Calculation of Independent and Cumulative Fission Product Yields and Fission Spectrum with the Statistical Decay Theory

Toshihiko Kawano¹ Shin Okumura²

¹Los Alamos National Laboratory

²International Atomic Energy Agency

CSEWG Brookhaven National Laboratory, 11/5 – 7, 2018

HF³D: Hauser-Feshbach Fission Fragment Decay

Fully Deterministic Approach to Fission Yield and Prompt Neutrons

HF³D Model Inputs

- primary fission fragments Y(Z, A, TKE)
- *R_T* (energy sharing) and *f* (spin dist.) parameters

We integrate Hauser-Feshbach outputs over

- initial population distribution $P_0(J, \Pi, E_x)$ for
- spin, parity, and fragment excitation energy

Prompt fission neutron spectrum

- convert CMS neutron spectrum into LAB
- consistent χ calculation with FPY

Theory and Models

FF Initial Configuration for $n_{th} + {}^{235}U$

NNS&

Theory and Models

Deterministic Statistical Decay of CN in HF³D

EST 1943

- fission fragment excitation energy discretized, E_x(i)
- calculate kinetic energy E_k of the fragment at each E_x(i)
- convert neutron energy from CMS into LAB using Feather's technique

Model Parameter Inputs

• Z-distribution by Wahl's Z_p model

• Y(Z, A) and TKE(Z, A) are energy-dependent up to 1st-chance fission

NNS[®]

Independent Mass Yield for n_{th} + ^{235}U

 $\overline{\nu} = 2.38$

Some Selected Independent FPYs for n_{th} + ^{235}U

NISA

Prompt Fission Neutron Spectrum for $n_{th} + {}^{235}U$

Independent/Cumulative FPY Charge Distributions

Some Selected Cumulative FPYs

Calculated Decay Heat

NISA

NNSA

Prompt and Delayed Neutron Multiplicities

Results and Discussion

Energy Dependence

Energy-Dependent Cumulative FPYs

NNSA

Fission Dynamics

Micro/Macro Approach to Primary FF Yield

These data will be produced by the FIRE collaboration, and will be employed as the energy-dependent primary fission fragment distribution

NNSA

Toward New FPY Data Library, Experimental Data

Construction of Experimental Database

- Review some personal FPY databases (England, Mills, Katakura)
- Include recent FPY data, which were not given in these databases
- Prepare a common experimental FPY database
- Also compile other data, such as TKE, mass yield, etc, for parameter tuning

International Cooperation

- Workshop on Fission Product Yield Experimental Data
 - Los Alamos, NM, Aug. 20 23 (2018)
 - LANL (chair), IAEA (co-chair), BNL, JAEA, and KAERI
- IAEA Consultants' Meeting on Fission Product Yield Experimental Database
 - tentative date/place May 2018 in Tokyo
- IAEA Fission Product Yield CRP

Toward New FPY Data Library, Model and Evaluation

Application of the Hauser-Feshbach theory to the fission fragment decay process

- The HF³D model produces independent fission product yields as well as prompt fission neutron spectrum in a consistent manner
- Capable to produce energy-dependent FPYs
- Current model is limited to n+²³⁵U up to the second chance fission

S. Okumura et al. J. Nucl. Sci. Tech. 55, 1009 (2018)

Extension and Optimization

- Prepare model parameter inputs for other fissioning systems (partly done by the CGMF team at LANL)
- Include multi-chance fission
- Theoretical prediction for primary fission fragment yields
- Large scale parameter optimization to produce the final evaluation

