

University of Kentucky Cross Section Measurements: C, Si, Li, and F

A. P. D. Ramirez¹, J. R. Vanhoy², S. F. Hicks³, M.T. McEllistrem¹, S. Mukhopadhyay¹, E. E Peters¹, and S. W. Yates^{1,2}

¹University of Kentucky, Lexington, KY, 40506-0055

²Department of Physics, United States Naval Academy, Annapolis, MD, 21402-5026

> ³Department of Physics, University of Dallas, Irving, TX, 75062-9991

Research funded by DOE: NNSA/SSAP Grant # DE-NA0002931 and NEUP Grant #NU-12-KY-UK-0201-05, and the Cowan Physical Sciences Institute at the University of Dallas

University of Kentucky Accelerator Laboratory (UKAL)

- > 7-MV single-ended Van de Graaff accelerator
- \succ p, d, ³He and α beams
- pulsed and bunched beam:
 - f = 1.875 MHz and $\Delta t \approx 1$ ns
- primarily conducts neutron-induced reactions and scattering experiments

Basic Nuclear Science

- Nuclear structure via $(n,n'\gamma)$
 - Level Schemes and Transitions
 - Spectroscopic Information
 - DSAM Lifetimes

Applied Nuclear Science

- Cross section measurements
 - (n,n') Elastic and inelastic cross sections

²³Na, ⁵⁶Fe, ⁵⁴Fe, ¹²C, ^{nat}Si, ^{nat}Li

- $(n,n'\gamma)$ γ -ray production cross sections Level cross sections
- Detector development

UKAL Experimental Hall

Differential elastic cross sections for n +¹²**C**

- Data accumulated from previous measurements (~50 elastic angular distributions)

- Comparison with previous measurements (Ahmed, Demanins, Fasoli, Galati, Lane, Perey, Smith) and evaluated cross sections (ENDF-VIII.0, JEFF-3.3, and JENDL-4.0)

Differential elastic cross sections for n+12C

W

Angle-integrated elastic XS

Legendre coefficients
compared with existing data and
values from evaluation
databases

 Very good agreement with evaluation databases

$$(\theta) = A_0 \sum_{L} a_L P_L(\cos \theta) \qquad ; a_0 = 1$$

$$a_L^{ENDF} = \frac{a_L^{exp}}{2L+1}$$

¹²C(n,n₁)¹²C neutron cross sections

Angle-integrated ¹²C(n,n₁) ¹²C cross sections

- Available angle-integrated first inelastic neutron cross section data from EXFOR database and our data

- Our data and existing measurements tend to agree with ENDF and JEFF databases

Photon angular distributions for E_{lev} =4.439 MeV (n+¹²C)

11/07/18 CSWEG Meeting 2018

Differential elastic cross sections for n+^{nat}Si

11/07/18

CSWEG Meeting 2018

Differential cross sections for ²⁸Si(n,n₁)²⁸Si

Inelastic neutron cross section data from ²⁸Si(n,n₁ γ)²⁸Si measurement

300

250

0.2

0.4

- Cross sections may require a correction factor of about 1.05 due to $a_{4} \sim |0.1|$

3.5

З

E_n (MeV)

0.1

-0.1

-0.2

2

2.5

0.8

cos²(0)

0.6

Preliminary data for n+¹⁹F

Preliminary ¹⁹F(n,n₁)¹⁹F cross section

- ENDF-VIII.0 and JENDL-4.0 differ in shape and magnitude

- Our data are closer to JENDL in terms of magnitude but follow the structure presented by ENDF-VIII.0

11/07/18 CSWEG Meeting 2018

Preliminary cross sections for n+^{nat}Li

Background (target-out) subtraction at forward angles due to H(n,el)

- Elastic and inelastic cross section measured with $E_n = 2$ and 3 MeV

Additional measurements in the future

Neutron Cross Section Measurements & Nuclear Science Training at UKAL

DE-NA0002931

Elastic & Inelastic Neutron Scattering Cross Sections on Fe, Si, and C

Legendre Coefficients for n+¹²C elastic scattering with R-matrix calculation.

During current 3 year grant WORKFORCE DEVELOPMENT

11 undergrads + 1 postdoc + EXPERIMENTAL RUNS

Targets: ¹²C, ^{nat}Si, ⁵⁶Fe, ^{nat}Li, ¹⁹F 154 days beam-on-target

51 (n,n') angular distributions

8 (n,n' γ) angular distributions

 60γ -ray production energies

REPORTING

19 presentations & posters

7 publications

Neutron TOF spectrum for natSi

Uncertainties

Issue		Issue	
Counting Statistics n_0 , n_1	<1%	Atten & Mult Scat	
Ability to Extract Yield	~2%	nσ	0.3 %
from Peaks in Spectra (elas)	usually	sample radius	0.3 %
Ability to Extract Yield from Peaks in Spectra (inel)	hum	sample-Tcell dist	0.2 %
Monitoring Neutron Production	<1%	method	<5%
Sample Mass	<<1%		
H(n,n) reference XS	<0.5%		
Detector Efficiency			
$3H(p,n)$ d $\sigma/d\Omega$	~3%		

- Overall during ²³Na runs: elastics ~8-10% inelastics ~13-18%
 - Overall during ⁵⁴⁻⁵⁶Fe runs: elastics ~7-10% inelastics ~10-14%

11/07/18 CSWEG Meeting 2018