

2.1 Derivation in generalized data notation

A generalized data vector z is a union of parameters P ,
measured data D, and a model defect �:

z ⌘ (P,D, �), (4)

where prior values of generalized data are

hzi ⌘ (hP i, hDi, h�i), (5)

and where the prior covariance matrix of generalized data
is represented by a 3⇥ 3 block diagonal matrix C

C ⌘ h(z � hzi)(z � hzi)|i (6)

⌘

0

@
M W X

W

|
V Y

X

|
Y

|
�

1

A , (7)

where square matrices M, V, and � along the diago-
nal represent covariance matrix of parameters, measured
data, and the model defect, respectively, while W, X, and
Y are their respective pair-wise covariances. Prior expec-
tation value of model defect h�i is a vector of the same
size as measured data hDi, and it is expectation value of
deviations between model predictions T (P ) and the mea-
sured data caused by the model defect alone. The Bayes’
theorem is used to write a posterior PDF for z ⌘ (P,D, �)
by making the following substitution in Eq. (1),

↵ ! z
� ! T (·)
� ! hzi,C

(8)

to obtain

p(z|hzi,C, T (·)) / p(z|hzi,C)⇥ p(T (·)|z, hzi,C). (9)

This posterior PDF of generalized data contains a pos-
terior PDF of parameters and of measured data. The pos-
terior PDF of measured data should be viewed as the opti-
mal PDF that has been informed by all prior information
available, namely, by hzi, C, and the model T (·).

Upon normalizing the posterior PDF of generalized
data to unity, posterior expectation values of any function
f(z) of posterior generalized data z could be computed as
an integral over generalized data weighted by the normal-
ized posterior PDF,

hf(z)i0 =
Z

dzf(z)p(z|hzi,C, T (·)). (10)

This provides a recipe for computation of posterior expec-
tation values of generalized data, their covariances, or of
any other expression of interest, namely:

hzi0 =
Z

dzzp(z|hzi,C, T (·)) (11)

C

0 ⌘ h(z � hzi0)(z � hzi0)|i0 (12)

= hzz|i0 � hzi0hzi0|. (13)

One consequence of the derivation of the posterior PDF
of generalized data is that any computation of expecta-
tion values computed with this PDF entails integration
over all generalized data, just as in marginalization of
nuisance parameters via integration. From this perspec-
tive, model parameters and experimental data could be
considered nuisance parameters that are marginalized via
integration.

Data D alone could be considered nuisance parame-
ters whose e↵ect on the posterior expectation values of
model parameters and their covariance matrix could be
marginalized by integrating over all possible values of D.
This can be seen by observing that expressions for expec-
tation values of posterior model parameters contained in
Eq. (11) and their covariance matrix contained in Eq. (13)
include integration over all values of D:

hP i0 =
Z
dPP

Z
dD

Z
(d�)p(z|hzi,C, T (·)), (14)

hPP |i0 =
Z
dPPP |

Z
dD

Z
(d�)p(z|hzi,C, T (·)), (15)

M

0 = hPP |i0 � hP i0hP i0|. (16)

Completely analogous expressions are obtained by exchang-
ing P ! D, D ! P , and M

0 ! V

0.
The posterior generalized data PDF enables compu-

tation of covariance matrix ⇥ of posterior model values
hT (P )i0, corresponding to experimental data D, to all or-
ders

⇥ ⌘ h(T (P )� hT (P )i0)(T (P )� hT (P )i0)|i0, (17)

in contrast to the first-order approximation expression,

⇥0 =
@T (P )
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����
P=hPi0

h(P � hP i0)(P � hP i0)|i0 @T (P )
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����
|

P=hPi0

,

(18)
reported in evaluated nuclear data files like the ENDF
[10].
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5. Posterior expectation values are indicated by a prime,
hzi0 and C

0, while unprimed ones represent prior ex-
pectation values, hzi and C.

The following expressions are referenced within the pa-
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where prior values of generalized data are
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size as measured data hDi, and it is expectation value of
deviations between model predictions T (P ) and the mea-
sured data caused by the model defect alone. The Bayes’
theorem is used to write a posterior PDF for z ⌘ (P,D, �)
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covariance matrix C

0 ! C. Using this initial random en-
semble MC weight wk associated with the kth element of
the ensemble are computed as

wk =
p(zk|hzi,C)

p(zk|hzi0,C0)
e�

1
2 (!k�h!i)|⌦�1(!k�h!i), (37)

where zk ⌘ (Pk, Dk, �k) and !k = T (Pk) � Dk � �k, and
where the normal form has been assumed for the likelihood
function in Eq. (21) only.

These weights are then normalized as
P

k ŵk = 1 and
used to compute updated posterior expectation values of
hzi0 and C

0 for use in the next iteration, as:

hzi0 !
X

k

ŵkzk, (38)

C

0 !
X

k

ŵk(zk � hzi0)(zk � hzi0)|. (39)

Updated posterior expectation values of hzi0 and C

0 are
used for random sampling in the next iteration accord-
ing to the PDF p(z|hzi0,C0). Since zk are sampled from
p(z|hzi0,C0), the weights for MC evaluation of integrals
in Eqs. (11,13) are divided by p(zk|hzi0,C0) in Eq. (37).
These MC computations are iterated until hzi0 and C

0

have converged.
Elements of MC ensemble of generalized data, {zk},

with mean hzi0 and covariance matrix C

0 (from the previ-
ous iteration) are constructed as

zk = hzi0 + VE1/2Rk, (40)

where Rk is a vector of the same length as z of normally
distributed random numbers with zero mean and unit vari-
ance, and where the eigenvector matrix V and a diagonal
eigenvalue matrix E are defined via singular value decom-
position of C0:

C

0 = VEV|. (41)

This construction guarantees that the covariance matrix
of {zk} equalsC0. To avoid extremely small weights caused
by discrepant model and data, these weights could be di-
vided for numerical convenience by a constant number,

p(hzi0|hzi,C), (42)

that is the equivalent of subtracting potentially large ex-
ponents prior to normalizing weights.

The iterative nature of this method ensures optimal
coverage of the generalized data space around the poste-
rior PDF, while its iterative character makes it suitable
for nonlinear models whose sensitivities to model param-
eters may be di�cult to compute. The method makes it
straightforward to sample multidimensional experimental
data, like cross sections as a function of energy, for a more
accurate account of experimental covariance data. In its
most general form, the method presented herein enables
sampling of 1-, 2- or higher-dimensional data, just as the
constrained least squares (CLS) method implemented in
the APLCON code does.

4 Connections to other methods

To establish connections with other methods all PDFs are
assumed to be normal, and consequently, the exponents
in Eqs. (19,21) could be combined to define a generalized
cost function:

Q(z) ⌘ (z � hzi)|C�1(z � hzi) (43)

Q(z) ⌘ (z̃ � hzi)|C�1(z̃ � hzi) (44)

where the constraint T (P )�D = � is enforced by defining
z̃ ⌘ (P,D, T (P ) � D). This cost function can be mini-
mized by using Laplace transform and Newton-Raphson
method to yield approximate posterior expectation values
of generalized data hzi0 ⇡ zmin and of its covariance ma-
trix C

0 ⇡ Cmin [11]. For a perfect model, one may set
h�i ! 0 and � ! 0 to obtain

Q(z) ⇡ (ẑ � hẑi)| ˆC�1(ẑ � hẑi), (45)

where ẑ ⌘ (P,D) and ˆ

C is the corresponding covariance
matrix, with the constraint T (P ) = D. A constrained min-
imization of this cost function performed by the TSURFER
code [8] and the APLCON code [14], where the constraint
is enforced by the Lagrange multiplier method. The values
of zmin that minimize �2 are then approximate expecta-
tion values of posterior generalized data hzi0 ⇡ zmin. Since
TSURFER makes a linear approximation of the model, its
method is referred to as generalized linear least squares
(GLLS). The CLS method implicitly applies to general-
ized data and it could be rightfully called constrained
generalized least squares (CGLS) to distinguish from un-
constrained generalized least squares (GLS) method de-
scribed below.

In conventional GLS, which is also known as the �2

minimization method, the constraint is applied to the gen-
eralized data ẑ ⌘ (P,D) ! (P, T (P )), and the di↵erence
(ẑ � hẑi) in Eq. (44) is replaced by

(ẑ � hẑi) ⌘ (P � hP i, D � hDi)
! (P � hP i, T (P )� hDi), (46)

with no constraint enforced. This definition of �2 has been
used in nuclear data evaluations and is also the quantity
that is minimized in generic optimization codes like MI-
NUIT [13].

A common form of the (unconstrained) �2-function is
obtained for a block-diagonal generalized data covariance
matrix C with parameter covariance matrix M and ex-
perimental data covariance matrix V along the diagonal:

�2 = (P � hP i)|M�1(P � hP i)
+ (T (P )� hDi)|V�1(T (P )� hDi). (47)

Minimization of �2 with respect to P yields a solution
vector Pmin, that is assumed to be equal to the posterior
expectation value of parameters hP i0.
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This can be seen by observing that expressions for expec-
tation values of posterior model parameters contained in
Eq. (11) and their covariance matrix contained in Eq. (13)
include integration over all values of D:

hP i0 =
Z
dPP

Z
dD

Z
(d�)p(z|hzi,C, T (·)), (14)

hPP |i0 =
Z
dPPP |

Z
dD

Z
(d�)p(z|hzi,C, T (·)), (15)

M

0 = hPP |i0 � hP i0hP i0|. (16)

Completely analogous expressions are obtained by exchang-
ing P ! D, D ! P , and M

0 ! V

0.
The posterior generalized data PDF enables compu-

tation of covariance matrix ⇥ of posterior model values
hT (P )i0, corresponding to experimental data D, to all or-
ders

⇥ ⌘ h(T (P )� hT (P )i0)(T (P )� hT (P )i0)|i0, (17)

in contrast to the first-order approximation expression,

⇥0 =
@T (P )

@P

����
P=hPi0

h(P � hP i0)(P � hP i0)|i0 @T (P )

@P

����
|

P=hPi0

,

(18)
reported in evaluated nuclear data files like the ENDF
[10].

Constraint:Cost function (a.k.a. chi2):

where generalized data includes defect:
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Priors:

Posteriors w/defect:

Posteriors w/o defect:

Defect
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where p(z|hzi,C) is the prior PDF of generalized data.
A �Dirac(!) likelihood function of a defective model ef-

fectively reduces integration over z = (P,D, �) to (P,D),
and the model defect variable � is replaced by T (P ) �D
in the prior PDF. This component of the prior PDF is
analogous to the likelihood function obtained by setting
constraints !0

f

 h�i0 and ⌦

0
f

 �

0 for a perfect model.
Conversely, non-zero values of !0

f

and ⌦

0
f

for a perfect
model with h�i = h�i0 = 0 and � = �

0 = 0 are analogous
to setting constraints to zero and introducing a model de-
fect h�i0  !0

f

and �

0  ⌦

0
f

. This could be formally
represented as

(!0
f

,⌦0
f

, (h�i,�) = 0) ! ((!0
f

,⌦0
f

) = 0, h�i0,�0) (18)

or in shorthand

(!0
f

,⌦0
f

) ! (�0,�0) (19)

This point will be elaborated upon in Sections 2.2 and 3.
The posterior generalized data PDF enables compu-

tation of covariance matrix ⇥ of posterior model values
hT (P )i0, corresponding to experimental data D, to all or-
ders

⇥ ⌘ h(T (P )� hT (P )i0)(T (P )� hT (P )i0)|i0, (20)

in contrast to the first-order approximation expression,

@T (P )

@P

����
P=hPi0

h(P � hP i0)(P � hP i0)|i0 @T (P )

@P

����
|

P=hPi0

, (21)

reported in evaluated nuclear data files like the ENDF
[11].

2.2 Posterior PDF for normal PDFs

Although this formalism applies to arbitrary PDFs, a par-
ticularly simple form is attained when normal form is as-
sumed for all PDFs. In that case, the prior PDF becomes

p(z|hzi,C) / e�
1
2 (z�hzi)|C�1(z�hzi), (22)

⌘ N (z|hzi,C) (23)

where N stands for a normal PDF, and the likelihood
function could be stated as

p(f |z, hzi,C) / e�
1
2 (!�!f )

|⌦�1
f (!�!f ), (24)

⌘ N (!|!
f

,⌦
f

) (25)

where ! is defined in Eq. (10), !
f

is an e↵ective param-
eter vector and ⌦

f

is an e↵ective covariance matrix such
that this posterior PDF obeys the constraint f on poste-
rior expectation value h!i0 = !0

f

and ⌦

0 = ⌦

0
f

. Unknown
parameters !

f

and ⌦

f

play a role equivalent to Lagrange
multipliers {�

i

}
f

and {⇤
ij

}
f

in Eq. (12).
Combining the normal prior PDF and the normal like-

lihood functions yields a posterior PDF

p(z|hzi,C, f) / N (z|hzi,C)⇥N (!|!
f

,⌦
f

), (26)

subject to aforementioned constraints in f .
Constraint set f0 namely h!i0 = 0 and ⌦

0 ⌘ h!!|i0 =
0, are satisfied by !

f

= 0 and ⌦

F

= 0 for which the
normal likelihood function in Eq. (24) becomes a Dirac
delta function, and the posterior PDF becomes

p(z|hzi,C, F ) / N (z|hzi,C)⇥ �Dirac(!). (27)

Furthermore, for models without a defect, that is, in the
limit h�i ! 0 and �! 0, this posterior PDF becomes

p(ẑ|hẑi,C, F ) / N (ẑ|hẑi, ˆC)⇥ �Dirac(T (P )�D). (28)

where
ẑ ⌘ (P,D). (29)

and ˆ

C is the covariance matrix corresponding to ẑ. In
Section 4, it will be shown that the expression for the
posterior PDF in this limit is equivalent to the CGLS
method implemented in the APLCON code, or to its linear
approximation implemented in the TSURFER module of
the SCALE code system.

2.3 Conventional derivation of posterior parameter PDF

Making the following substitutions into a generic Bayes’
theorem in Eq. (1):

↵ ! P
� ! f
� ! (hP i, hDi, h�i,C) = (hzi,C),

(30)

one obtains

p(P |hzi,C, f) / p(P |hzi,C)⇥ p(f |P, hzi,C), (31)

where the second factor on the right hand side can be
expressed as a nested integral over all possible values of
measured data D and model defect data �, given their
expectation values hDi and h�i, respectively, and their co-
variance matrix C, by using the total probability theorem
in Eq. (3):

p(f |P, hzi,C) = (32)Z
dD

Z
(d�)p(f |D, �, P, hzi,C)⇥ p(D, �|P, hzi,C).

The first term in Eq. (31) and the second term in Eq. (32)
could be combined by making the following substitutions:

↵ ! P
� ! D, �
� ! hzi,C

(33)

into the product rule in Eq. (2) to obtain

p(z|hzi,C) = p(P,D, �|hzi,C)

/ p(P |hzi,C)⇥ p(D, �|P, hzi,C). (34)
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Combining all terms yields

p(P |hzi,C, f) /
Z

dD

Z
(d�)p(z|hzi,C)p(f |z, hzi,C)

/
Z

dD

Z
(d�)p(z|hzi,C, f), (35)

where Bayes’ theorem stated by Eq. (9) was used to intro-
duce p(z|hzi,C, f) in the integrand on the last line above.
This shows that a partial posterior PDF of parameters, P ,
is simply an integral of the posterior PDF over all mea-
sured data, D, and model defect d.

3 Simple Example

Analogy between a constraint set and a model defect is
illustrated on a simple analytically solvable example. A
simple model without a defect is defined as T (P ) = P
with a single scalar parameter P , and a single data point
D with constraints f : h!i0 = 0 and ⌦0

f

= 2/3. A corre-
sponding model with a defect has constraints f0: h!i0 = 0
and ⌦0

f

= 0, while its covariance matrix has a compo-
nent corresponding to model defect, namely C3,3 = 1. For
simplicity the prior expectation value of generalized data
hzi = 0 and the prior covariance matrix C is an iden-
tity matrix, so that posterior expectation values remain
unchanged for both models, that is, hzi0 = hzi0 = 0

First we consider a model without a defect, that is,
z = (P,D) whose covariance matrix is defined as

C =

✓
1 0
0 1

◆
, (36)

and a posterior PDF in terms of Lagrange multipliers is

p(z|hzi,C, f) = N (z|hzi,C)e��(x�y)�⇤(x�y)2 , (37)

where � = 0 and ⇤ = 1/2 satisfy constraints h!i0 = 0 and
⌦0

f

= 2/3.
For a model with a defect, z = (P,D, �), with a prior

covariance matrix

C =

0

@
1 0 0
0 1 0
0 0 1

1

A , (38)

a posterior PDF that satisfies f0: h!i0 = 0 and ⌦0
f

= 0 is

p(z|hzi,C, f) = N (z|hzi,C)�Dirac(!), (39)

that upon integration over � becomes equivalent to the
posterior PDF in Eq. (37).

4 Connections to other methods

To establish connections with other methods all PDFs are
assumed to be normal, and consequently, the exponents

in Eqs. (22,24) could be combined to define a generalized
cost function:

Q(z) ⌘ (z̃ � hzi)|C�1(z̃ � hzi) (40)

where the constraint T (P )�D = � is enforced by defining
z̃ ⌘ (P,D, T (P ) � D). This cost function can be mini-
mized by using Laplace transform and Newton-Raphson
method to yield approximate posterior expectation values
of generalized data hzi0 ⇡ zmin and of its covariance ma-
trix C

0 ⇡ Cmin [12]. For a perfect model, one may set
h�i ! 0 and � ! 0 to obtain

Q(z) ⇡ (ẑ � hẑi)| ˆC�1(ẑ � hẑi), (41)

where ẑ ⌘ (P,D) and ˆ

C is the corresponding covariance
matrix, with the constraint T (P ) = D. A constrained min-
imization of this cost function performed by the TSURFER
code [9] and the APLCON code [15], where the constraint
is enforced by the Lagrange multiplier method. The values
of zmin that minimize �2 are then approximate expecta-
tion values of posterior generalized data hzi0 ⇡ zmin. Since
TSURFER makes a linear approximation of the model, its
method is referred to as generalized linear least squares
(GLLS).

In conventional GLS, which is also known as the �2

minimization method, the constraint is applied to the gen-
eralized data ẑ ⌘ (P,D) ! (P, T (P )), and the di↵erence
(ẑ � hẑi) in Eq. (41) is replaced by

(ẑ � hẑi) ⌘ (P � hP i, D � hDi)
! (P � hP i, T (P )� hDi), (42)

with no constraint enforced.
A common approximation to the �2-function is ob-

tained for a block-diagonal generalized data covariance
matrix C, with parameter covariance matrix M and ex-
perimental data covariance matrix V along the diagonal:

�2 = (P � hP i)|M�1(P � hP i)
+ (T (P )� hDi)|V�1(T (P )� hDi). (43)

Minimization of �2 with respect to P yields a solution
vector Pmin, that is approximately equal to the posterior
expectation value of parameters hP i0. This definition of �2

has been used in nuclear data evaluations and is also the
quantity that is minimized in generic optimization codes
like MINUIT [14].

�2 = (T (P )�D)|V�1(T (P )�D). (44)

T (P ) = P (45)

z = (P,D) (46)

�2 =
1

2

NX

i

(P �D
i

)2 =
N

2
(P �D)2 (47)
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5. Posterior expectation values are indicated by a prime,
hzi0 and C

0, while unprimed ones represent prior ex-
pectation values, hzi and C.

The following expressions are referenced within the pa-
per by assigning a context-dependent meaning to generic
variables ↵, �, and � used below. A generic Bayes theorem
could be stated as

p(↵|��) = p(↵|��) / p(↵|�)p(�|↵�), (1)

while a generic product rule of probability theory is

p(↵�|�) = p(↵|��)p(�|�). (2)

Integrating Eq. (2) over � yields the law of total proba-
bility,

p(↵|�) =
Z

d� p(↵|��)⇥ p(�|�), (3)

that is equivalent to marginalization of nuisance parame-
ter � by integrating over its all possible values.

2.1 Derivation in generalized data notation

A generalized data vector z is a union of parameters P ,
measured data D, and a model defect �:

z ⌘ (P,D, �), (4)

where prior values of generalized data are

hzi ⌘ (hP i, hDi, h�i), (5)

and where the prior covariance matrix of generalized data
is represented by a 3⇥ 3 block diagonal matrix C

C ⌘ h(z � hzi)(z � hzi)|i (6)

⌘

0

@
M W X

W

|
V Y

X

|
Y

|
�

1

A , (7)

where square matrices M, V, and � along the diago-
nal represent covariance matrix of parameters, measured
data, and the model defect, respectively, while W, X, and
Y are their respective pair-wise covariances. Prior expec-
tation value of model defect h�i is a vector of the same
size as measured data hDi, and it is expectation value of
deviations between model predictions T (P ) and the mea-
sured data caused by the model defect alone. The Bayes’
theorem is used to write a posterior PDF for z ⌘ (P,D, �)
by making the following substitution in Eq. (1),

↵ ! z
� ! T (·)
� ! hzi,C

(8)

to obtain

p(z|hzi,C, T (·)) / p(z|hzi,C)⇥ p(T (·)|z, hzi,C). (9)

This posterior PDF of generalized data contains a pos-
terior PDF of parameters and of measured data. The pos-
terior PDF of measured data should be viewed as the opti-
mal PDF that has been informed by all prior information
available, namely, by hzi, C, and the model T (·).

Upon normalizing the posterior PDF of generalized
data to unity, posterior expectation values of any function
f(z) of posterior generalized data z could be computed as
an integral over generalized data weighted by the normal-
ized posterior PDF,

hf(z)i0 =
Z

dzf(z)p(z|hzi,C, T (·)). (10)

This provides a recipe for computation of posterior expec-
tation values of generalized data, their covariances, or of
any other expression of interest, namely:

hzi0 =
Z

dzzp(z|hzi,C, T (·)) (11)

C

0 ⌘ h(z � hzi0)(z � hzi0)|i0 (12)

= hzz|i0 � hzi0hzi0|. (13)

One consequence of the derivation of the posterior PDF
of generalized data is that any computation of expecta-
tion values computed with this PDF entails integration
over all generalized data, just as in marginalization of
nuisance parameters via integration. From this perspec-
tive, model parameters and experimental data could be
considered nuisance parameters that are marginalized via
integration.

Data D alone could be considered nuisance parame-
ters whose e↵ect on the posterior expectation values of
model parameters and their covariance matrix could be
marginalized by integrating over all possible values of D.
This can be seen by observing that expressions for expec-
tation values of posterior model parameters contained in
Eq. (11) and their covariance matrix contained in Eq. (13)
include integration over all values of D:

hP i0 =
Z
dPP

Z
dD

Z
(d�)p(z|hzi,C, T (·)), (14)

hPP |i0 =
Z
dPPP |

Z
dD

Z
(d�)p(z|hzi,C, T (·)), (15)

M

0 = hPP |i0 � hP i0hP i0|. (16)

Completely analogous expressions are obtained by exchang-
ing P ! D, D ! P , and M

0 ! V

0.
The posterior generalized data PDF enables compu-

tation of covariance matrix ⇥ of posterior model values
hT (P )i0, corresponding to experimental data D, to all or-
ders

⇥ ⌘ h(T (P )� hT (P )i0)(T (P )� hT (P )i0)|i0, (17)

in contrast to the first-order approximation expression,

⇥0 =
@T (P )

@P

����
P=hPi0

h(P � hP i0)(P � hP i0)|i0 @T (P )

@P

����
|

P=hPi0

,

(18)
reported in evaluated nuclear data files like the ENDF
[10].
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Combining all terms yields

p(P |hzi,C, f) /
Z

dD

Z
(d�)p(z|hzi,C)p(f |z, hzi,C)

/
Z

dD

Z
(d�)p(z|hzi,C, f), (35)

where Bayes’ theorem stated by Eq. (9) was used to intro-
duce p(z|hzi,C, f) in the integrand on the last line above.
This shows that a partial posterior PDF of parameters, P ,
is simply an integral of the posterior PDF over all mea-
sured data, D, and model defect d.

3 Simple Example

Analogy between a constraint set and a model defect is
illustrated on a simple analytically solvable example. A
simple model without a defect is defined as T (P ) = P
with a single scalar parameter P , and a single data point
D with constraints f : h!i0 = 0 and ⌦0

f

= 2/3. A corre-
sponding model with a defect has constraints f0: h!i0 = 0
and ⌦0

f

= 0, while its covariance matrix has a compo-
nent corresponding to model defect, namely C3,3 = 1. For
simplicity the prior expectation value of generalized data
hzi = 0 and the prior covariance matrix C is an iden-
tity matrix, so that posterior expectation values remain
unchanged for both models, that is, hzi0 = hzi0 = 0

First we consider a model without a defect, that is,
z = (P,D) whose covariance matrix is defined as

C =

✓
1 0
0 1

◆
, (36)

and a posterior PDF in terms of Lagrange multipliers is

p(z|hzi,C, f) = N (z|hzi,C)e��(x�y)�⇤(x�y)2 , (37)

where � = 0 and ⇤ = 1/2 satisfy constraints h!i0 = 0 and
⌦0

f

= 2/3.
For a model with a defect, z = (P,D, �), with a prior

covariance matrix

C =

0

@
1 0 0
0 1 0
0 0 1

1

A , (38)

a posterior PDF that satisfies f0: h!i0 = 0 and ⌦0
f

= 0 is

p(z|hzi,C, f) = N (z|hzi,C)�Dirac(!), (39)

that upon integration over � becomes equivalent to the
posterior PDF in Eq. (37).

4 Connections to other methods

To establish connections with other methods all PDFs are
assumed to be normal, and consequently, the exponents

in Eqs. (22,24) could be combined to define a generalized
cost function:

Q(z) ⌘ (z̃ � hzi)|C�1(z̃ � hzi) (40)

where the constraint T (P )�D = � is enforced by defining
z̃ ⌘ (P,D, T (P ) � D). This cost function can be mini-
mized by using Laplace transform and Newton-Raphson
method to yield approximate posterior expectation values
of generalized data hzi0 ⇡ zmin and of its covariance ma-
trix C

0 ⇡ Cmin [12]. For a perfect model, one may set
h�i ! 0 and � ! 0 to obtain

Q(z) ⇡ (ẑ � hẑi)| ˆC�1(ẑ � hẑi), (41)

where ẑ ⌘ (P,D) and ˆ

C is the corresponding covariance
matrix, with the constraint T (P ) = D. A constrained min-
imization of this cost function performed by the TSURFER
code [9] and the APLCON code [15], where the constraint
is enforced by the Lagrange multiplier method. The values
of zmin that minimize �2 are then approximate expecta-
tion values of posterior generalized data hzi0 ⇡ zmin. Since
TSURFER makes a linear approximation of the model, its
method is referred to as generalized linear least squares
(GLLS).

In conventional GLS, which is also known as the �2

minimization method, the constraint is applied to the gen-
eralized data ẑ ⌘ (P,D) ! (P, T (P )), and the di↵erence
(ẑ � hẑi) in Eq. (41) is replaced by

(ẑ � hẑi) ⌘ (P � hP i, D � hDi)
! (P � hP i, T (P )� hDi), (42)

with no constraint enforced.
A common approximation to the �2-function is ob-

tained for a block-diagonal generalized data covariance
matrix C, with parameter covariance matrix M and ex-
perimental data covariance matrix V along the diagonal:

�2 = (P � hP i)|M�1(P � hP i)
+ (T (P )� hDi)|V�1(T (P )� hDi). (43)

Minimization of �2 with respect to P yields a solution
vector Pmin, that is approximately equal to the posterior
expectation value of parameters hP i0. This definition of �2

has been used in nuclear data evaluations and is also the
quantity that is minimized in generic optimization codes
like MINUIT [14].

�2 = (T (P )�D)|V�1(T (P )�D). (44)

T (P ) = P (45)

z = (P,D) (46)

�2 =
1

2

NX

i

(P �D
i

)2 =
N

2
(P �D)2 (47)
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covariance matrix C

0 ! C. Using this initial random en-
semble MC weight wk associated with the kth element of
the ensemble are computed as

wk =
p(zk|hzi,C)

p(zk|hzi0,C0)
e�

1
2 (!k�h!i)|⌦�1(!k�h!i), (37)

where zk ⌘ (Pk, Dk, �k) and !k = T (Pk) � Dk � �k, and
where the normal form has been assumed for the likelihood
function in Eq. (21) only.

These weights are then normalized as
P

k ŵk = 1 and
used to compute updated posterior expectation values of
hzi0 and C

0 for use in the next iteration, as:

hzi0 !
X

k

ŵkzk, (38)

C

0 !
X

k

ŵk(zk � hzi0)(zk � hzi0)|. (39)

Updated posterior expectation values of hzi0 and C

0 are
used for random sampling in the next iteration accord-
ing to the PDF p(z|hzi0,C0). Since zk are sampled from
p(z|hzi0,C0), the weights for MC evaluation of integrals
in Eqs. (11,13) are divided by p(zk|hzi0,C0) in Eq. (37).
These MC computations are iterated until hzi0 and C

0

have converged.
Elements of MC ensemble of generalized data, {zk},

with mean hzi0 and covariance matrix C

0 (from the previ-
ous iteration) are constructed as

zk = hzi0 + VE1/2Rk, (40)

where Rk is a vector of the same length as z of normally
distributed random numbers with zero mean and unit vari-
ance, and where the eigenvector matrix V and a diagonal
eigenvalue matrix E are defined via singular value decom-
position of C0:

C

0 = VEV|. (41)

This construction guarantees that the covariance matrix
of {zk} equalsC0. To avoid extremely small weights caused
by discrepant model and data, these weights could be di-
vided for numerical convenience by a constant number,

p(hzi0|hzi,C), (42)

that is the equivalent of subtracting potentially large ex-
ponents prior to normalizing weights.

The iterative nature of this method ensures optimal
coverage of the generalized data space around the poste-
rior PDF, while its iterative character makes it suitable
for nonlinear models whose sensitivities to model param-
eters may be di�cult to compute. The method makes it
straightforward to sample multidimensional experimental
data, like cross sections as a function of energy, for a more
accurate account of experimental covariance data. In its
most general form, the method presented herein enables
sampling of 1-, 2- or higher-dimensional data, just as the
constrained least squares (CLS) method implemented in
the APLCON code does.

4 Connections to other methods

To establish connections with other methods all PDFs are
assumed to be normal, and consequently, the exponents
in Eqs. (19,21) could be combined to define a generalized
cost function:

Q(z) ⌘ (z � hzi)|C�1(z � hzi) (43)

Q(z) ⌘ (z̃ � hzi)|C�1(z̃ � hzi) (44)

where the constraint T (P )�D = � is enforced by defining
z̃ ⌘ (P,D, T (P ) � D). This cost function can be mini-
mized by using Laplace transform and Newton-Raphson
method to yield approximate posterior expectation values
of generalized data hzi0 ⇡ zmin and of its covariance ma-
trix C

0 ⇡ Cmin [11]. For a perfect model, one may set
h�i ! 0 and � ! 0 to obtain

Q(z) ⇡ (ẑ � hẑi)| ˆC�1(ẑ � hẑi), (45)

where ẑ ⌘ (P,D) and ˆ

C is the corresponding covariance
matrix, with the constraint T (P ) = D. A constrained min-
imization of this cost function performed by the TSURFER
code [8] and the APLCON code [14], where the constraint
is enforced by the Lagrange multiplier method. The values
of zmin that minimize �2 are then approximate expecta-
tion values of posterior generalized data hzi0 ⇡ zmin. Since
TSURFER makes a linear approximation of the model, its
method is referred to as generalized linear least squares
(GLLS). The CLS method implicitly applies to general-
ized data and it could be rightfully called constrained
generalized least squares (CGLS) to distinguish from un-
constrained generalized least squares (GLS) method de-
scribed below.

In conventional GLS, which is also known as the �2

minimization method, the constraint is applied to the gen-
eralized data ẑ ⌘ (P,D) ! (P, T (P )), and the di↵erence
(ẑ � hẑi) in Eq. (44) is replaced by

(ẑ � hẑi) ⌘ (P � hP i, D � hDi)
! (P � hP i, T (P )� hDi), (46)

with no constraint enforced. This definition of �2 has been
used in nuclear data evaluations and is also the quantity
that is minimized in generic optimization codes like MI-
NUIT [13].

A common form of the (unconstrained) �2-function is
obtained for a block-diagonal generalized data covariance
matrix C with parameter covariance matrix M and ex-
perimental data covariance matrix V along the diagonal:

�2 = (P � hP i)|M�1(P � hP i)
+ (T (P )� hDi)|V�1(T (P )� hDi). (47)

Minimization of �2 with respect to P yields a solution
vector Pmin, that is assumed to be equal to the posterior
expectation value of parameters hP i0.
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5 Conclusions and Outlook

A new, general expression for the posterior PDF of gen-
eralized data has been derived, where generalized data
refers to a union of model parameters and experimental
data, starting from the Bayes’ theorem. Key ingredients
of this derivation are:

1. use of generalized data as a basic element,
2. formal recognition of model (or theory) and its defect

when applying Bayes’ theorem, and
3. formal and consistent separation between expectation

and instance values of generalized data.

A direct consequence of application of Bayes’ theorem
to generalized data, of which experimental data are a sub-
set, is that the posterior PDF of generalized data yields
posterior expectation values and covariances for experi-
mental data, too. This is in contrast to the prevalent nu-
clear data evaluation practice where posterior PDF of ex-
perimental data and its covariances are identical to those
of model predictions.

A normal form of posterior PDF of generalized data,
obtained by setting all constituent PDFs to be normal and
assuming a perfect model, was found useful to establish a
connection to extant optimization methods, namely CGLS
implemented in APLCON and its linear approximation
implemented in the TSURFER module of SCALE.

The appealing features of the posterior PDF of gener-
alized data listed above make it a candidate for simultane-
ous and consistent optimization of model parameters and

experimental data of di↵erential cross section and inte-
gral benchmarks that would yield more accurate and com-
plete evaluations and covariances. The presented method
could simultaneously sample R-matrix resonance param-
eters, optical model potential parameters, and integral
benchmark parameters such as spatial dimensions and ma-
terial composition, to compute presently unknown covari-
ances among integral benchmark experiments and cross
section data. Sensitivities of integral benchmark responses
with respect to cross sections are not needed for calcula-
tions using the iterative Bayesian Monte Carlo method.
It is hoped that the derived method could complement
conventional nuclear data adjustment methods [17].
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where p(z|hzi,C) is the prior PDF of generalized data.
A �Dirac(!) likelihood function of a defective model ef-

fectively reduces integration over z = (P,D, �) to (P,D),
and the model defect variable � is replaced by T (P ) �D
in the prior PDF. This component of the prior PDF is
analogous to the likelihood function obtained by setting
constraints !0

f

 h�i0 and ⌦

0
f

 �

0 for a perfect model.
Conversely, non-zero values of !0

f

and ⌦

0
f

for a perfect
model with h�i = h�i0 = 0 and � = �

0 = 0 are analogous
to setting constraints to zero and introducing a model de-
fect h�i0  !0

f

and �

0  ⌦

0
f

. This could be formally
represented as

(!0
f

,⌦0
f

, (h�i,�) = 0) ! ((!0
f

,⌦0
f

) = 0, h�i0,�0) (18)

or in shorthand

(!0
f

,⌦0
f

) ! (�0,�0) (19)

This point will be elaborated upon in Sections 2.2 and 3.
The posterior generalized data PDF enables compu-

tation of covariance matrix ⇥ of posterior model values
hT (P )i0, corresponding to experimental data D, to all or-
ders

⇥ ⌘ h(T (P )� hT (P )i0)(T (P )� hT (P )i0)|i0, (20)

in contrast to the first-order approximation expression,

@T (P )

@P

����
P=hPi0

h(P � hP i0)(P � hP i0)|i0 @T (P )

@P

����
|

P=hPi0

, (21)

reported in evaluated nuclear data files like the ENDF
[11].

2.2 Posterior PDF for normal PDFs

Although this formalism applies to arbitrary PDFs, a par-
ticularly simple form is attained when normal form is as-
sumed for all PDFs. In that case, the prior PDF becomes

p(z|hzi,C) / e�
1
2 (z�hzi)|C�1(z�hzi), (22)

⌘ N (z|hzi,C) (23)

where N stands for a normal PDF, and the likelihood
function could be stated as

p(f |z, hzi,C) / e�
1
2 (!�!f )

|⌦�1
f (!�!f ), (24)

⌘ N (!|!
f

,⌦
f

) (25)

where ! is defined in Eq. (10), !
f

is an e↵ective param-
eter vector and ⌦

f

is an e↵ective covariance matrix such
that this posterior PDF obeys the constraint f on poste-
rior expectation value h!i0 = !0

f

and ⌦

0 = ⌦

0
f

. Unknown
parameters !

f

and ⌦

f

play a role equivalent to Lagrange
multipliers {�

i

}
f

and {⇤
ij

}
f

in Eq. (12).
Combining the normal prior PDF and the normal like-

lihood functions yields a posterior PDF

p(z|hzi,C, f) / N (z|hzi,C)⇥N (!|!
f

,⌦
f

), (26)

subject to aforementioned constraints in f .
Constraint set f0 namely h!i0 = 0 and ⌦

0 ⌘ h!!|i0 =
0, are satisfied by !

f

= 0 and ⌦

F

= 0 for which the
normal likelihood function in Eq. (24) becomes a Dirac
delta function, and the posterior PDF becomes

p(z|hzi,C, F ) / N (z|hzi,C)⇥ �Dirac(!). (27)

Furthermore, for models without a defect, that is, in the
limit h�i ! 0 and �! 0, this posterior PDF becomes

p(ẑ|hẑi,C, F ) / N (ẑ|hẑi, ˆC)⇥ �Dirac(T (P )�D). (28)

where
ẑ ⌘ (P,D). (29)

and ˆ

C is the covariance matrix corresponding to ẑ. In
Section 4, it will be shown that the expression for the
posterior PDF in this limit is equivalent to the CGLS
method implemented in the APLCON code, or to its linear
approximation implemented in the TSURFER module of
the SCALE code system.

2.3 Conventional derivation of posterior parameter PDF

Making the following substitutions into a generic Bayes’
theorem in Eq. (1):

↵ ! P
� ! f
� ! (hP i, hDi, h�i,C) = (hzi,C),

(30)

one obtains

p(P |hzi,C, f) / p(P |hzi,C)⇥ p(f |P, hzi,C), (31)

where the second factor on the right hand side can be
expressed as a nested integral over all possible values of
measured data D and model defect data �, given their
expectation values hDi and h�i, respectively, and their co-
variance matrix C, by using the total probability theorem
in Eq. (3):

p(f |P, hzi,C) = (32)Z
dD

Z
(d�)p(f |D, �, P, hzi,C)⇥ p(D, �|P, hzi,C).

The first term in Eq. (31) and the second term in Eq. (32)
could be combined by making the following substitutions:

↵ ! P
� ! D, �
� ! hzi,C

(33)

into the product rule in Eq. (2) to obtain

p(z|hzi,C) = p(P,D, �|hzi,C)

/ p(P |hzi,C)⇥ p(D, �|P, hzi,C). (34)
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5 Conclusions and Outlook

A new, general expression for the posterior PDF of gen-
eralized data has been derived, where generalized data
refers to a union of model parameters and experimental
data, starting from the Bayes’ theorem. Key ingredients
of this derivation are:

1. use of generalized data as a basic element,
2. formal recognition of model (or theory) and its defect

when applying Bayes’ theorem, and
3. formal and consistent separation between expectation

and instance values of generalized data.

A direct consequence of application of Bayes’ theorem
to generalized data, of which experimental data are a sub-
set, is that the posterior PDF of generalized data yields
posterior expectation values and covariances for experi-
mental data, too. This is in contrast to the prevalent nu-
clear data evaluation practice where posterior PDF of ex-
perimental data and its covariances are identical to those
of model predictions.

A normal form of posterior PDF of generalized data,
obtained by setting all constituent PDFs to be normal and
assuming a perfect model, was found useful to establish a
connection to extant optimization methods, namely CGLS
implemented in APLCON and its linear approximation
implemented in the TSURFER module of SCALE.

The appealing features of the posterior PDF of gener-
alized data listed above make it a candidate for simultane-
ous and consistent optimization of model parameters and

experimental data of di↵erential cross section and inte-
gral benchmarks that would yield more accurate and com-
plete evaluations and covariances. The presented method
could simultaneously sample R-matrix resonance param-
eters, optical model potential parameters, and integral
benchmark parameters such as spatial dimensions and ma-
terial composition, to compute presently unknown covari-
ances among integral benchmark experiments and cross
section data. Sensitivities of integral benchmark responses
with respect to cross sections are not needed for calcula-
tions using the iterative Bayesian Monte Carlo method.
It is hoped that the derived method could complement
conventional nuclear data adjustment methods [17].
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Combining all terms yields

p(P |hzi,C, f) /
Z

dD

Z
(d�)p(z|hzi,C)p(f |z, hzi,C)

/
Z

dD

Z
(d�)p(z|hzi,C, f), (35)

where Bayes’ theorem stated by Eq. (9) was used to intro-
duce p(z|hzi,C, f) in the integrand on the last line above.
This shows that a partial posterior PDF of parameters, P ,
is simply an integral of the posterior PDF over all mea-
sured data, D, and model defect d.

3 Simple Example

Analogy between a constraint set and a model defect is
illustrated on a simple analytically solvable example. A
simple model without a defect is defined as T (P ) = P
with a single scalar parameter P , and a single data point
D with constraints f : h!i0 = 0 and ⌦0

f

= 2/3. A corre-
sponding model with a defect has constraints f0: h!i0 = 0
and ⌦0

f

= 0, while its covariance matrix has a compo-
nent corresponding to model defect, namely C3,3 = 1. For
simplicity the prior expectation value of generalized data
hzi = 0 and the prior covariance matrix C is an iden-
tity matrix, so that posterior expectation values remain
unchanged for both models, that is, hzi0 = hzi0 = 0

First we consider a model without a defect, that is,
z = (P,D) whose covariance matrix is defined as

C =

✓
1 0
0 1

◆
, (36)

and a posterior PDF in terms of Lagrange multipliers is

p(z|hzi,C, f) = N (z|hzi,C)e��(x�y)�⇤(x�y)2 , (37)

where � = 0 and ⇤ = 1/2 satisfy constraints h!i0 = 0 and
⌦0

f

= 2/3.
For a model with a defect, z = (P,D, �), with a prior

covariance matrix

C =

0

@
1 0 0
0 1 0
0 0 1

1

A , (38)

a posterior PDF that satisfies f0: h!i0 = 0 and ⌦0
f

= 0 is

p(z|hzi,C, f) = N (z|hzi,C)�Dirac(!), (39)

that upon integration over � becomes equivalent to the
posterior PDF in Eq. (37).

4 Connections to other methods

To establish connections with other methods all PDFs are
assumed to be normal, and consequently, the exponents

in Eqs. (22,24) could be combined to define a generalized
cost function:

Q(z) ⌘ (z̃ � hzi)|C�1(z̃ � hzi) (40)

where the constraint T (P )�D = � is enforced by defining
z̃ ⌘ (P,D, T (P ) � D). This cost function can be mini-
mized by using Laplace transform and Newton-Raphson
method to yield approximate posterior expectation values
of generalized data hzi0 ⇡ zmin and of its covariance ma-
trix C

0 ⇡ Cmin [12]. For a perfect model, one may set
h�i ! 0 and � ! 0 to obtain

Q(z) ⇡ (ẑ � hẑi)| ˆC�1(ẑ � hẑi), (41)

where ẑ ⌘ (P,D) and ˆ

C is the corresponding covariance
matrix, with the constraint T (P ) = D. A constrained min-
imization of this cost function performed by the TSURFER
code [9] and the APLCON code [15], where the constraint
is enforced by the Lagrange multiplier method. The values
of zmin that minimize �2 are then approximate expecta-
tion values of posterior generalized data hzi0 ⇡ zmin. Since
TSURFER makes a linear approximation of the model, its
method is referred to as generalized linear least squares
(GLLS).

In conventional GLS, which is also known as the �2

minimization method, the constraint is applied to the gen-
eralized data ẑ ⌘ (P,D) ! (P, T (P )), and the di↵erence
(ẑ � hẑi) in Eq. (41) is replaced by

(ẑ � hẑi) ⌘ (P � hP i, D � hDi)
! (P � hP i, T (P )� hDi), (42)

with no constraint enforced.
A common approximation to the �2-function is ob-

tained for a block-diagonal generalized data covariance
matrix C, with parameter covariance matrix M and ex-
perimental data covariance matrix V along the diagonal:

�2 = (P � hP i)|M�1(P � hP i)
+ (T (P )� hDi)|V�1(T (P )� hDi). (43)

Minimization of �2 with respect to P yields a solution
vector Pmin, that is approximately equal to the posterior
expectation value of parameters hP i0. This definition of �2

has been used in nuclear data evaluations and is also the
quantity that is minimized in generic optimization codes
like MINUIT [14].

�2 = (T (P )�D)|V�1(T (P )�D). (44)

T (P ) = P (45)

z = (P,D) (46)

�2 =
1

2

NX

i

(P �D
i

)2 =
N

2
(P �D)2 (47)
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Combining all terms yields

p(P |hzi,C, f) /
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dD

Z
(d�)p(z|hzi,C)p(f |z, hzi,C)

/
Z

dD

Z
(d�)p(z|hzi,C, f), (35)

where Bayes’ theorem stated by Eq. (9) was used to intro-
duce p(z|hzi,C, f) in the integrand on the last line above.
This shows that a partial posterior PDF of parameters, P ,
is simply an integral of the posterior PDF over all mea-
sured data, D, and model defect d.

3 Simple Example

Analogy between a constraint set and a model defect is
illustrated on a simple analytically solvable example. A
simple model without a defect is defined as T (P ) = P
with a single scalar parameter P , and a single data point
D with constraints f : h!i0 = 0 and ⌦0

f

= 2/3. A corre-
sponding model with a defect has constraints f0: h!i0 = 0
and ⌦0

f

= 0, while its covariance matrix has a compo-
nent corresponding to model defect, namely C3,3 = 1. For
simplicity the prior expectation value of generalized data
hzi = 0 and the prior covariance matrix C is an iden-
tity matrix, so that posterior expectation values remain
unchanged for both models, that is, hzi0 = hzi0 = 0

First we consider a model without a defect, that is,
z = (P,D) whose covariance matrix is defined as

C =

✓
1 0
0 1

◆
, (36)

and a posterior PDF in terms of Lagrange multipliers is

p(z|hzi,C, f) = N (z|hzi,C)e��(x�y)�⇤(x�y)2 , (37)

where � = 0 and ⇤ = 1/2 satisfy constraints h!i0 = 0 and
⌦0

f

= 2/3.
For a model with a defect, z = (P,D, �), with a prior

covariance matrix

C =

0

@
1 0 0
0 1 0
0 0 1

1

A , (38)

a posterior PDF that satisfies f0: h!i0 = 0 and ⌦0
f

= 0 is

p(z|hzi,C, f) = N (z|hzi,C)�Dirac(!), (39)

that upon integration over � becomes equivalent to the
posterior PDF in Eq. (37).

4 Connections to other methods

To establish connections with other methods all PDFs are
assumed to be normal, and consequently, the exponents

in Eqs. (22,24) could be combined to define a generalized
cost function:

Q(z) ⌘ (z̃ � hzi)|C�1(z̃ � hzi) (40)

where the constraint T (P )�D = � is enforced by defining
z̃ ⌘ (P,D, T (P ) � D). This cost function can be mini-
mized by using Laplace transform and Newton-Raphson
method to yield approximate posterior expectation values
of generalized data hzi0 ⇡ zmin and of its covariance ma-
trix C

0 ⇡ Cmin [12]. For a perfect model, one may set
h�i ! 0 and � ! 0 to obtain

Q(z) ⇡ (ẑ � hẑi)| ˆC�1(ẑ � hẑi), (41)

where ẑ ⌘ (P,D) and ˆ

C is the corresponding covariance
matrix, with the constraint T (P ) = D. A constrained min-
imization of this cost function performed by the TSURFER
code [9] and the APLCON code [15], where the constraint
is enforced by the Lagrange multiplier method. The values
of zmin that minimize �2 are then approximate expecta-
tion values of posterior generalized data hzi0 ⇡ zmin. Since
TSURFER makes a linear approximation of the model, its
method is referred to as generalized linear least squares
(GLLS).

In conventional GLS, which is also known as the �2

minimization method, the constraint is applied to the gen-
eralized data ẑ ⌘ (P,D) ! (P, T (P )), and the di↵erence
(ẑ � hẑi) in Eq. (41) is replaced by

(ẑ � hẑi) ⌘ (P � hP i, D � hDi)
! (P � hP i, T (P )� hDi), (42)

with no constraint enforced.
A common approximation to the �2-function is ob-

tained for a block-diagonal generalized data covariance
matrix C, with parameter covariance matrix M and ex-
perimental data covariance matrix V along the diagonal:

�2 = (P � hP i)|M�1(P � hP i)
+ (T (P )� hDi)|V�1(T (P )� hDi). (43)

Minimization of �2 with respect to P yields a solution
vector Pmin, that is approximately equal to the posterior
expectation value of parameters hP i0. This definition of �2

has been used in nuclear data evaluations and is also the
quantity that is minimized in generic optimization codes
like MINUIT [14].

�2 = (T (P )�D)|V�1(T (P )�D). (44)

T (P ) = P (45)

z = (P,D) (46)

�2 =
1

2

NX
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(P �D
i

)2 =
N

2
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• MC of SNS data yielded unrealistic MC weight (one dominant)
– Posterior parameter covariance should be constrained by the number of DOFs
– by rescaling it to yield the correct # of DOFs to correct for imperfect prior covariances
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5 Conclusions and Outlook

A new, general expression for the posterior PDF of gen-
eralized data has been derived, where generalized data
refers to a union of model parameters and experimental
data, starting from the Bayes’ theorem. Key ingredients
of this derivation are:

1. use of generalized data as a basic element,
2. formal recognition of model (or theory) and its defect

when applying Bayes’ theorem, and
3. formal and consistent separation between expectation

and instance values of generalized data.

A direct consequence of application of Bayes’ theorem
to generalized data, of which experimental data are a sub-
set, is that the posterior PDF of generalized data yields
posterior expectation values and covariances for experi-
mental data, too. This is in contrast to the prevalent nu-
clear data evaluation practice where posterior PDF of ex-
perimental data and its covariances are identical to those
of model predictions.

A normal form of posterior PDF of generalized data,
obtained by setting all constituent PDFs to be normal and
assuming a perfect model, was found useful to establish a
connection to extant optimization methods, namely CGLS
implemented in APLCON and its linear approximation
implemented in the TSURFER module of SCALE.

The appealing features of the posterior PDF of gener-
alized data listed above make it a candidate for simultane-
ous and consistent optimization of model parameters and

experimental data of di↵erential cross section and inte-
gral benchmarks that would yield more accurate and com-
plete evaluations and covariances. The presented method
could simultaneously sample R-matrix resonance param-
eters, optical model potential parameters, and integral
benchmark parameters such as spatial dimensions and ma-
terial composition, to compute presently unknown covari-
ances among integral benchmark experiments and cross
section data. Sensitivities of integral benchmark responses
with respect to cross sections are not needed for calcula-
tions using the iterative Bayesian Monte Carlo method.
It is hoped that the derived method could complement
conventional nuclear data adjustment methods [17].

6 Authors’ contributions

All the authors were involved in the preparation of the
manuscript. All the authors have read and approved the
final manuscript.

Useful discussions with Ivan Kodeli, Mark Williams,
Helmut Leeb, Georg Schnabel, Roberto Capote, and Christo-
pher Perfetti are acknowledged.

This work has been funded by the Nuclear Criticality
Safety Program in the National Nuclear Security Agency
of the United States Department of Energy.

References

1. T. Bayes, Phil. Trans. Roy. Soc., 53 (1763) 370; reprinted
in E. S. Pearson and M. G. Kendall, Studies in the History
of Statistics and Probability, Hafner, Darien, Conn. (1970)

2. Edwin T. Jaynes, Straight Line Fitting - a Bayesian Solu-
tion, http://bayes.wustl.edu/etj/articles/leapz.pdf (1991)

3. G. Schnabel, Large Scale Bayesian Nuclear Data Evaluation
with Consistent Model Defects, Ph.D. Thesis, Technischen
Universität Wien (2015).

4. M. T. Pigni and H. Leeb, Uncertainty Estimates of Eval-
uated 56Fe Cross Sections Based on Extensive Modelling at
Energies Beyond 20 MeV, in Proc. Int’l. Workshop on Nu-
clear Data for the Transmutation of Nuclear Waste. GSI-
Darmstadt, Germany, 2003.

5. H. Leeb, D. Neudecker, and T. Srdinko, Consistent Proce-
dure for Nuclear Data Evaluation Based on Modeling, Nu-
clear Data Sheets, 109 (2008) 2762–2767.

6. D. Neudecker, R. Capote, and H. Leeb, Impact of model
defect and experimental uncertainties on evaluated output,
Nuclear Instruments and Methods in Physics Research Sec-
tion A: Accelerators, Spectrometers, Detectors and Associ-
ated Equipment, 723 (2013) 163–172.

7. G. Schnabel and H. Leeb, Di↵erential Cross Sections and
the Impact of Model Defects in Nuclear Data Evaluation, EPJ
Web of Conferences, 111 (2016) 9001.

8. V. Blobel, Constrained Least Squares Methods
with Correlated Data and Systematic Uncertainties,
http://www.desy.de/⇠blobel/apltalk.pdf (2010).

9. M. L. Williams, B. L. Broadhead, M. A. Jessee, J. J.
Wagschal, TSURFER: An Adjustment Code To Determine
Biases and Uncertainties in Nuclear System Responses by

6 Goran Arbanas et al.: Bayesian Optimization of Generalized Data

C0 =

✓
m0 w0

w0 v0

◆
=

✓
1 w0

w0 1

◆
(48)

C0 =

✓
1 0
0 1

◆
, (49)

m
N

=

✓
w0 + 1

2

◆
N

����!
N!1

⇢
0, w0 = 0
1, w0 = 1

(50)

e��

2
i = e�N(Pi�D)2/2 (51)

hP i
N

����!
N!1

min{P
i

} (52)

m
N

⌘ h(�P )2i
N

����!
N!1

0 (53)

e��

2
/N = e�(P�D)2/2 (54)

hP i
N

����!
N!1

hP i0 (55)

m
N

⌘ h(�P )2i
N

����!
N!1

m0 ⌘ h(�P )2i0 (56)

5 Conclusions and Outlook

A new, general expression for the posterior PDF of gen-
eralized data has been derived, where generalized data
refers to a union of model parameters and experimental
data, starting from the Bayes’ theorem. Key ingredients
of this derivation are:

1. use of generalized data as a basic element,
2. formal recognition of model (or theory) and its defect

when applying Bayes’ theorem, and
3. formal and consistent separation between expectation

and instance values of generalized data.

A direct consequence of application of Bayes’ theorem
to generalized data, of which experimental data are a sub-
set, is that the posterior PDF of generalized data yields
posterior expectation values and covariances for experi-
mental data, too. This is in contrast to the prevalent nu-
clear data evaluation practice where posterior PDF of ex-
perimental data and its covariances are identical to those
of model predictions.

A normal form of posterior PDF of generalized data,
obtained by setting all constituent PDFs to be normal and
assuming a perfect model, was found useful to establish a
connection to extant optimization methods, namely CGLS
implemented in APLCON and its linear approximation
implemented in the TSURFER module of SCALE.

The appealing features of the posterior PDF of gener-
alized data listed above make it a candidate for simultane-
ous and consistent optimization of model parameters and

experimental data of di↵erential cross section and inte-
gral benchmarks that would yield more accurate and com-
plete evaluations and covariances. The presented method
could simultaneously sample R-matrix resonance param-
eters, optical model potential parameters, and integral
benchmark parameters such as spatial dimensions and ma-
terial composition, to compute presently unknown covari-
ances among integral benchmark experiments and cross
section data. Sensitivities of integral benchmark responses
with respect to cross sections are not needed for calcula-
tions using the iterative Bayesian Monte Carlo method.
It is hoped that the derived method could complement
conventional nuclear data adjustment methods [17].

6 Authors’ contributions

All the authors were involved in the preparation of the
manuscript. All the authors have read and approved the
final manuscript.

Useful discussions with Ivan Kodeli, Mark Williams,
Helmut Leeb, Georg Schnabel, Roberto Capote, and Christo-
pher Perfetti are acknowledged.

This work has been funded by the Nuclear Criticality
Safety Program in the National Nuclear Security Agency
of the United States Department of Energy.

References

1. T. Bayes, Phil. Trans. Roy. Soc., 53 (1763) 370; reprinted
in E. S. Pearson and M. G. Kendall, Studies in the History
of Statistics and Probability, Hafner, Darien, Conn. (1970)

2. Edwin T. Jaynes, Straight Line Fitting - a Bayesian Solu-
tion, http://bayes.wustl.edu/etj/articles/leapz.pdf (1991)

3. G. Schnabel, Large Scale Bayesian Nuclear Data Evaluation
with Consistent Model Defects, Ph.D. Thesis, Technischen
Universität Wien (2015).

4. M. T. Pigni and H. Leeb, Uncertainty Estimates of Eval-
uated 56Fe Cross Sections Based on Extensive Modelling at
Energies Beyond 20 MeV, in Proc. Int’l. Workshop on Nu-
clear Data for the Transmutation of Nuclear Waste. GSI-
Darmstadt, Germany, 2003.

5. H. Leeb, D. Neudecker, and T. Srdinko, Consistent Proce-
dure for Nuclear Data Evaluation Based on Modeling, Nu-
clear Data Sheets, 109 (2008) 2762–2767.

6. D. Neudecker, R. Capote, and H. Leeb, Impact of model
defect and experimental uncertainties on evaluated output,
Nuclear Instruments and Methods in Physics Research Sec-
tion A: Accelerators, Spectrometers, Detectors and Associ-
ated Equipment, 723 (2013) 163–172.

7. G. Schnabel and H. Leeb, Di↵erential Cross Sections and
the Impact of Model Defects in Nuclear Data Evaluation, EPJ
Web of Conferences, 111 (2016) 9001.

8. V. Blobel, Constrained Least Squares Methods
with Correlated Data and Systematic Uncertainties,
http://www.desy.de/⇠blobel/apltalk.pdf (2010).

9. M. L. Williams, B. L. Broadhead, M. A. Jessee, J. J.
Wagschal, TSURFER: An Adjustment Code To Determine
Biases and Uncertainties in Nuclear System Responses by

6 Goran Arbanas et al.: Bayesian Optimization of Generalized Data

C0 =

✓
m0 w0

w0 v0

◆
=

✓
1 w0

w0 1

◆
(48)

C0 =

✓
1 0
0 1

◆
, (49)

m
N

=

✓
w0 + 1

2

◆
N

����!
N!1

⇢
0, w0 = 0
1, w0 = 1

(50)

e��

2
i = e�N(Pi�D)2/2 (51)

hP i
N

����!
N!1

min{P
i

} (52)

m
N

⌘ h(�P )2i
N

����!
N!1

0 (53)

e��

2
/N = e�(P�D)2/2 (54)

hP i
N

����!
N!1

hP i0 (55)

m
N

⌘ h(�P )2i
N

����!
N!1

m0 ⌘ h(�P )2i0 (56)

5 Conclusions and Outlook

A new, general expression for the posterior PDF of gen-
eralized data has been derived, where generalized data
refers to a union of model parameters and experimental
data, starting from the Bayes’ theorem. Key ingredients
of this derivation are:

1. use of generalized data as a basic element,
2. formal recognition of model (or theory) and its defect

when applying Bayes’ theorem, and
3. formal and consistent separation between expectation

and instance values of generalized data.

A direct consequence of application of Bayes’ theorem
to generalized data, of which experimental data are a sub-
set, is that the posterior PDF of generalized data yields
posterior expectation values and covariances for experi-
mental data, too. This is in contrast to the prevalent nu-
clear data evaluation practice where posterior PDF of ex-
perimental data and its covariances are identical to those
of model predictions.

A normal form of posterior PDF of generalized data,
obtained by setting all constituent PDFs to be normal and
assuming a perfect model, was found useful to establish a
connection to extant optimization methods, namely CGLS
implemented in APLCON and its linear approximation
implemented in the TSURFER module of SCALE.
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5 Conclusions and Outlook

A new, general expression for the posterior PDF of gen-
eralized data has been derived, where generalized data
refers to a union of model parameters and experimental
data, starting from the Bayes’ theorem. Key ingredients
of this derivation are:

1. use of generalized data as a basic element,
2. formal recognition of model (or theory) and its defect

when applying Bayes’ theorem, and
3. formal and consistent separation between expectation

and instance values of generalized data.

A direct consequence of application of Bayes’ theorem
to generalized data, of which experimental data are a sub-
set, is that the posterior PDF of generalized data yields
posterior expectation values and covariances for experi-
mental data, too. This is in contrast to the prevalent nu-
clear data evaluation practice where posterior PDF of ex-
perimental data and its covariances are identical to those
of model predictions.

A normal form of posterior PDF of generalized data,
obtained by setting all constituent PDFs to be normal and
assuming a perfect model, was found useful to establish a
connection to extant optimization methods, namely CGLS
implemented in APLCON and its linear approximation
implemented in the TSURFER module of SCALE.

The appealing features of the posterior PDF of gener-
alized data listed above make it a candidate for simultane-
ous and consistent optimization of model parameters and

experimental data of di↵erential cross section and inte-
gral benchmarks that would yield more accurate and com-
plete evaluations and covariances. The presented method
could simultaneously sample R-matrix resonance param-
eters, optical model potential parameters, and integral
benchmark parameters such as spatial dimensions and ma-
terial composition, to compute presently unknown covari-
ances among integral benchmark experiments and cross
section data. Sensitivities of integral benchmark responses
with respect to cross sections are not needed for calcula-
tions using the iterative Bayesian Monte Carlo method.
It is hoped that the derived method could complement
conventional nuclear data adjustment methods [17].
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where p(z|hzi,C) is the prior PDF of generalized data.
A �Dirac(!) likelihood function of a defective model ef-

fectively reduces integration over z = (P,D, �) to (P,D),
and the model defect variable � is replaced by T (P ) �D
in the prior PDF. This component of the prior PDF is
analogous to the likelihood function obtained by setting
constraints !0
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This point will be elaborated upon in Sections 2.2 and 3.
The posterior generalized data PDF enables compu-

tation of covariance matrix ⇥ of posterior model values
hT (P )i0, corresponding to experimental data D, to all or-
ders
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reported in evaluated nuclear data files like the ENDF
[11].

2.2 Posterior PDF for normal PDFs

Although this formalism applies to arbitrary PDFs, a par-
ticularly simple form is attained when normal form is as-
sumed for all PDFs. In that case, the prior PDF becomes

p(z|hzi,C) / e�
1
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where N stands for a normal PDF, and the likelihood
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Combining the normal prior PDF and the normal like-

lihood functions yields a posterior PDF
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subject to aforementioned constraints in f .
Constraint set f0 namely h!i0 = 0 and ⌦

0 ⌘ h!!|i0 =
0, are satisfied by !

f

= 0 and ⌦

F

= 0 for which the
normal likelihood function in Eq. (24) becomes a Dirac
delta function, and the posterior PDF becomes

p(z|hzi,C, F ) / N (z|hzi,C)⇥ �Dirac(!). (27)

Furthermore, for models without a defect, that is, in the
limit h�i ! 0 and �! 0, this posterior PDF becomes

p(ẑ|hẑi,C, F ) / N (ẑ|hẑi, ˆC)⇥ �Dirac(T (P )�D). (28)

where
ẑ ⌘ (P,D). (29)

and ˆ

C is the covariance matrix corresponding to ẑ. In
Section 4, it will be shown that the expression for the
posterior PDF in this limit is equivalent to the CGLS
method implemented in the APLCON code, or to its linear
approximation implemented in the TSURFER module of
the SCALE code system.

2.3 Conventional derivation of posterior parameter PDF

Making the following substitutions into a generic Bayes’
theorem in Eq. (1):

↵ ! P
� ! f
� ! (hP i, hDi, h�i,C) = (hzi,C),

(30)

one obtains

p(P |hzi,C, f) / p(P |hzi,C)⇥ p(f |P, hzi,C), (31)

where the second factor on the right hand side can be
expressed as a nested integral over all possible values of
measured data D and model defect data �, given their
expectation values hDi and h�i, respectively, and their co-
variance matrix C, by using the total probability theorem
in Eq. (3):

p(f |P, hzi,C) = (32)Z
dD

Z
(d�)p(f |D, �, P, hzi,C)⇥ p(D, �|P, hzi,C).

The first term in Eq. (31) and the second term in Eq. (32)
could be combined by making the following substitutions:

↵ ! P
� ! D, �
� ! hzi,C

(33)

into the product rule in Eq. (2) to obtain

p(z|hzi,C) = p(P,D, �|hzi,C)

/ p(P |hzi,C)⇥ p(D, �|P, hzi,C). (34)
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5 Conclusions and Outlook

A new, general expression for the posterior PDF of gen-
eralized data has been derived, where generalized data
refers to a union of model parameters and experimental
data, starting from the Bayes’ theorem. Key ingredients
of this derivation are:

1. use of generalized data as a basic element,
2. formal recognition of model (or theory) and its defect

when applying Bayes’ theorem, and
3. formal and consistent separation between expectation

and instance values of generalized data.

A direct consequence of application of Bayes’ theorem
to generalized data, of which experimental data are a sub-
set, is that the posterior PDF of generalized data yields
posterior expectation values and covariances for experi-
mental data, too. This is in contrast to the prevalent nu-
clear data evaluation practice where posterior PDF of ex-
perimental data and its covariances are identical to those
of model predictions.

A normal form of posterior PDF of generalized data,
obtained by setting all constituent PDFs to be normal and
assuming a perfect model, was found useful to establish a
connection to extant optimization methods, namely CGLS
implemented in APLCON and its linear approximation
implemented in the TSURFER module of SCALE.

The appealing features of the posterior PDF of gener-
alized data listed above make it a candidate for simultane-
ous and consistent optimization of model parameters and
experimental data of di↵erential cross section and inte-
gral benchmarks that would yield more accurate and com-
plete evaluations and covariances. The presented method
could simultaneously sample R-matrix resonance param-
eters, optical model potential parameters, and integral
benchmark parameters such as spatial dimensions and ma-
terial composition, to compute presently unknown covari-
ances among integral benchmark experiments and cross
section data. Sensitivities of integral benchmark responses
with respect to cross sections are not needed for calcula-
tions using the iterative Bayesian Monte Carlo method.
It is hoped that the derived method could complement
conventional nuclear data adjustment methods [17].
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Generalized Reich-Moore approximation
• g -ray channels 

– Defined by EM multipolarity, helicity, and final state quantum numbers
– Selection rules based on final state quantum numbers, g -ray multipolarity
– Electric: E1, E2, E3 …
– Magnetic: M1, M2, M3 …

• Level-level interference takes place via identical g -ray channels

G. Arbanas, V. Sobes, A. Holcomb, P. Ducru, 
M. Pigni, and D. Wiarda (ND2016),
EPJ Web of Conferences 146, 12006 (2017)
https://doi.org/10.1051/epjconf/201714612006

https://doi.org/10.1051/epjconf/201714612006
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Generalized Reich-Moore approximation
• Consider capture-width parameter matrix for                  :

= Gg/2 = ggRMggRM xxG
g

ggNl

Ng

Nl

Nl << Ng

• Since total capture cross section depends on Gg , it could be fit equally as well 
by Nl as it could by all Ng capture channels
– this is true for total capture only 
– individual g -channels require full R-matrix



2424

Brune transform for Reich-Moore Approx. R-matrix widths 

• Conventional Reich-Moore Approximation (RMA): 1 capture width per 
resonance

• Brune transform of RMA parameters is made possible by generalized RMA 
(GRMA)

since       attains non-zero off-diagonal elements even when        is diagonal 

SIMULTANEOUS EVALUATION OF THERMAL NEUTRON
SCATTERING AND RESOLVED RESONANCE RANGES

GORAN ARBANAS

1. Theory

The quantity that appears in thermal neutron scattering and in the R-matrix resolved

resonance range (RRR) is the bound state scattering length. A relationship between the

bound scattering length and the R-matrix resonance parameters is

(1) b(E) =

A+1
A a(E)

whose incoming neutron energy dependence has been made explicit in anticipation of sharp

energy-dependence introduced by a resonance appearing in the thermal neutron range.
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• Conventional boundary condition for capture channels ensures that the 
non-linear eigenvalue equation for Brune-transformed resonance widths 
remains unchanged

Gg/2 = ggRMggRM x
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SAMMY 8.2 anticipated features in early 2019

1. Incorporate a C++ Coulomb function library CWFCOMPLEX into 
SAMMY/AMPX

2. Include closed channels in the SAMMY R-matrix (IAEA R-matrix 
collaboration)

3. Include closed channels in computation of analytical derivatives of cross 
sections inside SAMMY

4. Correct the bugs in the SAMMY I/O of ENDF files for charged particles by 
linking to the modern C++ ENDF I/O AMPX library 

5. Enable conversion from Reich-Moore Approximation R-matrix parameters 
to Brune’s alternative R-Matrix parameters

6. Update SAMMY documentation accordingly.
7. Release SAMMY under an open source license
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Summary and outlook
• SAMMY 8.1 released in 2017
• SAMMY is under the SCALE SQA framework
• Modernization proceeds via API framework, including Coulomb functions, 

optimization…

• Code sharing with AMPX/SCALE (D. Wiarda, A. Holcomb) guarantees consistency 
and is conducive to new data formats

• Potential improvements to evaluation methods have been identified
– Simultaneous evaluation of thermal and resolved resonance ranges
– Generalized Reich-Moore approx. and direct capture via complex channel radii
– Optimization of defective models via GLS or MC

• Open source SAMMY release is in progress, as well as AMPX

• SAMMY 8.2 is expected later in early 2019
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Auxiliary slides
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Interface
Data

getNumberParams
Get the number of 
parameters

getNumData
Get the number of 
experimental data

getData 
Get the list of experimental 
data (1-dim Array)

getParam
Get the list of initial params
(1-dim Array)

getCovMatrix
Get the full covariance matrix 
(2-dim Array)

getTheory
Get theoretical values based 
on current parameters 
(1-dim Array)

setParam
Set the current parameters 
(1-dim Array)

setCovMatrix
Set the full covariance matrix
(2-dim Array)

Interface
Fit

setData
Set an instance of Data 
interface

initialize
After setting data object 
initialize internal data 
structures

execute 
Do the actual fitting 

finalize
Clean up any internal 
resources

Interface
Array

getNumDim
Get the number of dimensions

getSize(int dim)
Get the array size for 
dimension m

getValue(int i1, int i2, …)
Get the value for the 
indicated indices. In C++ we 
would pass in a vector of 
length getNumDim

setValue(int i1,int i2, …)
Set value

• Actual instances are instantiated by a factory 
class

• Data will have a method to obtain the 
derivatives 
(2-dim Array: getNumberParams x getNumData); 
there will be a function that computes 
derivatives numerically

• Fit calls setParams, getTheory, setCovMatrix 
repeatedly in the course of fitting the data

Fit API: Preliminary interface
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V11
Covariance for 

Exp.1

V12
Cross-

Covariance 
between 

Exp.1 and 2
(optional)

V22
Covariance for 

Exp.2
V21=V12

M

Params Concatenated 1D array of exp. data

• Parameters and experimental data cast into 1D array by implementation of data 
– for generic use inside SCALE framework
– Froehner’s formulation and notation:

Fit API: GLS implementation

“C”=

“z” =

(optional cross covariance)

(o
pt

io
na

l c
ro

ss
 c

ov
ar

ia
nc

e)
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Fit API: GLS, Bayesian Monte Carlo

• Generalized least squares (GLS)
– Nuclear Engineering Science Laboratory Synthesis (NESLS) summer intern Jinghua 

Feng implemented a prototype
– Andrew Holcomb ported the prototype into the FitAPI

• Implementation uses cpp-array library (CPC 185,1681, 2014) 
– Transparently parallelized via BLAS library (Intel MKL)
– Compact expressions implemented directly (Sect. 2.2, JEFF Report 18, 2000)

• BLAS speeds up large matrix operations in SAMMY and shortens code 
– Arbanas, Dunn, Wiarda, M&C2011, 

http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/47/073/47073019.pdf

GLS
Bayesian 

Monte Carlo

http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/47/073/47073019.pdf
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Experimental effects (EE) API
• Convolution of Doppler broadening, target, and detector effects, each 

one implenting the EE API:

Doppler 
broadening:

FGM, DDXS, S(a,b) 
BROADEN/AMPX

Neutron 
transport:  
SHIFT API

• SHIFT API for on-the-fly neutron transport aspects
– To enable fitting integral benchmark experiments (IBEs)
– Developed for SCALE by Cihangir Celik in FY2017
– Message passaging interface (MPI) enabled
– Could use MCNP input 

• In principle, the entire experimental setup could be simulated; fitting to 
raw data may be desirable to avoid PPP; varying opinions
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Modular modernization of SAMMY using APIs

For each SAMMY Fortran 77 legacy module to modernize:

1. Create a layer of indirection to the module by designing its C++ API

2. Move the module out of SAMMY and use it to implement its C++ API

3. Redirect all module calls to the C++ API implementation outside SAMMY and 
then re-run SAMMY test cases and correct any problems until identical results 
are reproduced

4. Implement the C++ API using a modernized code or a third-party library

5. Recompile SAMMY with the modern implementation of the C++ API and then 
re-run SAMMY test cases and re-baseline the results 
when justified
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Phenomenological Dirac R-matrix formalism
• Originally derived for calculable R-matrix, but expressed in a form that could 

be used for phenomenological fitting: 
PhD Thesis  (2011): http://scholarworks.wmich.edu/dissertations/411

• Boundary condition is determined by the channel radius

• Compare to approximations and the nonrelativistic R-matrix

J.  Grineviciute and Dean Halderson, Physical Review C, 85, 
054617 (2012)
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approximation for the matrix elements with pseudovector πN
coupling.

II. R MATRIX FORMALISM

Solutions to the one-channel Dirac equation will be written
in the two-component form

uD =
(

[F (r)/r]"κm

[iG(r)/r]"−κm

)
τ, (1)

where

"κm =
∑

mℓms

Cl1/2j
mlmsm

Ylml
(θ,φ)χms

, (2)

wherej = |κ| − 1
2 and ℓ = κ for κ > 0 but ℓ = −(κ + 1) for

κ < 0 and τ indicates a proton or neutron. The regular and
irregular Dirac-Coulomb functions are generated as given by
Young and Norrington [11] employing the code COULCC [12],
and they are given the asymptotic form

FR =
√

E + m sin φ(r) and GR =
√

E − m cos φ(r),

FIR =
√

E + m cos φ(r) and GIR = −
√

E − m sin φ(r),

where ϕ(r) = kr + y log 2kr + δ′
κ − ℓπ /2, k is the momentum

of the proton in the center-of-momentum system, y =
Ze2E/k, E2 = m2

p + k2, δ′
κ = + − arg ,(γ + iy) + π

2 (l +
1 − γ ), e2i+ = iZe2 / k−κ

γ+iy
, and γ = (κ2 − Z2e4)1/2. Throughout

this paper, c = h̄ = 1. Incoming and outgoing waves are
constructed as

FI = FIR − iFR and GI = GIR − iGR making up Ic,

and

FO = FIR + iFR and GO = GIR + iGR making up Oc,

where c indicates a particular channel, |ljκτ, JA(JB)⟩, JA is
the target spin, and JB the total angular momentum. A wave
function with unit outgoing flux is Oc/

√
2kc.

The appropriate modifications for expanding the one-
channel case, given in Ref. [5], to the many-channel case
are as follows. The wave function is expanded within the
channel radius as ψ =

∑
λ Aλ|λ⟩. The set of |λ⟩ will be Dirac

oscillators coupled to the spin of the target. The Hamiltonian
to be solved is

∑

λ′

[
⟨λ|H − E|λ′⟩ +

∑

c

γλc(bλ′c − bc)γλ′c

]
Aλ′ = 0, (3)

where

bc = Gc(ac)/Fc(ac), (4)

bλc = Gλc(ac)/Fλc(ac), (5)

and

γλc = Fλc(ac). (6)

Gc and Fc are the components of the physical wave function
in channel c. The theory is placed in calculable form in the

method of Philpott [13] in which one finds a transformation T
such that

∑

λλ′

Tλµ[⟨λ|H |λ′⟩ +
∑

c

γλcbλ′cγλ′c]Tλ′µ′ = Eµδµµ′ . (7)

With this transformation, Eq. (3) becomes
∑

µ′

[(Eµ − E)δµµ′ −
∑

c

γµcbcγµ′c]Aµ′ = 0, (8)

where γµc =
∑

λ γλcTλµ andAλ =
∑

µ TλµAµ. One changes c

to c′ in Eq. (8), multiplies by γµc/(Eµ − E), and sums over µ
to obtain

γc =
∑

c′µ

γµc′γµcbc′

Eµ − E

∑

µ′

Aµ′γµ′c′ , (9)

or
∑

c′

[δcc′ − Rcc′bc′ ]γc′ = 0, (10)

where

γc =
∑

µ

Aµγµc, (11)

and

Rcc′ =
∑

µ

γµcγµc′/(Eµ − E). (12)

The amplitudes are extracted from Eq. (9),

Aµ = 1
Eµ − E

∑

c

γµcbcγc = 1
Eµ − E

∑

c

γµcGc(ac). (13)

A general solution for the coupled channels wave function
in the external region is [1]

+ =
∑

c

(
xc√
2kc

Oc + yc√
2kc

Ic

)
. (14)

The collision matrix S provides an expression for the xc in
terms of the yc. In matrix notation,

x = −Sy. (15)

From Eqs. (4), (6), (10), and (14), the fundamental R matrix
equation for the relativistic case relates the upper components
of the wave functions to the lower,

Fc =
∑

c′

Rcc′Gc′ =
∑

c′

Rcc′ [GOc′xc′/
√

2kc′ + GIc′yc′/
√

2kc′ ]

= FOcxc/
√

2kc + FIcyc/
√

2kc. (16)

If one defines diagonal matrices vcc ′ = 2kcδcc ′ , xcc ′ = δcc ′xc,
ycc ′ = δcc ′yc, GOcc ′ = δcc ′GOc, GIcc ′ = δcc ′GIc, FOcc ′ =
δcc ′FOc, and FIcc ′ = δcc ′FIc, this equation can be written as

FOv−1/2x + FIv−1/2y = RGOv−1/2x + RGIv−1/2y. If one
solves for x, one obtains the form in Eq. (15), x = −Sy, where

S = v1/2(Fo − RGo)−1(FI − RGI)v−1/2. (17)

Then the T matrix, Tcc′ , is in the usual form, i(δcc′ − Scc′ )/2.
The scattering amplitude is found by following standard

techniques. Target (residual) states are noted as |αJAMA⟩,
where JA, MA are the spin and its projection and α
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in channel c. The theory is placed in calculable form in the

method of Philpott [13] in which one finds a transformation T
such that

∑

λλ′

Tλµ[⟨λ|H |λ′⟩ +
∑

c

γλcbλ′cγλ′c]Tλ′µ′ = Eµδµµ′ . (7)

With this transformation, Eq. (3) becomes
∑

µ′

[(Eµ − E)δµµ′ −
∑

c

γµcbcγµ′c]Aµ′ = 0, (8)

where γµc =
∑

λ γλcTλµ andAλ =
∑

µ TλµAµ. One changes c

to c′ in Eq. (8), multiplies by γµc/(Eµ − E), and sums over µ
to obtain

γc =
∑

c′µ

γµc′γµcbc′

Eµ − E

∑

µ′

Aµ′γµ′c′ , (9)

or
∑

c′

[δcc′ − Rcc′bc′ ]γc′ = 0, (10)

where

γc =
∑

µ

Aµγµc, (11)

and

Rcc′ =
∑

µ

γµcγµc′/(Eµ − E). (12)

The amplitudes are extracted from Eq. (9),

Aµ = 1
Eµ − E

∑

c

γµcbcγc = 1
Eµ − E

∑

c

γµcGc(ac). (13)

A general solution for the coupled channels wave function
in the external region is [1]

+ =
∑

c

(
xc√
2kc

Oc + yc√
2kc

Ic

)
. (14)

The collision matrix S provides an expression for the xc in
terms of the yc. In matrix notation,

x = −Sy. (15)

From Eqs. (4), (6), (10), and (14), the fundamental R matrix
equation for the relativistic case relates the upper components
of the wave functions to the lower,

Fc =
∑

c′

Rcc′Gc′ =
∑

c′

Rcc′ [GOc′xc′/
√

2kc′ + GIc′yc′/
√

2kc′ ]

= FOcxc/
√

2kc + FIcyc/
√

2kc. (16)

If one defines diagonal matrices vcc ′ = 2kcδcc ′ , xcc ′ = δcc ′xc,
ycc ′ = δcc ′yc, GOcc ′ = δcc ′GOc, GIcc ′ = δcc ′GIc, FOcc ′ =
δcc ′FOc, and FIcc ′ = δcc ′FIc, this equation can be written as

FOv−1/2x + FIv−1/2y = RGOv−1/2x + RGIv−1/2y. If one
solves for x, one obtains the form in Eq. (15), x = −Sy, where

S = v1/2(Fo − RGo)−1(FI − RGI)v−1/2. (17)

Then the T matrix, Tcc′ , is in the usual form, i(δcc′ − Scc′ )/2.
The scattering amplitude is found by following standard

techniques. Target (residual) states are noted as |αJAMA⟩,
where JA, MA are the spin and its projection and α
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distinguishes among states of the same spin. Target states
may be coupled to the angular momentum of the projectile
yielding states with total angular momentum and projection
|αJAℓjJBMB⟩. The scattering states are designated by the
target state, its projection, and the spin projection of the
projectile σ . The resulting scattering amplitude is

⟨f ⟩ασMA,α′σ ′M ′
A

= 1
k

∑ √
4π (2ℓ + 1)Cℓ1/2j

0σm C
JAjJB

MAmMB
C

J ′
Aj ′JB

M ′
Am′MB

C
ℓ′1/2j ′

m′
ℓσm′

× i(ℓ−ℓ′)ei(δ′
κ+δ′

κ′ )TαJAℓjJB ,α′J ′
Aℓ′j ′J ′

B
Yℓ′m′

ℓ
(k′). (18)

The sum is over κ , κ ′, α′, JB , MB , m, m′, and mℓ′ . Scat-
tering observables can then be calculated from the scattering
amplitude. For instance, the cross section would be given by

dσ

d'
(θ ) = 1

2(2JA + 1)

∑

σσ ′M ′
AM ′

A

∣∣⟨fc⟩σσ ′δJAαMA,J ′
Aα′M ′

A

+ ⟨f ⟩ασMA,α′σ ′M ′
A

∣∣2
, (19)

where ⟨fc⟩σσ ′ is the relativistic Coulomb scattering amplitude
[5], taken to be diagonal in the target states.

III. RELATIVISTIC CONTINUUM SHELL MODEL

The random-phase approximation and TDA equations for
QHD were derived in Ref. [14] following Ref. [15] and
appeared the same as the nonrelativistic equations. The TDA
equation is

(ελ − εµ − ε)Cλµ +
∑

αβ

[⟨βλ|V |αµ⟩ − ⟨βλ|V |µα⟩]Cαβ = 0.

(20)

To apply QHD to finite nuclei, the meson fields are taken
as classical fields and a set of Dirac equations solved in the
Hartree approximation [9,16]. The σ and ω coupling constants
were fit to the saturation properties of equilibrium nuclear
matter, and the ρ coupling constant was determined from the
bulk symmetry energy. The σ mass was determined so as
to reproduce the rms radius of 40Ca, and for the Coulomb
potential, one uses the contribution to the baryon density of
protons only, whereas, for the ρ, one uses half the difference
between the proton and the neutron densities. To implement the
QHD results in a TDA equation, the classical meson fields are
replaced with one-meson exchange potentials as in Ref. [14],

V = −g2
σ

4π

e−mσ r

r
+ γ λ

1 γ2λ

g2
ω

4π

e−mωr

r

+ γ λ
1 γ2λ

τ 1·τ 2

4

g2
ρ

4π

e−mρr

r
+ γ 0

1 γ 0
2

e2

r
, (21)

where the Coulomb interaction has been included. The
coupling constants employed are the same as those from
QHD calculations, although it is not clear that these should
be appropriate in structure calculations. The finite-Hartree
(FH) coupling constants of Ref. [9] are shown in Table I.
In addition, the hole SPEs, εµ, and the wave functions are
taken as those from the FH, QHD calculation, generated with
the code TIMORA [16]. (A nucleon mass is added to the actual

TABLE I. Coupling constants. FH is finite Hartree; HF is Hartree-
Fock.

Meson Mass (MeV) FH, g2 HF, g2

σ 520 109.6 89.6
ω 783 190.4 102.6
ρ 770 65.2 12.4
π 138 0 181

output of the code to obtain εµ.) However, the particle SPE,
ελ, are replaced by the interaction of the particle with the core
nucleons,

Ejj = ⟨j |α· p + mβ|j ′⟩+
occ∑

jc,J

2J+1
2j+1

⟨γ0jγ0jc(J )|V

× [|j ′jc(J )⟩ − (−)j
′+jc−J |jcj

′(J )⟩], (22)

where the sum jc is over proton and neutron states below
the Fermi surface. The integrals extend only to the R matrix
radius. The notation is that ⟨γ0j | is ū = u+γ0 with angular
momentum j . A similar SPE definition could be made for the
hole states with |j ⟩ and |j ′⟩ replaced with |jh⟩ giving Ejhjh

.
Equation (20) is now an equation to be solved for the particle

wave functions for a given energy. The basis functions, the|λ⟩
of Eq. (3), are particle-hole functions where the |j ⟩ are Dirac
oscillators specified by |nℓjκ⟩ and hole states are the QHD
states generated with parameters FH as used to construct the
targets in Ref. [5]. Hole states are the target states with spin
jh = JA. A matrix element of the Hamiltonian (excluding the
Bloch operator) within the R matrix radius is

⟨j ⊗ jh(JB)|H |j ′ ⊗ jh′(JB)⟩
= Ejj ′ − εjh

δjhjh′ −
∑

J

(2J + 1)W (jjhjh′j ′; JBJ )

×⟨γ0jh′γ0j (J )|V [|jhj (J )⟩ − (−)jh+j−J |jjh(J )⟩], (23)

The particle wave functions are orthogonal to the hole states,
and the exchange terms are calculated exactly in the method
of Ref. [5].

To check whether replacing the classical fields with one-
meson exchange potentials is appropriate, one can compare
the single-particle energies of the hole states calculated from
QHD and those calculated by the interaction of the hole state
with particles in the core Ejhjh

. The comparison is performed
for two nuclei 16O and 90Zr. One is interested in 16O because
it is the subject of numerous (e,e′x) experiments and the
question of the role of relativity in these reactions, however,
only six SPEs can be compared for this nucleus. Therefore,
a comparison is first made for 90Zr, which has 21 SPEs. The
90Zr comparison is shown in Table II for Ex

jj ′ = Ejj ′ − MN .
The first column lists the QHD output from TIMORA. The
second column is from the one-pion exchange calculation with
the same coupling constants. Although the SPEs calculated
with the potential are shifted upward slightly and have some
difficulties with the spin-orbit splitting, the agreement between
the two calculations is surprising. In Table III is shown the SPE
comparison for 16O where the agreement is similar. Also shown
in this table are the experimental SPEs and those from a recent
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distinguishes among states of the same spin. Target states
may be coupled to the angular momentum of the projectile
yielding states with total angular momentum and projection
|αJAℓjJBMB⟩. The scattering states are designated by the
target state, its projection, and the spin projection of the
projectile σ . The resulting scattering amplitude is

⟨f ⟩ασMA,α′σ ′M ′
A

= 1
k

∑ √
4π (2ℓ + 1)Cℓ1/2j

0σm C
JAjJB

MAmMB
C

J ′
Aj ′JB

M ′
Am′MB

C
ℓ′1/2j ′

m′
ℓσm′

× i(ℓ−ℓ′)ei(δ′
κ+δ′

κ′ )TαJAℓjJB ,α′J ′
Aℓ′j ′J ′

B
Yℓ′m′

ℓ
(k′). (18)

The sum is over κ , κ ′, α′, JB , MB , m, m′, and mℓ′ . Scat-
tering observables can then be calculated from the scattering
amplitude. For instance, the cross section would be given by

dσ

d'
(θ ) = 1

2(2JA + 1)

∑

σσ ′M ′
AM ′

A

∣∣⟨fc⟩σσ ′δJAαMA,J ′
Aα′M ′

A

+ ⟨f ⟩ασMA,α′σ ′M ′
A

∣∣2
, (19)

where ⟨fc⟩σσ ′ is the relativistic Coulomb scattering amplitude
[5], taken to be diagonal in the target states.

III. RELATIVISTIC CONTINUUM SHELL MODEL

The random-phase approximation and TDA equations for
QHD were derived in Ref. [14] following Ref. [15] and
appeared the same as the nonrelativistic equations. The TDA
equation is

(ελ − εµ − ε)Cλµ +
∑

αβ

[⟨βλ|V |αµ⟩ − ⟨βλ|V |µα⟩]Cαβ = 0.

(20)

To apply QHD to finite nuclei, the meson fields are taken
as classical fields and a set of Dirac equations solved in the
Hartree approximation [9,16]. The σ and ω coupling constants
were fit to the saturation properties of equilibrium nuclear
matter, and the ρ coupling constant was determined from the
bulk symmetry energy. The σ mass was determined so as
to reproduce the rms radius of 40Ca, and for the Coulomb
potential, one uses the contribution to the baryon density of
protons only, whereas, for the ρ, one uses half the difference
between the proton and the neutron densities. To implement the
QHD results in a TDA equation, the classical meson fields are
replaced with one-meson exchange potentials as in Ref. [14],

V = −g2
σ

4π

e−mσ r

r
+ γ λ

1 γ2λ

g2
ω

4π

e−mωr

r

+ γ λ
1 γ2λ

τ 1·τ 2

4

g2
ρ

4π

e−mρr

r
+ γ 0

1 γ 0
2

e2

r
, (21)

where the Coulomb interaction has been included. The
coupling constants employed are the same as those from
QHD calculations, although it is not clear that these should
be appropriate in structure calculations. The finite-Hartree
(FH) coupling constants of Ref. [9] are shown in Table I.
In addition, the hole SPEs, εµ, and the wave functions are
taken as those from the FH, QHD calculation, generated with
the code TIMORA [16]. (A nucleon mass is added to the actual

TABLE I. Coupling constants. FH is finite Hartree; HF is Hartree-
Fock.

Meson Mass (MeV) FH, g2 HF, g2

σ 520 109.6 89.6
ω 783 190.4 102.6
ρ 770 65.2 12.4
π 138 0 181

output of the code to obtain εµ.) However, the particle SPE,
ελ, are replaced by the interaction of the particle with the core
nucleons,

Ejj = ⟨j |α· p + mβ|j ′⟩+
occ∑

jc,J

2J+1
2j+1

⟨γ0jγ0jc(J )|V

× [|j ′jc(J )⟩ − (−)j
′+jc−J |jcj

′(J )⟩], (22)

where the sum jc is over proton and neutron states below
the Fermi surface. The integrals extend only to the R matrix
radius. The notation is that ⟨γ0j | is ū = u+γ0 with angular
momentum j . A similar SPE definition could be made for the
hole states with |j ⟩ and |j ′⟩ replaced with |jh⟩ giving Ejhjh

.
Equation (20) is now an equation to be solved for the particle

wave functions for a given energy. The basis functions, the|λ⟩
of Eq. (3), are particle-hole functions where the |j ⟩ are Dirac
oscillators specified by |nℓjκ⟩ and hole states are the QHD
states generated with parameters FH as used to construct the
targets in Ref. [5]. Hole states are the target states with spin
jh = JA. A matrix element of the Hamiltonian (excluding the
Bloch operator) within the R matrix radius is

⟨j ⊗ jh(JB)|H |j ′ ⊗ jh′(JB)⟩
= Ejj ′ − εjh

δjhjh′ −
∑

J

(2J + 1)W (jjhjh′j ′; JBJ )

×⟨γ0jh′γ0j (J )|V [|jhj (J )⟩ − (−)jh+j−J |jjh(J )⟩], (23)

The particle wave functions are orthogonal to the hole states,
and the exchange terms are calculated exactly in the method
of Ref. [5].

To check whether replacing the classical fields with one-
meson exchange potentials is appropriate, one can compare
the single-particle energies of the hole states calculated from
QHD and those calculated by the interaction of the hole state
with particles in the core Ejhjh

. The comparison is performed
for two nuclei 16O and 90Zr. One is interested in 16O because
it is the subject of numerous (e,e′x) experiments and the
question of the role of relativity in these reactions, however,
only six SPEs can be compared for this nucleus. Therefore,
a comparison is first made for 90Zr, which has 21 SPEs. The
90Zr comparison is shown in Table II for Ex

jj ′ = Ejj ′ − MN .
The first column lists the QHD output from TIMORA. The
second column is from the one-pion exchange calculation with
the same coupling constants. Although the SPEs calculated
with the potential are shifted upward slightly and have some
difficulties with the spin-orbit splitting, the agreement between
the two calculations is surprising. In Table III is shown the SPE
comparison for 16O where the agreement is similar. Also shown
in this table are the experimental SPEs and those from a recent
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distinguishes among states of the same spin. Target states
may be coupled to the angular momentum of the projectile
yielding states with total angular momentum and projection
|αJAℓjJBMB⟩. The scattering states are designated by the
target state, its projection, and the spin projection of the
projectile σ . The resulting scattering amplitude is

⟨f ⟩ασMA,α′σ ′M ′
A

= 1
k

∑ √
4π (2ℓ + 1)Cℓ1/2j

0σm C
JAjJB

MAmMB
C

J ′
Aj ′JB

M ′
Am′MB

C
ℓ′1/2j ′

m′
ℓσm′

× i(ℓ−ℓ′)ei(δ′
κ+δ′

κ′ )TαJAℓjJB ,α′J ′
Aℓ′j ′J ′

B
Yℓ′m′

ℓ
(k′). (18)

The sum is over κ , κ ′, α′, JB , MB , m, m′, and mℓ′ . Scat-
tering observables can then be calculated from the scattering
amplitude. For instance, the cross section would be given by

dσ

d'
(θ ) = 1

2(2JA + 1)

∑

σσ ′M ′
AM ′

A

∣∣⟨fc⟩σσ ′δJAαMA,J ′
Aα′M ′

A

+ ⟨f ⟩ασMA,α′σ ′M ′
A

∣∣2
, (19)

where ⟨fc⟩σσ ′ is the relativistic Coulomb scattering amplitude
[5], taken to be diagonal in the target states.

III. RELATIVISTIC CONTINUUM SHELL MODEL

The random-phase approximation and TDA equations for
QHD were derived in Ref. [14] following Ref. [15] and
appeared the same as the nonrelativistic equations. The TDA
equation is

(ελ − εµ − ε)Cλµ +
∑

αβ

[⟨βλ|V |αµ⟩ − ⟨βλ|V |µα⟩]Cαβ = 0.

(20)

To apply QHD to finite nuclei, the meson fields are taken
as classical fields and a set of Dirac equations solved in the
Hartree approximation [9,16]. The σ and ω coupling constants
were fit to the saturation properties of equilibrium nuclear
matter, and the ρ coupling constant was determined from the
bulk symmetry energy. The σ mass was determined so as
to reproduce the rms radius of 40Ca, and for the Coulomb
potential, one uses the contribution to the baryon density of
protons only, whereas, for the ρ, one uses half the difference
between the proton and the neutron densities. To implement the
QHD results in a TDA equation, the classical meson fields are
replaced with one-meson exchange potentials as in Ref. [14],

V = −g2
σ

4π

e−mσ r

r
+ γ λ

1 γ2λ

g2
ω

4π

e−mωr

r

+ γ λ
1 γ2λ

τ 1·τ 2

4

g2
ρ

4π

e−mρr

r
+ γ 0

1 γ 0
2

e2

r
, (21)

where the Coulomb interaction has been included. The
coupling constants employed are the same as those from
QHD calculations, although it is not clear that these should
be appropriate in structure calculations. The finite-Hartree
(FH) coupling constants of Ref. [9] are shown in Table I.
In addition, the hole SPEs, εµ, and the wave functions are
taken as those from the FH, QHD calculation, generated with
the code TIMORA [16]. (A nucleon mass is added to the actual

TABLE I. Coupling constants. FH is finite Hartree; HF is Hartree-
Fock.

Meson Mass (MeV) FH, g2 HF, g2

σ 520 109.6 89.6
ω 783 190.4 102.6
ρ 770 65.2 12.4
π 138 0 181

output of the code to obtain εµ.) However, the particle SPE,
ελ, are replaced by the interaction of the particle with the core
nucleons,

Ejj = ⟨j |α· p + mβ|j ′⟩+
occ∑

jc,J

2J+1
2j+1

⟨γ0jγ0jc(J )|V

× [|j ′jc(J )⟩ − (−)j
′+jc−J |jcj

′(J )⟩], (22)

where the sum jc is over proton and neutron states below
the Fermi surface. The integrals extend only to the R matrix
radius. The notation is that ⟨γ0j | is ū = u+γ0 with angular
momentum j . A similar SPE definition could be made for the
hole states with |j ⟩ and |j ′⟩ replaced with |jh⟩ giving Ejhjh

.
Equation (20) is now an equation to be solved for the particle

wave functions for a given energy. The basis functions, the|λ⟩
of Eq. (3), are particle-hole functions where the |j ⟩ are Dirac
oscillators specified by |nℓjκ⟩ and hole states are the QHD
states generated with parameters FH as used to construct the
targets in Ref. [5]. Hole states are the target states with spin
jh = JA. A matrix element of the Hamiltonian (excluding the
Bloch operator) within the R matrix radius is

⟨j ⊗ jh(JB)|H |j ′ ⊗ jh′(JB)⟩
= Ejj ′ − εjh

δjhjh′ −
∑

J

(2J + 1)W (jjhjh′j ′; JBJ )

×⟨γ0jh′γ0j (J )|V [|jhj (J )⟩ − (−)jh+j−J |jjh(J )⟩], (23)

The particle wave functions are orthogonal to the hole states,
and the exchange terms are calculated exactly in the method
of Ref. [5].

To check whether replacing the classical fields with one-
meson exchange potentials is appropriate, one can compare
the single-particle energies of the hole states calculated from
QHD and those calculated by the interaction of the hole state
with particles in the core Ejhjh

. The comparison is performed
for two nuclei 16O and 90Zr. One is interested in 16O because
it is the subject of numerous (e,e′x) experiments and the
question of the role of relativity in these reactions, however,
only six SPEs can be compared for this nucleus. Therefore,
a comparison is first made for 90Zr, which has 21 SPEs. The
90Zr comparison is shown in Table II for Ex

jj ′ = Ejj ′ − MN .
The first column lists the QHD output from TIMORA. The
second column is from the one-pion exchange calculation with
the same coupling constants. Although the SPEs calculated
with the potential are shifted upward slightly and have some
difficulties with the spin-orbit splitting, the agreement between
the two calculations is surprising. In Table III is shown the SPE
comparison for 16O where the agreement is similar. Also shown
in this table are the experimental SPEs and those from a recent
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distinguishes among states of the same spin. Target states
may be coupled to the angular momentum of the projectile
yielding states with total angular momentum and projection
|αJAℓjJBMB⟩. The scattering states are designated by the
target state, its projection, and the spin projection of the
projectile σ . The resulting scattering amplitude is

⟨f ⟩ασMA,α′σ ′M ′
A

= 1
k

∑ √
4π (2ℓ + 1)Cℓ1/2j

0σm C
JAjJB

MAmMB
C

J ′
Aj ′JB

M ′
Am′MB

C
ℓ′1/2j ′

m′
ℓσm′

× i(ℓ−ℓ′)ei(δ′
κ+δ′

κ′ )TαJAℓjJB ,α′J ′
Aℓ′j ′J ′

B
Yℓ′m′

ℓ
(k′). (18)

The sum is over κ , κ ′, α′, JB , MB , m, m′, and mℓ′ . Scat-
tering observables can then be calculated from the scattering
amplitude. For instance, the cross section would be given by

dσ

d'
(θ ) = 1

2(2JA + 1)

∑

σσ ′M ′
AM ′

A

∣∣⟨fc⟩σσ ′δJAαMA,J ′
Aα′M ′

A

+ ⟨f ⟩ασMA,α′σ ′M ′
A

∣∣2
, (19)

where ⟨fc⟩σσ ′ is the relativistic Coulomb scattering amplitude
[5], taken to be diagonal in the target states.

III. RELATIVISTIC CONTINUUM SHELL MODEL

The random-phase approximation and TDA equations for
QHD were derived in Ref. [14] following Ref. [15] and
appeared the same as the nonrelativistic equations. The TDA
equation is

(ελ − εµ − ε)Cλµ +
∑

αβ

[⟨βλ|V |αµ⟩ − ⟨βλ|V |µα⟩]Cαβ = 0.

(20)

To apply QHD to finite nuclei, the meson fields are taken
as classical fields and a set of Dirac equations solved in the
Hartree approximation [9,16]. The σ and ω coupling constants
were fit to the saturation properties of equilibrium nuclear
matter, and the ρ coupling constant was determined from the
bulk symmetry energy. The σ mass was determined so as
to reproduce the rms radius of 40Ca, and for the Coulomb
potential, one uses the contribution to the baryon density of
protons only, whereas, for the ρ, one uses half the difference
between the proton and the neutron densities. To implement the
QHD results in a TDA equation, the classical meson fields are
replaced with one-meson exchange potentials as in Ref. [14],

V = −g2
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, (21)

where the Coulomb interaction has been included. The
coupling constants employed are the same as those from
QHD calculations, although it is not clear that these should
be appropriate in structure calculations. The finite-Hartree
(FH) coupling constants of Ref. [9] are shown in Table I.
In addition, the hole SPEs, εµ, and the wave functions are
taken as those from the FH, QHD calculation, generated with
the code TIMORA [16]. (A nucleon mass is added to the actual

TABLE I. Coupling constants. FH is finite Hartree; HF is Hartree-
Fock.

Meson Mass (MeV) FH, g2 HF, g2

σ 520 109.6 89.6
ω 783 190.4 102.6
ρ 770 65.2 12.4
π 138 0 181

output of the code to obtain εµ.) However, the particle SPE,
ελ, are replaced by the interaction of the particle with the core
nucleons,

Ejj = ⟨j |α· p + mβ|j ′⟩+
occ∑

jc,J

2J+1
2j+1

⟨γ0jγ0jc(J )|V

× [|j ′jc(J )⟩ − (−)j
′+jc−J |jcj

′(J )⟩], (22)

where the sum jc is over proton and neutron states below
the Fermi surface. The integrals extend only to the R matrix
radius. The notation is that ⟨γ0j | is ū = u+γ0 with angular
momentum j . A similar SPE definition could be made for the
hole states with |j ⟩ and |j ′⟩ replaced with |jh⟩ giving Ejhjh

.
Equation (20) is now an equation to be solved for the particle

wave functions for a given energy. The basis functions, the|λ⟩
of Eq. (3), are particle-hole functions where the |j ⟩ are Dirac
oscillators specified by |nℓjκ⟩ and hole states are the QHD
states generated with parameters FH as used to construct the
targets in Ref. [5]. Hole states are the target states with spin
jh = JA. A matrix element of the Hamiltonian (excluding the
Bloch operator) within the R matrix radius is

⟨j ⊗ jh(JB)|H |j ′ ⊗ jh′(JB)⟩
= Ejj ′ − εjh

δjhjh′ −
∑

J

(2J + 1)W (jjhjh′j ′; JBJ )

×⟨γ0jh′γ0j (J )|V [|jhj (J )⟩ − (−)jh+j−J |jjh(J )⟩], (23)

The particle wave functions are orthogonal to the hole states,
and the exchange terms are calculated exactly in the method
of Ref. [5].

To check whether replacing the classical fields with one-
meson exchange potentials is appropriate, one can compare
the single-particle energies of the hole states calculated from
QHD and those calculated by the interaction of the hole state
with particles in the core Ejhjh

. The comparison is performed
for two nuclei 16O and 90Zr. One is interested in 16O because
it is the subject of numerous (e,e′x) experiments and the
question of the role of relativity in these reactions, however,
only six SPEs can be compared for this nucleus. Therefore,
a comparison is first made for 90Zr, which has 21 SPEs. The
90Zr comparison is shown in Table II for Ex

jj ′ = Ejj ′ − MN .
The first column lists the QHD output from TIMORA. The
second column is from the one-pion exchange calculation with
the same coupling constants. Although the SPEs calculated
with the potential are shifted upward slightly and have some
difficulties with the spin-orbit splitting, the agreement between
the two calculations is surprising. In Table III is shown the SPE
comparison for 16O where the agreement is similar. Also shown
in this table are the experimental SPEs and those from a recent
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distinguishes among states of the same spin. Target states
may be coupled to the angular momentum of the projectile
yielding states with total angular momentum and projection
|αJAℓjJBMB⟩. The scattering states are designated by the
target state, its projection, and the spin projection of the
projectile σ . The resulting scattering amplitude is

⟨f ⟩ασMA,α′σ ′M ′
A

= 1
k

∑ √
4π (2ℓ + 1)Cℓ1/2j

0σm C
JAjJB

MAmMB
C

J ′
Aj ′JB

M ′
Am′MB

C
ℓ′1/2j ′

m′
ℓσm′

× i(ℓ−ℓ′)ei(δ′
κ+δ′

κ′ )TαJAℓjJB ,α′J ′
Aℓ′j ′J ′

B
Yℓ′m′

ℓ
(k′). (18)

The sum is over κ , κ ′, α′, JB , MB , m, m′, and mℓ′ . Scat-
tering observables can then be calculated from the scattering
amplitude. For instance, the cross section would be given by

dσ

d'
(θ ) = 1

2(2JA + 1)

∑

σσ ′M ′
AM ′

A

∣∣⟨fc⟩σσ ′δJAαMA,J ′
Aα′M ′

A

+ ⟨f ⟩ασMA,α′σ ′M ′
A

∣∣2
, (19)

where ⟨fc⟩σσ ′ is the relativistic Coulomb scattering amplitude
[5], taken to be diagonal in the target states.

III. RELATIVISTIC CONTINUUM SHELL MODEL

The random-phase approximation and TDA equations for
QHD were derived in Ref. [14] following Ref. [15] and
appeared the same as the nonrelativistic equations. The TDA
equation is

(ελ − εµ − ε)Cλµ +
∑

αβ

[⟨βλ|V |αµ⟩ − ⟨βλ|V |µα⟩]Cαβ = 0.

(20)

To apply QHD to finite nuclei, the meson fields are taken
as classical fields and a set of Dirac equations solved in the
Hartree approximation [9,16]. The σ and ω coupling constants
were fit to the saturation properties of equilibrium nuclear
matter, and the ρ coupling constant was determined from the
bulk symmetry energy. The σ mass was determined so as
to reproduce the rms radius of 40Ca, and for the Coulomb
potential, one uses the contribution to the baryon density of
protons only, whereas, for the ρ, one uses half the difference
between the proton and the neutron densities. To implement the
QHD results in a TDA equation, the classical meson fields are
replaced with one-meson exchange potentials as in Ref. [14],

V = −g2
σ

4π

e−mσ r

r
+ γ λ

1 γ2λ

g2
ω

4π

e−mωr

r

+ γ λ
1 γ2λ

τ 1·τ 2

4

g2
ρ

4π

e−mρr

r
+ γ 0

1 γ 0
2

e2

r
, (21)

where the Coulomb interaction has been included. The
coupling constants employed are the same as those from
QHD calculations, although it is not clear that these should
be appropriate in structure calculations. The finite-Hartree
(FH) coupling constants of Ref. [9] are shown in Table I.
In addition, the hole SPEs, εµ, and the wave functions are
taken as those from the FH, QHD calculation, generated with
the code TIMORA [16]. (A nucleon mass is added to the actual

TABLE I. Coupling constants. FH is finite Hartree; HF is Hartree-
Fock.

Meson Mass (MeV) FH, g2 HF, g2

σ 520 109.6 89.6
ω 783 190.4 102.6
ρ 770 65.2 12.4
π 138 0 181

output of the code to obtain εµ.) However, the particle SPE,
ελ, are replaced by the interaction of the particle with the core
nucleons,

Ejj = ⟨j |α· p + mβ|j ′⟩+
occ∑

jc,J

2J+1
2j+1

⟨γ0jγ0jc(J )|V

× [|j ′jc(J )⟩ − (−)j
′+jc−J |jcj

′(J )⟩], (22)

where the sum jc is over proton and neutron states below
the Fermi surface. The integrals extend only to the R matrix
radius. The notation is that ⟨γ0j | is ū = u+γ0 with angular
momentum j . A similar SPE definition could be made for the
hole states with |j ⟩ and |j ′⟩ replaced with |jh⟩ giving Ejhjh

.
Equation (20) is now an equation to be solved for the particle

wave functions for a given energy. The basis functions, the|λ⟩
of Eq. (3), are particle-hole functions where the |j ⟩ are Dirac
oscillators specified by |nℓjκ⟩ and hole states are the QHD
states generated with parameters FH as used to construct the
targets in Ref. [5]. Hole states are the target states with spin
jh = JA. A matrix element of the Hamiltonian (excluding the
Bloch operator) within the R matrix radius is

⟨j ⊗ jh(JB)|H |j ′ ⊗ jh′(JB)⟩
= Ejj ′ − εjh

δjhjh′ −
∑

J

(2J + 1)W (jjhjh′j ′; JBJ )

×⟨γ0jh′γ0j (J )|V [|jhj (J )⟩ − (−)jh+j−J |jjh(J )⟩], (23)

The particle wave functions are orthogonal to the hole states,
and the exchange terms are calculated exactly in the method
of Ref. [5].

To check whether replacing the classical fields with one-
meson exchange potentials is appropriate, one can compare
the single-particle energies of the hole states calculated from
QHD and those calculated by the interaction of the hole state
with particles in the core Ejhjh

. The comparison is performed
for two nuclei 16O and 90Zr. One is interested in 16O because
it is the subject of numerous (e,e′x) experiments and the
question of the role of relativity in these reactions, however,
only six SPEs can be compared for this nucleus. Therefore,
a comparison is first made for 90Zr, which has 21 SPEs. The
90Zr comparison is shown in Table II for Ex

jj ′ = Ejj ′ − MN .
The first column lists the QHD output from TIMORA. The
second column is from the one-pion exchange calculation with
the same coupling constants. Although the SPEs calculated
with the potential are shifted upward slightly and have some
difficulties with the spin-orbit splitting, the agreement between
the two calculations is surprising. In Table III is shown the SPE
comparison for 16O where the agreement is similar. Also shown
in this table are the experimental SPEs and those from a recent
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ORNL S(a,b) evaluation framework overview
• The objective is to combine experimental double differential 

scattering data and model parameters to yield the best estimate 
of double differential cross section (DDCS) and uncertainties

• Data and simulation fit is achieved using the unified Monte Carlo 
(UMC) method

• Simulations are constrained by physical properties of material
• Framework is tested on light water

– Data collected from ORNL SNS
– Rensselaer Polytechnic Institute (RPI) collaboration

• Validated using benchmarks from the International Criticality 
Safety Benchmark Evaluation Project (ICSBEP) handbook

• C. Chapman’s Ph.D. https://smartech.gatech.edu/handle/1853/58693

https://smartech.gatech.edu/handle/1853/58693

