Charged Particle Libraries

Review of previous LLNL contributions to ENDF/B-VIII.0

Ian Thompson and Erich Ormand Nuclear Data and Theory Group

November 5, 2018

LLNL-PRES-760871

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Past, Present and Future Evaluations Today: talk on <u>8 Blue</u> and <u>3 Green</u> = 11 evals

ENDF/B-VII.1

ENDF/B-VIII.0

LLNL-PRES-760871

The 8 submitted from LLNL in October 2016: a+a, d+7Li, h+h, h+a, p+a, p+7Li, t+a, t+7Li

ENDF/B - VII.1

Proposals for adding and

merging into ENDF/B-VIII. 1

Lawrence Livermore National Laboratory

Thermonuclear Reaction Library

- Legacy ECPL/ENDL99 evaluations
 - Incident charged particles (p,d,t,He3,He4), light targets Z<=3 (p,d,t,He3,He4,Li6,Li7)
 - R.M. White, D.A. Resler, S.I. Warshaw 'Evaluation of Charged-Particle Reactions for Fusion Applications,' Proc. from Nuclear Data for Sci. and Tech., Ed. S.M. Qaim, Juelich, Fed. Rep. Germany, 13-17 May (1991)
 - S.T. Perkins, D.E. Cullen, 'Elastic Nuclear plus Interference cross sections for light-charge particles' Nucl. Sci. Eng. 77, 20-39 (1981)

• 2010 evaluations at LLNL by Petr Navratil, David Brown & Chris Hagmann

- Main sources for new evaluations
 - Descouvemont R-Matrix analysis
 - P. Descouvemont, A. Adahchour, C. Angulo, A. Coc, E. Vangioni-Flam, Atomic Data & Nucl. Data Tables 88, 203 (2004)
 - NACRE (Nuclear Astrophysics Compilation of REaction rate)
 - C. Angulo et al., Nucl. Phys. A656 (1999)3-187
 - Experimental data not in EXFOR
- Here: assess accuracy of evaluations contributed by LLNL.
- Most <u>cross-sections</u> were presented at CSEWG 2016 (supplemental slides below).
 So here we focus on the <u>angular distributions</u> of two-body channels vs. EXFOR.

(Future methods will focus on breakup distributions)

Table of LLNL contributed evaluations

					ejectiles:							
ENDF/B-VIII version		n	2n	3n	р	2р	d	n+p	t	h	а	
0	р+а				elastic							р
0	p + Li7	50, 51			pt. Coul		650				800	р
1	d + a	50			600		elastic	28				р
0	d + Li7	22	16		103		elastic		700			р
0	t+a											р
0	t + Li7	50	24	17					pt. Coul			
0	h + h					111				elastic		
0	h+a									elastic		р
1	h + Li7				600		117	45	105	pt. Coul	800, 801	р
0	a+a										elastic	р
1	a + Li6				600		650, 651				pt. Coul	р

All distributions exist, but most are simple forms extrapolated from limited measurements.

Many of these channels (2n, 3n, 2p, n+p) are too difficult for 2-body R-matrix models.

Evaluation Paths

- These from LLNL are <u>temporary</u> evaluations (2010 through 2020?)
 - Combination of cross sections and distributions from different sources
 - Trying to follow the experimental data evaluated as the best
- The future is to use full R-matrix evaluations!!
 - Where possible, publish R-matrix evaluations from LANL
 - Include all R-matrix parameters (even if relativistic kinematics)
 - Include all fitted data normalization factors
- Good way: convert from EDA, AZURE, FRESCO, SAMMY, HYRMA formats to GNDS and then ENDF
 - Using Ian's code Ferdinand.py
 - This is being developed with USNDP funding.
- Then can encourage, monitor and verify new R-matrix fits to data
 - Determine how to fit data above 3-body thresholds
 - Supplement with Hauser-Feschbach models above resonance region
- International effort through IAEA to verify and validate the above R-matrix codes.
 - Soon to be provided: h+ α and p+6Li evaluations

d + α : Good elastic distributions vs. EXFOR data

validateWithX4plots.py d-002_He_004.xml -m all -o all -r 2 -l -f eps

d + α : Poor fits to 2-step breakup channels

validateWithX4plots.py d-002_He_004.xml -m all -o all -r 2 -l -f eps

α + Li6

Elastic is only point Coulomb! Starts ok at lowest energies & angles, but diverges.

Angle distributions from He4 scattering on Li6. Units are mb and deg.

Heusi (1981) F0046002 E*=0. Bingham (1971) A1528003 E*=0. 1000000 100000 12.0 MeV 12.54 MeV * 2^1 14.0 MeV * 2^2 10000 4.04 MeV * 2^3 15.54 MeV * 2^4₁₀₀₀ 100 16.0 MeV * 2^5 1.64 MeV * 20 7.04 MeV * 2^6 18.0 MeV * 2^7 100 2.3 MeV * 2^3 18.54 MeV * 2^8 2.6 MeV * 2^4 3.0 MeV * 2^5 0 10 200 50 100 150 Λ 50 100 150 200 Temmer (1963) F0010009 E*=0. Bohlen (1972) A1505005 /R E*=0. 1000 1000 10.0 MeV — 3.0 MeV 12.54 MeV * 2^1 4.0 MeV * 2^1 100 100 10 10 0 50 100 150 200 50 100 150 200 0 0 Bohlen (1972) A1505006 E*=0 Blieden (1963) F0167014 E*=0. 1000 000 — 10.0 MeV 12.54 MeV * 2/ 100 100 10 10 = - 3.914 MeV 50 100 200 150 0 50 100 150 0

(a,p) and (a,d) distributions plausible

Angle distributions from He4 scattering on Li6. Units are mb and deg., for H1 + Be9 outgoing channel.

validateWithX4plots.py a-003_Li_006.xml -m all -o all -r 2 -l -f eps

$p + \alpha$: good elastic distributions (the only channel!)

Angle distributions from H1 scattering on He4. Units are mb and deg.

validateWithX4plots.py p-002_He_004.xml -m all -o all -r 3 -g -l -f eps

p + Li7 -> n+Be7 : From ENDF/B-VII.0 : mostly good!

The p+Li7 elastic channel is Pure Coulomb.

Misses all resonances 0.4, 1, 2.1 MeV . . .

validateWithX4plots.py p-003_Li_007.xml -i F0004014 -m all -o all -L 0.0 -e 2.4 -r 3 -g -l -f eps

d + Li7: elastic scattering

Elastic scattering ok at lowest energies

But misses resonances if plotted as excitations:

validateWithX4plots.py d-003 Li 007-rev.xml -i A1429002 A1472002 -m all -r 3 -g -l -f eps

Angle distributions from H2 scattering on Li7. Units are mb and deg.

Angle distributions from H2 scattering on Li7. Units are mb and deg.

validateWithX4plots.py d-003_Li_007-rev.xml -i A1429002 A1472002 -m all -r 3 -g -l -f eps

t + α : elastic distributions (only channel) approximate

Elastic is approximate over many energies

Angle distributions from H3 scattering on He4. Units are mb and deg.. Page 2

$h + \alpha$: elastic distributions (only channel) plausible

Excitation functions for He3 scattering on He4. Units: mb and MeV

Maybe missing a resonance around 9 MeV?

h + Li7: A primitive evaluation

Elastic is only point Coulomb!

validateWithX4plots.py h-003_Li_007.xml -x C0139002 -m all -o all -r 2 -l -f eps

validateWithX4plots.py h-003_Li_007.xml -x C0139002 -m all -o all -r 2 -l -f eps

Li7(h,a)Li6 needs improvements!

- Describing data with these ENDF contributions:
 - Elastic scattering is often well described for scattering on alpha particles.
 - Some principal two-body reaction channels are described
 - 3-body-channel fits not addressed here.
 - There are many channels that should be in ENDF/B evaluations.
 - Many of these channels are very sketchily described. For example by point-Coulomb elastic scattering.

Conclusions

- These are definitely <u>temporary evaluations</u> needed because nothing there previously (e.g. no evaluations for charged-particle scattering on alphas, or missing channels in previous evaluations)
- There are many resonance structures that are often missing in the evaluations
- Used until replaced by something better
- We look forward to 2-body R-matrix models!
 - Assist LANL in making and checking MF=2 data sections in ENDF6 format libraries.
- Even more need for theory development of R-matrix for breakup channels!

h + h and α + α : elastic distributions (only channel) not good!

Angle distributions from He3 scattering on He3. Units are mb and deg.

Angle distributions from He4 scattering on He4. Units are mb and deg.

validateWithX4plots.py a-002 He 004.xml -i A1146003 -m all -o all -r 3 -g -l -f eps

Have I made a mistake for identical particles?

He3+He3 evaluation (from 2016 talk)

- ENDF/B-VII.0 (Hale 2001)
 - (He3,el), (He3,2p)
- ENDF/B-VIII.b3 (ENDL2011.0, Navratil 2010)
 - (He3,el) from ENDF
 - (He3,2p)
 - NACRE S-factor evaluation [4] that includes LUNA data [5]
 - Angle and energy distributions: from ENDF

[4] C. Angulo et al. (NACRE Collaboration), Nucl. Phys. A656 (1999)3-187

[5] The LUNA Collaboration, M. Junker, et al., The cross section of 3He(3He,2p)4He measured at solar energies, Nuclear Physics B - Proceedings Supplements, Volume 70, Issues 1-3, Proceedings of the Fifth International Workshop on topics in Astroparticle and Underground Physics, January 1999, Pages 382-385, ISSN 0920-5632.

He-3(he-3,2p)

d+Li7 evaluation (from 2016 talk)

- ENDF/B-VII.0 (Hale 2003)
 - (d,el), (d,na), (d,t₀)
- ENDF/B-VIII.b3 (ENDL2011.0, Navratil 2010)
 - (d,el) from ENDF, extended up to 30 MeV
 - (d,na) from ECPL (but ENDF better fit to data)
 - (d,t) from R.L. Macklin [5] data up to 4 MeV; at higher energies scaled ENDF
 - Angular distributions: ENDF/B-VII.0

d+Li7 evaluation (from 2016 talk)

- ENDF/B-VII.0 (Hale 2003)
 (d,el), (d,na), (d,t₀)
- ENDL2011.0 (Navratil 2010)
 - (d,2n) from ECPL
 - (d,p)
 - < 0.7 MeV from Ref. [3]
 - 0.7 3.4 MeV from Ref. [4]
 - > 3.4 MeV educated guess
 - Angular distributions: from (d,na) neutron dist.

[3] B.W. Filippone, A.J. Elwyn, W. Ray Jr., D.D. Koetke, Phys. Rev. C, 25, 2174 (1982)
[4] D.W.Mingay, J, SAP, 2, (3), 107 (1979)

Li-7(d,2n)

p+Li7 evaluation (from 2016 talk)

- ENDF/B-VII.1 (Page 2004)
 - (p,el), (p,n'₀), (p,d₀), (p,α₀)
- ENDF/B-VIII.b3 (ENDL2011, Navratil 2008)
 - 7Li(p,n)
 - Both ECPL and ENDF/B-VII.0 cross-sections were discarded. Evaluation is based purely on data
 - (p,n₀) [ground state]:
 - NIMPR 133, 253 (1976) for 0-2.35 MeV
 - PRC 10, 1299 (1974) for 2.4-3.6 MeV
 - VANT YK 4, 17 (1984) for 3.6-25 MeV
 - PRC 14, 438 (1976) for 25-26 MeV
 - Datasets matched with splines.
 - (p,n₁) [0.4291 MeV excited state):
 - NPA 182, 2, 321 (1972) for 2.3-5 MeV
 - VANT YK 4, 17 (1984) for 5-25 MeV
 - PRC 14, 438 (1976) for 25-26 MeV
 - Datasets matched with splines
 - Angular distributions
 - Taken from Page's ENDF/B-VII.0 evaluation
 - Distribution for excited state is same as ground state, but threshold is shifted.

p+Li7 evaluation (from 2016 talk)

- ENDF/B-VII.1 (Page 2004)
 - (p,el), (p,n'_0), (p,d_0), (p, α_0)
- ENDF/B-VIII.b3 (ENDL2011, Navratil 2008)
 - (p,el) from ECPL
 - (p,a)
 - Cross-section
 - < 2.6 MeV : Descouvemont [3] S-factor
 - 2.6 3.15 MeV : three experimental points from the Rice measurement
 - > 3.15 MeV : Page evaluation
 - Note EXFOR The with a data is wrong as there was an erratum in the 41, 176 (1963) (data needs to be multiplied by 10/7), divided by 2 as normalization based on 10/7), divided by 2 as normalization based on 10/7) measurement that counted alphas Note EXFOR file with the NP 33, 449 (1962)
 - Angular distributions from ENDF/B-VII.0
- Decouvemont 2004
 - [3] P. Descouvemont, A. Adahchour, C. Angulo, A. Coc, E. Vangioni-Flam, Atomic Data and Nuclear Data Tables 88, 203 (2004).

p+Li7 evaluation (from 2016 talk)

- ENDF/B-VII.1 (Page 2004)
 - (p,el), (p,n'_0), (p,d_0), (p, α_0)
- ENDF/B-VIII.b3 (ENDL2009, Navratil 2008)
 - 7Li(p,d)
 - Cross-section
 - < 10 MeV from ENDF/B-VII.0</p>
 - To extrapolate to 30 MeV, integrated the cross section from Fig. 6 of PR 163,4,1066 (1967) and got 24 mb. Measurement was at 33.6 MeV proton energy. Recommend to use 24 mb at 30 MeV and make a linear interpolation to the 10 MeV point of Page
 - Angular distributions from ENDF/B-VII.0

New Evaluations at ENDF/B-VIII.1

- h + ⁷Li evaluation
 - MT=2: elastic
 - MT=45: n+p+a+a
 - MT=600: p + Be9
 - MT=105: t + Be7
 - MT=800: a + Li6
 - MT=801: a + (Li6*(2.18 MeV)->Li6+ γ), with γ distribution in lab frame
 - MT=117: d + a + a
- α + ⁶Li evaluation
 - MT=2 elastic
 - MT=600: p + Be9
 - MT=650: Be8 -> 2a
 - MT=651: Be8_e1 -> 2a
- d + α evaluation, with 3-body breakup of deuteron via 3 routes:
 - MT=2 elastic
 - MT=600: $p + ({}^{5}He \rightarrow \alpha + n)$
 - MT=50: n + (⁵Li -> α + p)
 - MT=28: α + n + p (no resonances)

For these 3 evaluations, comprehensive reactions, but little documentation