Precise α_K and α_T Internal Conversion Coefficients Measurements of 39.752(6)-keV E3 Transition in 103m Rh: Test of Internal Conversion Theory

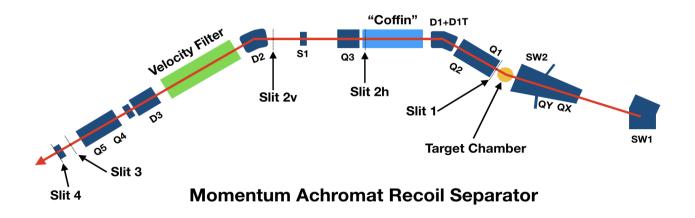
TEXAS A&M PROGRAM TO MEASURE ICC

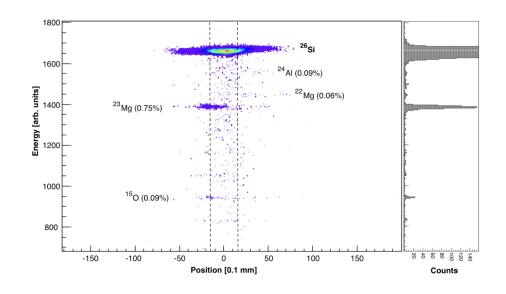
N. Nica¹, J.C. Hardy¹, V. Horvat¹, V.E. Iacob¹, H.I. Park¹, T.A. Werke¹, K.J. Glennon¹, C.M. Folden III¹, M.B. Trzhaskovskaya², V.I. Sabla³, J. Bryant³, and X.K. James⁵

¹ Cyclotron Institute, Texas A&M University, College Station, Texas 77843, USA

² Petersburg Nuclear Physics Institute, Gatchina 188300, Russia

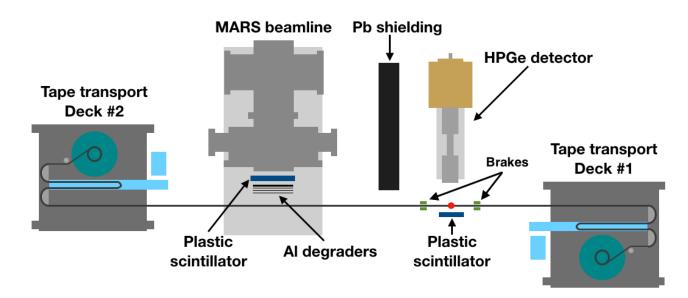
³ REU summer student from Middlebury College, Middlebury VT 05753


⁴ REU summer student from University of Central Arkansas, Conway


AR 72035

⁵ REU summer student from University of Wisconsin, La Crosse WI 54601

Texas A&M - Cyclotron Institute β-γ Precision Measurements


K500 and K150 cyclotrons + MARS

Texas A&M - Cyclotron Institute β-γ Precision Measurements

HPGe detector (y)
Gas detector (β)
Plastic Scintillator detector (β)
Tape transport
Kamax NT acq

Precise α_K and α_T Internal Conversion Coefficients Measurements of 39.752(6)-keV E3 Transition in 103m Rh: Test of Internal Conversion Theory

TEXAS A&M PROGRAM TO MEASURE ICC

Internal Conversion Coefficients (ICC):

- Big impact on quality of nuclear science
- Central for the nuclear data evaluation programs
- Intensely studied by theory and experiment
- Important result: hole calculation now standard

2002RA45 survey ICC's theories and measurements

• Theory: RHFS and RDF comparison

Exchange interaction, Finite size of nucleus, *Hole treatment*

Experiment:

100 E2, M3, E3, M4, E5 ICC values, 0.5%-6% precision, very few <1% precision!

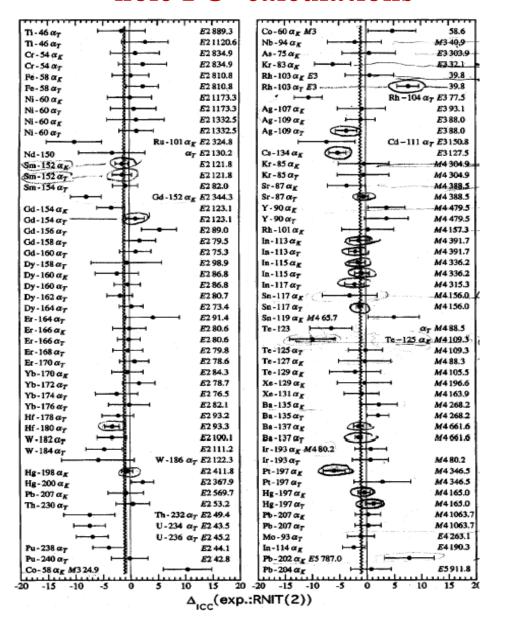
• Conclusions, Δ (exp:theory)%:

No hole: +0.19(26)% BEST!

(bound and continuum states - SCF of neutral atom)

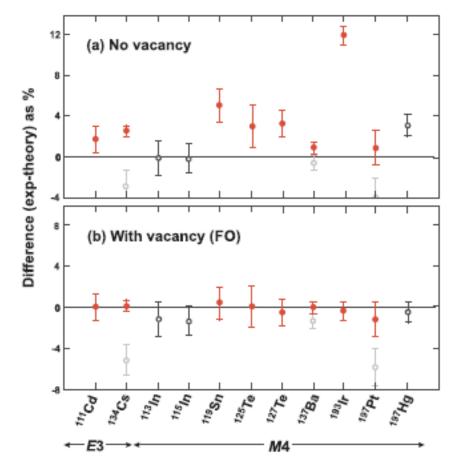
Hole-SCF: -0.94(24)%

(continuum - SCF of ion + hole (full relaxation of ion orbitals))


Hole-FO: -1.18(24)%

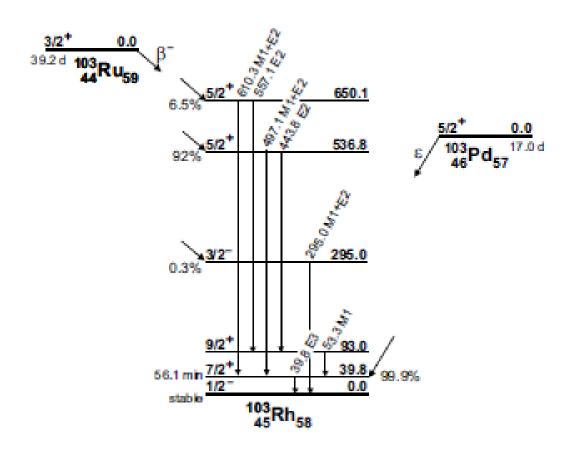
(continuum - ion field from bound wave functions of neutral atom (no relaxation of ion orbitals))

PHYSICAL ARGUMENT


K-shell filling time vs. time to leave atom $\sim 10^{-15} - 10^{-17} \text{ s} \gg \sim 10^{-18} \text{ s}$

2002Ra45: 100 $\alpha_K(exp)$ cases compared with 'hole FO' calculations

Overview of the scope and completeness of the method


- Scope: Minimize ICC measurement unc (~1%) and maximize Δ_{theory} (FO,NH)% (>4%, E3, M4)
- Completeness: There is no criterion to reach the scope of comparison between ICC theories "with hole" and "no hole" except for measuring precisely as many relevant cases as practically possible

III. ^{103m}Rh 39.748 keV, E3 transition

- α(K)exp: 153 6 [1], 127 6 [2]
- $\alpha(K)_{hole\ FO} = 135.3(1), \ \alpha(K)_{no_hole} = 127.5(1), \ \Delta_{Theory}(FO,NH) = 5.9\%$
- α(T)exp: 1531 *30* [2], 1430 89 [3]
- $\alpha(T)_{hole_FO} = 1388(2)$, $\alpha(T)_{no_hole} = 1404(1)$, $\Delta_{Theory}(FO,NH) = 1.1\%$

[1] M. Sainath *et al*, Ind. J. Pure and Appl. Physics 37, 87 (1999); [2] K.H. Czock *et al*, Int. J. Appl. Radiat. Isotop. 26,417 (1975); [3] R. Vaninbroukx *et al*, Progress Report 1978, Central Bureau for Nuclear Measurements, Geel, Belgium, NEANDC(E)-202U, Vol. III, p. 28 (1979).

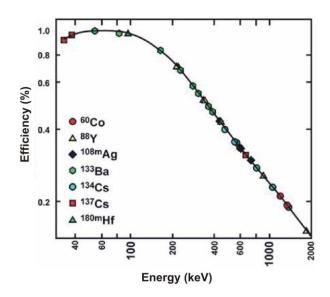
Texas A&M precision ICC measurements:

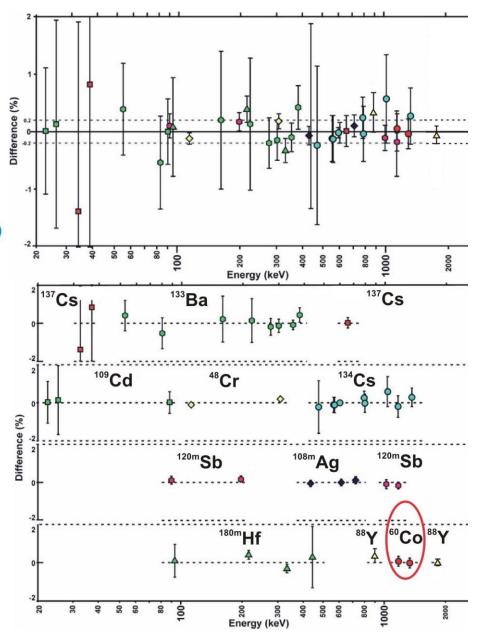
• KX to γ rays ratio method

$$\beta^{-}: \alpha_{K} = \frac{N_{K}}{N_{\gamma}} \cdot \frac{\varepsilon_{\gamma}}{\varepsilon_{K}} \cdot \frac{1}{\omega_{K}}$$

$$\epsilon: \alpha_{K} + (1 + \alpha_{T}) P_{ec,K} = \frac{N_{K}}{N_{\gamma}} \cdot \frac{\varepsilon_{\gamma}}{\varepsilon_{K}} \cdot \frac{1}{\omega_{K}}$$

$$\sum_{i} (1 + \alpha_{Ti}) \cdot \frac{N_{\gamma i}}{\varepsilon_{\gamma i}} = (1 + \alpha_{T39.8}) \cdot \frac{N_{\gamma 39.8}}{\varepsilon_{\gamma 39.8}}$$


- N_K , N_{γ} measured from only one K-shell converted transition
- ω_K from 1999SCZX (compilation and fit)
- Very precise detection efficiency for ORTEC γ-X 280-cm³ coaxial HPGe at standard distance of 151 mm:
 - 0.2%, 50-1400 keV
 - 0.4% , 1.4-3.5 MeV
 - ~1%, 10-50 keV (KX rays domain)


DETECTOR EFFICIENCY 50 keV < E $_{\gamma}$ < 1.4 MeV

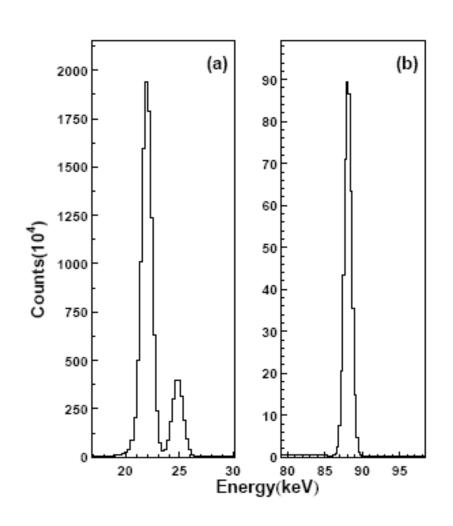
Coaxial 280-cc n-type Ge detector:

- Measured absolute efficiency (⁶⁰Co source from PTB with activity known to + 0.1%)
- Measured relative efficiency (9 sources)
- Calculated efficiencies with Monte Carlo (Integrated Tiger Series CYLTRAN code)

0.2% uncertainty for the interval 50-1400 keV

¹⁰⁹Cd Efficiency Calibration

22.6-keV AgKx & 88.0-keV E3 \u03c4 regions


Photopeak efficiency:

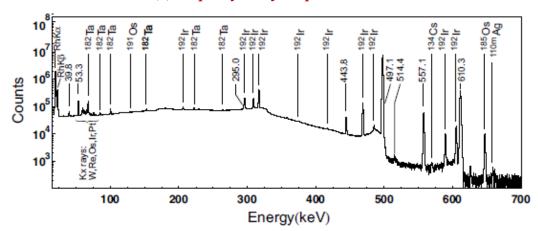
109Cd ε Decay: single 88γ

-22.6-keVAgKx

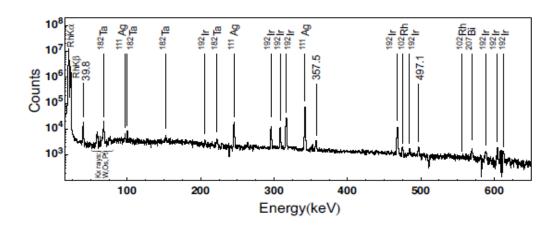
-88.0-keV E3 γ ray

$$\frac{\varepsilon_{\gamma}}{\varepsilon_{K}} = \frac{\omega_{K}(\alpha_{K}P_{\gamma} + P_{ec,K})}{P_{\gamma}} \cdot \frac{N_{\gamma}}{N_{K}}$$

KX to γ rays ratio method

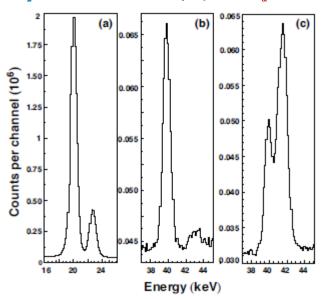

- Sources for n_{th} activation
 - Small selfabsorption (< 0.1%)
 - **■** Dead time (< 5%)
 - Statistics (> 10^6 for γ or x-rays)
 - High spectrum purity
 - Minimize activation time (0.5 h)
- Impurity analysis essentially based on ENSDF
 - Trace and correct impurity to 0.01% level
 - Use decay-curve analysis
 - Especially important for the K X-ray region
- Voigt-shape (Lorentzian) correction for X-rays
 - Done by simulation spectra, analyzed as the real spectra
- Coincidence summing correction
- Random summing (pile-up) monitoring / correction

^{103m}Rh Run

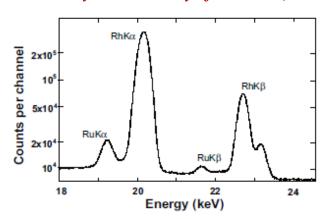

- Radioactive Sources were prepared by (n_{th}, γ) reaction at TRIGA reactor of Texas A&M Nuclear Science Center at ~ 7.5 $\times 10^{12}$ n/cm²s
- Sources were prepared of materials with natural isotopic abundance: 102Ru 32%, 102Pd 1%
- 1. 103mRu Source(1), 545 µg/cm² RuO₂ on Al backing. Activated for 20 h, measured after 1 months for ~20 days with HPGe detector. Found 153Gd decay (239 d) 41.3-keV Ka peak affecting the 39.8-keV 103mRh peak of interest
- 2. <u>103mRu Source(2)</u>, 1.1 mg/cm² Ru metal on 1.3 mg/cm² Cu metal. Activated for 32 h, measured after 1 months for ~77 days with HPGe detector and Si(Li) detector.
- 3. 103mPd Source(3), 4.8 mg/cm² Pd metal. Activated for 4.5 h, measured after 2 months for ~44 days with HPGe detector.

^{103m}Rh Analysis

Ru/Cu Source(2): Impurity analysis spectrum



Pd Source(3): Impurity analysis spectrum



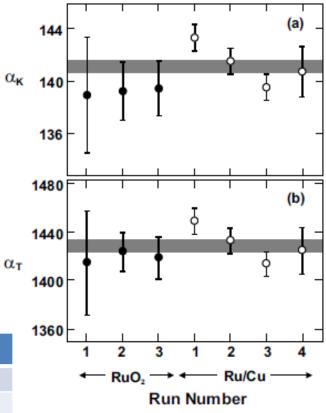
HPGe detector

Ru/Cu Source(2): (a) Rh Kx-rays; (b) 39.8-keV γ ray RuO₂ Source(3): (c) 39.8-keV γ ray + Eu K_a contamination

(Si)Li detector, Ru/Cu Source(2):
Rh Kx-rays with Ru Kx-rays (fluorescence)

^{103m}Rh Results

Weighted average of seven experimental results:


• From Ru run Source(1) and Source(2)

$$\alpha_{K39.8} = 141.1(23)$$
 (rel. unc. 1.6%) $\alpha_{T39.8} = 1428(13)$, (rel. unc. 0.9%)

• *Pd Source*(3)

Consistency check: $^{103}Pd \varepsilon$? $^{103}Ru \beta$ $\alpha_K + (1 + \alpha_T)P_{ec,K}: 1383(28) \approx 1369(11)$

Model	$lpha_{ m K}$	Δ(%)	$\alpha_{ m T}$	Δ (%)
Experiment	141.1(23)		1428(13)	
Theory:				
a) Pure E3				
No vacancy	127.5(1)	+10.7(18)	1388(2)	+2.9(9)
Vacancy(FO)	135.3(1)	+4.3(17)	1404(1)	+1.7(9)
a) E3+M4, δ=0.02				
(0.04%)				
No vacancy	131.2(1)	+7.5(18)	1410(2)	+1.3(9)
Vacancy(FO)	<i>139.3(1)</i>	+1.3(17)	<i>1426(1)</i>	+0.1(9)

Conclusion:

Small M4 admixture:

- -Agreement with theory including the vacancy (FO)
- -Disagreement with theory ignoring the vacancy