

US National Nuclear Data Week 2018

Brookhaven National Laboratory November 5 – 9, 2018 • Upton, NY, USA

Thermal Scattering Law Evaluations in Progress

Ayman I. Hawari (NCSU), Mike Zerkle (NNL), Jesse Holmes (NNL)

North Carolina State University & Naval Nuclear Laboratory

Introduction

□ Evaluations of new TSLs are underway

□Naval Nuclear Laboratory

- H(UH₃)
- H(PuH₂)

□North Carolina State University

- H (in heavy paraffinic oil)
- F Li Be (in FLiBe)
- Al O (in Al₂O₃)

H-UH₃

HEU-COMP-INTER-003

- Uranium Hydride (UH₃) has been used in several historical critical experiments
 - G. A. Linenberger, et al., *Nucl. Sci. Eng.*, 7, 44-57 (1960).
 - HEU-COMP-INTER-003, "Reflected Uranium-Hydride Critical Assemblies"
- β-UH₃ stable at room temperature and above
 - 8 molecules (32 atoms) per unit cell
 - 6.643 Å lattice constant
- H-UH₃ TSL developed using first-principles or ab initio lattice dynamics (AILD) approach
 - VASP to calculate interatomic Hellman-Feynman forces for crystal structure using GGA+U
 - PHONON to determine dispersion relations and phonon density of states (PDOS)
 - H-UH₃ TSL evaluated in incoherent approximation using NJOY/LEAPR

Figure 2. Schematic of the Doubly Reflected Assembly.

Figure 3. Schematic of a Singly Reflected Assembly.

β -UH₃ Unit Cell

Calculated dispersion relation for UH₃

H-UH₃

Total, elastic, and inelastic scattering cross section for $H-UH_3$ at 293.6 K generated by NDEX

Agreement between calculated and measured Phonon DOS

Plutonium-Hydrogen Phase Diagram

- Hydride/de-hydride processes used in some NNSA fuel cycle facilities
- Four PuH_x phases present
 - PuH_2 (FCC) for H/Pu ≤ 2.0
 - Two phase solid solution of Pu (metal) + PuH₂ (FCC)
 - PuH_{2+x} (FCC) for 2.0 < H/Pu < 2.75
 - Single phase solid solution
 - PuH_{2+x} (FCC) for 2.75 < H/Pu < 3-ε
 - Two phase solid solution, PuH_{2+x} (FCC) + PuH₃ (Hex)
 - PuH₃ (Hex) for 2.75 < H/Pu ≤ 3.0
 - Single phase solid solution for $3-\epsilon < H/Pu < 3$
- Only PuH₂ and PuH_{2+x} of practical interest for NCS
- Initial NNL work concentrates on PuH₂
 - PuH_{2+x} to be evaluated later

HYDROGEN / PLUTONIUM ATOMIC RATIO

Phase diagram for the plutonium-hydrogen system. From R. N. R. Mulford and G. E. Sturdy, *J. Am. Chem. Soc.*, **78**, 3899 (1956).

H-PuH₂

- PuH₂ has a CaF₂ type FCC structure
 - 12 atoms per unit cell
 - 4 Pu atoms (blue) at vertices and faces of unit cell
 - 8 H atoms (grey) in tetrahedral holes between Pu atoms
 - Mass density of 10.40 g/cm³
- Measured lattice parameter agree (X-ray diffraction)
 - *a* = 5.359 ± 0.002 Å, Mulford and Sturdy (1955)
 - $a = 5.359 \pm 0.001$ Å, Coffinberry and Ellinger (1956)
 - *a* = 5.359 ± 0.002 Å, Muromura et al. (1972)
 - *a* = 5.3593 Å, Willis et al. (1985)
- H-PuH₂ TSL developed using AILD approach
 - VASP to calculate interatomic Hellman-Feynman forces for crystal structure using GGA+U
 - PHONON to determine dispersion relations and phonon density of states (DOS)
 - H-PuH₂ TSL evaluated in incoherent approximation using NJOY/LEAPR

PuH₂ Unit Cell

H-PuH₂

Calculated dispersion relation for PuH₂

Total, elastic, and inelastic scattering cross section for $H-PuH_2$ at 293.6 K generated by NDEX

Heavy-Paraffinic Oil

- Heavy paraffinic oil is generally used as a liquid lubricant in circulating oil systems
- COMPASS potential used to model organic compounds
- Non-equilibrium and Equilibrium MD (NEMD and EMD) employed during the simulation process
- 9020 atoms
- 100 molecules
- 45x45x45 Å³ supercell
- Simulation times in the ns range with 1 fs timesteps
- Model Validation:
 - Density
 - Viscosity
 - Diffusivity

Heavy-Paraffinic Oil

Property	Target Value	Simulation Results		
Density (300K) [g/cm ³]	0.86	0.829 ± 0.004		
Property	Target Value	Simulation Results		
Viscosity (313K) [mm ² /s (cSt))] 19.7	20.50 ± 0.84		
Viscosity (373K) [mm ² /s (cSt))] 4.0	3.65 ± 0.29		
Component	Dif	Diffusivity [cm ² /s]		
Hydrogen in Paraffinic Oil	2.78 x 10	2.78 x 10 ⁻⁷ [300K] [This Work]		
Hydrogen in Water	2.3 x	2.3 x 10 ⁻⁵ [298K] [12]		

Molten Salt FLiBe

- Molten Salt FLiBe (*Li*₂*BeF*₄) has been proposed as a coolant, moderator, and heat storage medium in thermal neutron driven nuclear reactors.
- 7,000 atoms in 43.67 Å \times 43.67 Å \times 43.67 Å cube with periodic boundaries
- Timestep 1 fs equilibrated for 20 ps under NPT condition
- Model validation
 - Density
 - Viscosity
 - Diffusion coefficient
 - Heat Capacity

Molten Salt FLiBe

Sapphire (Al₂O₃)

- Sapphire (Al₂O₃) is a common crystalline material for thermal neutron filters
 - Large, high purity, single crystal
 - Oriented to minimized Bragg scattering
 - Wide-band-gap insulator
- Scattering largely from inelastic scattering
- DFT Parameters
 - GGA-PBE pseudopotential
 - 600 eV energy cutoff
 - 5x5x5 k-mesh
 - 2x2x2 supercell (80 atoms)
- Model validation
 - a lattice parameters for hexagonal unit cell
 - Shear modulus (B)
 - Young's modulus (Y)

	a (Å)	B (GPa)	Y (GPa)
VASP	5.177	145.4	361
Exp.	5.128	145	345

Neutron-weighted Total Al₂O₃ Phonon Density of States

Sapphire (Al₂O₃)

Summary

- NNL and NCSU will be contributing several TSL evaluations to upcoming release of ENDF/B
- Modern DFT and MD techniques continue to be primary tools in evaluation process
- For crystalline materials, a single crystal thermal neutron filter may be represented by ignoring MT=2 section in the TSL file.