

First Assessment of the New Atomic Data in ENDF/B-VIII

Maria Grazia Pia (INFN Genova, Italy)

Tullio Basaglia¹, Matteo Bonanomi², Federico Cattorini², Chansoo Choi³, Min Cheol Han⁴, Gabriela Hoff⁵, Chan-Hyeong Kim³, Sung Hun Kim³, Matteo Marcoli², Maria Grazia Pia⁴, Paolo Saracco⁴

> ¹CERN, ²Univ. of Milano Bicocca, Italy, ³Hanyang Univ., Seoul, Korea, ⁴INFN Sezione di Genova, Italy, ⁵Univ. Cagliari, Italy

RPSD 2018

Santa Fe, 25-31 August 2018

Foreword

Due to limited time allocation, there is room only to highlight a few results

Evaluated data libraries

- Tabulations of physics quantities: cross sections, secondary particle spectra, nuclear and atomic parameters...
- Derived from the evaluation of the body of knowledge of theoretical computations, experimental measurements or both

Essential tool for Monte Carlo particle transport

- BROND (Russian Evaluated Neutron Data Library)
- CENDL (Chinese Evaluated Nuclear Data Library)
- ENDF/B (Evaluated Nuclear Data File)
- JEFF (Joint Evaluated Fission and Fusion File)
- JENDL (Japanese Evaluated Nuclear Data Library)
- ENDF/B-VI: **1990**, ENDF/B-VII: **2006**, ENDF/B-VIII: **2018**

EGS, FLUKA, Geant4, MCNP, Penelope, PHITS...

Evaluated Atomic Libraries

EADL (atomic) 1991
 EEDL (electron) 1991
 EPDL (photon) 1997

	_IDr	aries	
		TID-4500, UC-34, Physics	P
	1066	CFSTI PRICES	
	1900	H.C. \$3.10; MN. 65	
Lawre:	DCC BRACLISTICS UNIVERSITY OF CALIFORN LIVERMORE	Laboratory	-
	<i>Ç.</i>	RELEASED FOR ANNOUNCEMENT IB BUCLEAR SCIENCE ABSTRACTS	
PHOTO	UCRL-50178 N CROSS SECTIONS 1.0 keV	7 TO 15.0 MeV	
	Ernest F. Plechaty John R. Terrall		
	September 20, 1966		
Ta From	bles and Gra Interaction C 0.1 keV to From the LL Nuclear-Da	phs of Photon- ross Sections 100 MeV Derived L Evaluated- ita Library	
	E. F. P	lechaty	Tables and
	D. E. (Cullen	Cross Se
	R. J. H	owerton	
			Pho
	November	• 11, 1981	Pho

- Released in ENDF/B since version VI.8
- Released by IAEA as EPICS since 2014

198

LAWFORCO Radiation Laboratory UNIVERSITY OF CALIFORNIA LIVERMORE

Do EADL/EEDL/EPDL reflect the state of the art?

Validation

- of physics content (e.g. cross sections) w.r.t. measurements
- in comprehensive applications (e.g. energy deposition in a detector)
- Requirements for validity related to use cases (IEEE Standard 1012 V&V)
- State of the art: the best one can do, given the body of knowledge

Only a relatively small fraction of EADL, EEDL and EPDL data has been **directly validated** with respect to measurements

References

- M. C. Han et al., "Validation of Cross Sections for Monte Carlo Simulation of the Photoelectric Effect", *IEEE Trans. Nucl. Sci.*, vol. 63, no. 2, pp. 1117–1146, 2016.
- L. Pandola et al., "Validation of the Geant4 simulation of Bremsstrahlung from thick targets below 3 MeV", *NIM B*, vol. 350, pp. 41–48, 2015.
- M. Batič, et al., "Photon elastic scattering simulation: validation and improvements to Geant4", *IEEE Trans. Nucl. Sci.*, vol. 59, no. 4, pp. 1636–1664, 2012.
- H. Seo et al., "Ionization cross sections for low energy electron transport", *IEEE Trans. Nucl. Sci.*, vol. 58, no. 6, pp. 3219–3245, 2011.
- M. G. Pia et al., "Evaluation of atomic electron binding energies for Monte Carlo particle transport", *IEEE Trans. Nucl. Sci.*, vol. 58, no. 6, pp. 3246–3268, 2011.
- M. G. Pia et al., "Validation of K and L shell radiative transition probability calculations", *IEEE Trans. Nucl. Sci.*, vol. 56, no. 6, pp. 3650–3661, 2009.
- S. Guatelli et al., "Validation of Geant4 Atomic Relaxation against the NIST Physical Reference Data", *IEEE Trans. Nucl. Sci.*, vol. 54, no. 3, pp. 594-603, 2007.
- G. Weidenspointner et al., "Validation of Compton Scattering Monte Carlo Simulation Models", *Proc. IEEE Nucl. Sci. Symp.*, 2013.
- M. Begalli et al., "Validation of Geant4 Electron Pair Production by Photons", *Proc. IEEE Nucl. Sci. Symp.*, 2013.

A. Lechner, M. G. Pia, M. Sudhakar, Validation of Geant4 low energy electromagnetic processes against precision measurements of electron energy deposit, *IEEE Trans. Nucl. Sci.*, vol. 56, no. 2, pp. 398-416, 2009

Photon elastic scattering

EPDL: Hubbell's non-relativistic form factors

E=661.6 keV, Z=82

Other modeling methods: relativistic form factors, anomalous scattering factors, Kissel's S-matrix calculations...

S-matrix calculations exhibit significantly better compatibility with experiment than EPDL approach based on form factor approximation

M. Batič, et al., "Photon elastic scattering simulation: Validation and improvements to Geant4", *IEEE Trans. Nucl. Sci.*, vol. 59, no. 4, pp. 1636–1664, 2012.

Photoelectric effect

Total and shell (K, L_{1,2,3}) cross sections

- Biggs-Lighthill
- Brennan-Cowan
- Chantler
- Ebel
- Elam
- EPDL97
- Henke
- McMaster
- PHOTX
- RTAB
- Storm-Israel
- Veigele
- XCOM

Goodness-of-fit tests and categorical data analysis identified **Scofield's 1973 (EPDL)** non-relativistic calculations as state-of-the-art modeling in the context of Monte Carlo particle transport

M. C. Han et al., "Validation of Cross Sections for Monte Carlo Simulation of the Photoelectric Effect", *IEEE Trans. Nucl. Sci.*, vol. 63, no. 2, pp. 1117–1146, 2016. 8

Compton scattering

Scattering functions	Efficiency	Error
EPDL	0.82	0.02
Klein-Nishina	0.54	0.03
Brusa	0.84	0.02
Biggs	0.84	0.02
Hubbell	0.82	0.02
Kahane	0.72	0.02

e⁺e⁻ pair production

Ζ

Ζ

Differential cross sections

angle (degrees)

EPDL

Total cross section: Bethe-Heitler with corrections (Hubbell, Gimm, Overbo)

p-value = 0.982

9

Ionisation cross sections: total

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 58	, NO. 6, DECEMBER 2011 3219	Energy	Goodness-of-fit test	Mo	dels	M	odels
				DM	BEB	DM	EEDL
Ionization C	ross Sections for Low Energy		Pass	40	43	40	21
		< 20 eV	Fail	11	8	11	30
E	Electron Transport		p-value Fisher test	0.0	512	< (0.001
Haa Sao, Mari	L a Grazia Pia Paolo Saracco and Chan Hugong Kim		p-value Pearson χ^2	0.4	145	< ().001
			p-value Yates χ^2	0.6	511	< ().001
			D	DM	BEB	DM	EEDL
	4		Pass Eatl		3/	44	13
Cross sec	ction models	20-50 eV	rall p value Fisher test	9	10	9	40
			p-value Pearson χ^2		102		0.001
· Dinony E	Encounter Dethe (DED)		p-value Yates v^2		70		0.001
• Dillary c			p value rates χ	DM	BEB	DM	FEDL
			Pass	47	32	47	17
 Deutscr 	N-Mark (DIM)	50 100 -V	Fail	7	22	7	37
	(=)	30-100 ev	p-value Fisher test	0.0	001	< (0.001
• FFDI	100 , , , , ,		p-value Pearson χ^2	0.0	001	< ().001
	ି 90 - ↓		p-value Yates χ^2	0.0	002	< ().001
	s s 80 - ↓			DM	BEB	DM	EEDL
DM model			Pass	50	31	50	30
		100-250 eV	Fail	4	23	4	24
rannadulaaa			p-value Fisher test		.001	< (J.001
reproduces			p-value rates χ^2	< 0	.001 DED		J.001
ovnorimontal			Pass	$\frac{DN}{28}$	$\frac{DED}{24}$	28	$\frac{\text{EEDL}}{24}$
experimental	a 30 - T		Fail	7	11	20	11
data hottor		250 eV - 1 keV	p-value Fisher test	0.4	413	0	.413
uala Dellei			p-value Pearson χ^2	0.2	274	0.	.274
than FEDI			p-value Yates χ^2	0.4	412	0.	.412
	0-20 20-50 50-100 100-250 250-1000 >1000			DM	BEB	DM	EEDL
below a few	Energy range (ev)		Pass	12	8	12	10
	Fig. 6. Fraction of test cases in which cross sections calculated by the imple-	> 1 keV	Fail	2	6	2	4
hundred eV	mented models are compatible with experimental data at 0.05 significance level BEB model (blue squares) DM model (black triangles) and EEDL (red circles)		p-value Fisher test		209	0.	.648
	The fraction is calculated over the whole collection of data sets.		p-value Yates χ^2	0.2	209	0.	.645

Ionisation cross sections:K, L, MshellValidation of Shell Ionization Cross Sections for

					1		
Model		Tullio Basaglia, Matteo Bonanomi, Federico Cattorini, Min Cheol Han [®] , Gabriela Hoff [®] , Chan Hyeong Ki Sung Hun Kim, Matteo Marcoli, Maria Grazia Pia [®] , and Paolo Saracco [®]					
EEDL	Tabulations	Fraction of test cases for which the					
Bote-Salvat	Penelope 2014 tabulations	hypothesis of compatibility with					
BEB	Analytical	experiment is not rejected					
BEB _{modified}	Analytical	Energy	Model	χ^2	Anderson-Darling		
BEB-relativistic	Analytical	$\geq 100 \text{ eV}$	EEDL Bote	0.68 ± 0.04 0.68 ± 0.04	$\begin{array}{c} 0.73 \pm 0.03 \\ 0.80 \pm 0.03 \\ 0.72 \pm 0.02 \end{array}$		
DM (current)	Analytical		DM2000	0.33 ± 0.04 0.64 ± 0.04	0.73 ± 0.03 0.83 ± 0.03		
DM (previous)	Analytical	$\geq 1 \text{ keV}$	EEDL Bote	0.72 ± 0.03 0.71 ± 0.03	$\begin{array}{c} 0.75 \pm 0.04 \\ 0.81 \pm 0.03 \\ \end{array}$		
DM-relativistic	Analytical	(167 test cases)	BEBR DM2000	$0.59 \pm 0.04 \\ 0.66 \pm 0.04$	$\begin{array}{c} 0.74 \pm 0.04 \\ 0.82 \pm 0.03 \end{array}$		

Monte Carlo Electron Transport

K shell

No significant difference in compatibility with experiment is observed between EEDL and Bote-Salvat calculations

L_{1,2,3} subshells

Univocal conclusions limited by scarcity of experimental measurements 11

Atomic binding energies

EEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 58, NO. 6, DECEMBER 201

Evaluation of Atomic Electron Binding Energies for Monte Carlo Particle Transport

Maria Grazia Pia, Hee Seo, Matej Batic, Marcia Begalli, Chan Hyeong Kim, Lina Quintieri, and Paolo Saracco

Evaluated through

direct comparisons with experimental data and through their effects on experimental observables

No single compilation is ideal for all applications

- Williams,
- Carlson,

strengths for specific purposes

Table of Isotopes

EADL is far from ideal...

Ionisation cross sections

3246

Radiative transition probabilities

 J. H. Scofield, "Radiative Decay Rates of Vacancies in the K and L Shells", *Phys. Rev., vol. 179, no. 1, pp. 9-16, 1969.* J. H. Scofield,

"Relativistic Hartree-Slater Values for K and L X-ray Emission Rates", *Atom. Data Nucl. Data Tables, vol. 14, pp. 121-137,* 1974.

- J. H. Scofield, "Exchange corrections of K X-ray emission rates", *Phys. Rev. A, vol. 9, no. 2, pp. 1041-1049, 1974.*
- J. H. Scofield, "Hartree-Fock values of L X-ray emission rates", *Phys. Rev. A, vol. 10, no. 5, pp. 1507-1510, 1974.*

Comparison with experimental data

Hartree-Slater calculations

Hartree-Fock calculations

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 56, NO. 6, DECEMBER 2009

Validation of K and L Shell Radiative Transition Probability Calculations

Maria Grazia Pia, Paolo Saracco, and Manju Sudhakar

Hartree-Slater vs. Hartree-Fock							
	HS	HF		HS	HF		
pass	8	16	pass	12	20		
fail	9	1	fail	9	1		
Fisher	p-value	0.007	Fisher	p-value	0.009		
χ^2 Yates	p-value	0.008	χ^2 Yates	p-value	0.011		

S. I. Salem, S. I. Panossian, and R. A. Krause, "Experimental K and L Relative X-ray Emission Rates", Atom. Data Nucl. Data Tables, vol. 14, pp. 91-109, 1974.

The world changes... 1991/1997 → 2018

- Kissel's S-matrix calculations of photon elastic scattering
- Electron ionisation cross sections (Deutsch-Märk, Kim-Rudd, Bote-Salvat...)
- Scofield's Hartree-Fock calculations of atomic parameters
- Effects of theoretical/experimental atomic binding energies
- Salvat's electron elastic scattering calculations
- Photoelectric cross sections, relativistic scattering functions etc.

Great expectations for new data libraries!

EPICS2017 Released in January 2018 by IAEA Released in February 2018 in ENDF/B-VIII.0

D. E. Cullen, IAEA-NDS-0224, IAEA-NDS-0225 rev. 1, IAEA-NDS-0226, 2017

D. A. Brown et al., ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data, *Nucl. Data Sheets*, vol. 148, pp. 1-142, 2018

EPICS2014 "Modernized by reviewing recently published data and making changes" (D. E. Cullen, IAEA-NDS-218, rev.1, 2015) No change observed, apart from fixing format conversion errors and scientific number notation

Content

Different content for different data formats

Not trivial to retrieve what contains what

	EADL91		EPICS2014		EPIC	CS2017
Physics Data EADL	ENDL	ENDF-6	ENDL	ENDF-6	ENDL	ENDF-6
Number of electrons	ves	ves	ves	ves	ves	ves
Binding energy	ves	ves	ves	ves	ves	ves
Kinetic energy	ves	-	ves	-	ves	-
Average radius	ves	-	ves	-	ves	-
Radiative level width	ves	-	ves	-	ves	-
Non-radiative level width	ves	-	ves	-	ves	-
Average energy to the residual atom per initial vacancy	ves	-	ves	-	ves	-
Average energy of particles per initial vacancy	ves	-	ves	-	ves	-
Average number of particles per initial vacancy	ves	-	ves	-	ves	-
Radiative transition probability and emitted particle energy	ves	ves	ves	ves	ves	ves
Non-radiative transition probability and emitted particle energy	yes	yes	yes	yes	yes	yes
	•	•	•	•	-	•
	EP	DL97	EPIC	CS2014	EPIC	CS2017
	ENDL	ENDF-6	ENDL	ENDF-6	ENDL	ENDF-6
Total photon cross section	-	-	-	-	-	yes
Coherent scattering: integrated cross section	yes	yes	yes	yes	yes	yes
Coherent scattering: average energy of the scatterd photon	yes	-	yes	-	yes	-
Coherent scattering: form factor	yes	yes	yes	yes	yes	yes
Coherent scattering: imaginary anomalous scattering factor	yes	yes	yes	yes	yes	yes
Coherent scattering: real anomalous scattering factor	yes	yes	yes	yes	yes	yes
Incoherent scattering: integrated cross section	yes	yes	yes	yes	yes	yes
Incoherent scattering: scattering function	yes	yes	yes	yes	yes	yes
Incoherent scattering: average energy of the secondary particles	yes	-	yes	-	yes	-
Photoelectric: integrated cross section	ves	ves	ves	yes	ves	ves
Photoelectric: average energy to the residual atom	ves	-	ves	-	-	-
Photoelectric: average energy of secondary particles	ves	-	ves	-	-	-
Photoelectric: cross section by subshell	ves	ves	ves	ves	ves	ves
Photoelectric: average energy to the residual atom by subshell	ves	-	ves	-	ves	-
Photoelectric: average energy of secondary particles by subshell	ves	-	ves	-	ves	-
Pair production: integrated cross section	ves	ves	ves	ves	ves	ves
Pair production: average energy of secondary particles	ves	-	ves	_	ves	_
Triplet production: integrated cross section	ves	ves	ves	ves	ves	ves
Triplet production: average energy of secondary particles	ves	-	ves	-	ves	-
Pair and triplet production: integrated cross section	-	ves	-	ves	-	ves
		J		,		J
	EE	DL91	EPIC	CS2014	EPIC	CS2017
	ENDL	ENDF-6	ENDL	ENDF-6	ENDL	ENDF-6
Total electron cross section	-	-	-	-	-	yes
Large angle elastic scattering: integrated cross section	yes	yes	yes	yes	yes	yes
Large angle elastic scattering: average energy to the residual atom	yes	-	yes	-	yes	-
Large angle elastic scattering: average energy of the scattered electron	yes	-	yes	-	yes	-
Large angle elastic scattering: angular distributions	yes	yes	yes	yes	yes	yes
Elastic scattering: integrated cross section	yes	-	yes	-	yes	yes
Ionisation: integrated cross section	-	-	-	-	yes	yes
Ionisation cross section by subshell	ves	ves	ves	ves	ves	ves
Ionisation: average energy of secondary particles by subshell	yes	-	yes	-	yes	-
Ionisation: spectra of the recoil electron by subshell	yes	yes	yes	yes	yes	yes
Bremsstrahlung: integrated cross section	ves	ves	ves	ves	ves	yes
Bremsstrahlung: energy spectra of the secondary photon	ves	yes	yes	ves	yes	yes
Bremsstrahlung: average energy of the secondary photon	ves	ves	ves	ves	ves	ves
Bremsstrahlung: average energy of the secondary electron	ves	-	ves	-	ves	-
Excitation: integrated cross section	ves	ves	ves	ves	ves	ves 5
VExcitation: average energy to the residual atom	yes	yes	yes	yes	yes	yes

Maria Grazia Pia, INFN Genov Excitation: average energy to the residual atom

Assessment

- What has changed in EPICS2017 and ENDF/B-VIII
 - w.r.t. the data libraries currently used by major Monte Carlo codes
 - Consistency
 - Computational performance
 - Validity w.r.t. experimental data: first results, (in progress)
- What has not changed
 - and has been previously (recently) identified as the state of the art
 - and does not reflect the state of the art
- How the data libraries are released
- How they are maintained

Opportunities for improvement

Reliability lies not only in the content, but also in the process!

What's new in EPICS2017

Atomic binding energies

Propagated into dependent physics quantities (cross sections, transition energies etc.)

Electron kinetic energies

Previous: theoretical

New: empirical, Carlson + Williams

M. G. Pia et al., Evaluation of atomic electron binding energies for Monte Carlo particle transport, *IEEE Trans. Nucl. Sci.*, vol. 58, no. 6, pp. 3246-3268, 2011

Previous: undocumented

New: undocumented

Coherent photon scattering integrated cross sections

Changes also in the real and imaginary components of anomalous scattering factors

Previous: from numerically integrated calculations combining Thomson scattering, form factors and anomalous scattering factors

New: ?

EEDL excitation data

Roundoff effects?

"Linearization"

Maria Grazia Pia, INFN Genova

Different integrated cross sections and average energies for 17 elements

Elastic scattering, large angle scattering, Bremsstrahlung integrated cross sections

Larger number of tabulated data to enable linear interpolation instead of logarithmic₇

Electron kinetic energies Experimental data for validation?

Differences appear larger for elements with low atomic numbers

Coherent photon scattering integrated cross sections

To the best of our knowledge, no experimental data available to validate the large changes at low energies

Atomic binding energies

Radiative transition energies, difference w.r.t. experiment

Electron ionisation cross sections calculated with EADL and NIST binding energies, w.r.t. experiment

M. G. Pia et al., "Evaluation of atomic electron binding energies for Monte Carlo particle transport", *IEEE Trans. Nucl. Sci.*, vol. 58, no. 6, pp. 3246–3268, 2011

In EPICS2017 and ENDF/B-VIII: **empirical** binding energies replaced previous theoretical values

...and their dependencies

e.g. relaxation data for carbon

6000.00000	11.9078164	0	0		4	0	60028533	1
1.00000000	0.0	0	0	5	54	8	60028533	2
288.000000	2.00000000	0.0	0.0	0.0	0.0		60028533	3
3.00000000	0.0	282.020000	5.61488D-4	0.0	0.0		60028533	4
4.00000000	0.0	282.030000	.001120600	0.0	0.0		60028533	5
2.00000000	2.00000000	255.890000	.413609000	0.0	0.0		60028533	6
2.00000000	3.00000000	264.460000	.136190000	0.0	0.0		60028533	7
2.00000000	4.00000000	264.470000	.271099000	0.0	0.0		60028533	8
3.00000000	3.00000000	273.030000	.004207480	0.0	0.0		60028533	9
3.00000000	4.00000000	273.040000	.110012000	0.0	0.0		60028533	10
4.00000000	4.00000000	273.050000	.063200800	0.0	0.0		60028533	11
2.00000000	0.0	0	0		6	0	60028533	12
16.5900000	2.00000000	0.0	0.0	0.0	0.0		60028533	13
3.00000000	0.0	0	0		6	0	60028533	14
11.2600000	.670000000	0.0	0.0	0.0	0.0		60028533	15
4.00000000	0.0	0	0		6	0	60028533	16
11.2600000	1.33000000	0.0	0.0	0.0	0.0		60028533	17

Radiative and non-radiative transition energies are inconsistent with atomic binding energies

Consistency issues

"Starting with EPICS2017 all the data has been **linearized** [...]. The result is libraries are roughly three (3) times as large, but it can be accurately interpolated using LIN- LIN interpolation..."

- Electron data have not been "linearized", but the documentation recommends linear interpolation
- Different number of data points in ENDF/ENDL libraries, and in the same libraries released by IAEA, ENDF/B and NNDC

Inconsistent (or intentionally modified?) **units** in form factors and scattering functions:

• Not documented, liable to induce to errors in simulations

Non-monotonic primary e⁻ energies in secondary e⁻ spectra

• Liable to be source of interpolation problems

Maria Grazia Pia, INFN Genova

6000 9 19 0.0) 1712152	2 0.0	0.0	0.0
81 21 91 0.0	5.	0.0	0.0	0.0
1.12600000D-05	2.52500000D-09	4.400440000D+	+07	
1.12600000D-05	2.52500000D-08	4.400440000D+	+07	
9.49500000D-06	2.525000000D-09	4.06276000D+	+06	21
9.49500000D-06	2.52500000D-07	3.938040000D+	+06	21

Physics issues Radiative transition probabilities

EADL radiative transition probabilities derive from calculations of transition rates by Scofield

Discrepancies identified between EADL transition probabilities and Scofield's original calculations, which reproduce experimental data better than EADL

M. G. Pia et al., "Validation of K and L shell radiative transition probability calculations", *IEEE Trans. Nucl. Sci.*, vol. 56, no. 6, pp. 3650–3661, 2009.

The same discrepancies are still present in EPICS2017 and ENDF/B-VIII.0

Fig. 12. L_2 - M_1 transition probability versus Z: theoretical calculations based on the Hartree-Slater [2] (white squares) and the Hartree-Fock [3] (black squares) potentials, EADL [5] tabulations (solid line), experimental data (black circles), fit to them as in [13] (dashed line), and improved fit (dotted line).

22

Physics data	Memory	Original libraries	ENDF/B-VIII EPICS2017	Ratio
Bremsstrahlung	368	368	1	
Elastic scatterin	ng cross section	472	472	1
Large angle ela	astic scattering cross section	472	472	1
Ionisation cross	s section by subshell	1924	1924	1
Excitation cros	s section	1152	1152	1
Coherent scattering cross section		4528	1868	0.4
Coherent scatte	ering form factor	708	4620	6.5
Incoherent scat	tering cross section	508	1692	3.3
Incoherent scat	tering scattering function	724	1836	2.5
Photoelectric c	ross section	4480	32620	7.3
Photoelectric c	ross section by subshell	7536	45976	6.1
Pair production	cross section	496	1356	2.7
Triplet product	ion cross section	436	920	2.1

COMPUTATIONAL TIME IN SECONDS TO CALCULATE INTEGRATED CROSS

SECTIONS WITH DIFFERENT INTERPOLATION METHODS

Physics process CPU	Original Libraries Logarithmic	EPICS2017 Linear
Bremsstrahlung	3.88 ± 0.01	0.63 ± 0.01
Elastic scattering	3.90 ± 0.01	0.79 ± 0.01
Large angle elastic scattering	3.92 ± 0.01	0.79 ± 0.01
Excitation	4.21 ± 0.01	1.06 ± 0.01
Coherent scattering	4.32 ± 0.02	1.21 ± 0.01
Incoherent scattering	3.93 ± 0.01	1.28 ± 0.01
Photoelectric	4.67 ± 0.01	3.68 ± 0.01
Pair production	2.36 ± 0.01	0.85 ± 0.01
Triplet production	2.25 ± 0.01	0.81 ± 0.01

Results with a trivial data management software Can do much better with smarter algorithms

Computational performance

"Linearized" data libraries: tradeoff between memory and

CPU needs

Related to the characteristics of each experimental scenario

Beware of **precision of interpolation** of electron data: linear interpolation recommended in EEDL documentation, but same number of points as in EEDL1991!

Reproducibility issues

- Inconsistencies between the same data released in ENDF and ENDL format
- Inconsistencies between the same data in the same format released in different systems, e.g. EPICS2017 and ENDF/B-VIII.0
- Differences between the data released by IAEA and by NNDC as EPICS2017 ٥
- **Different data** released by IAEA under the **same identifier** of EPICS2017
 - e.g. photoelectric cross sections modified in February, all identified as EPICS2017
 - Same issue again with transition energies modified in April 2018

11.2600000 .670000000 0.0

11.2600000 1.33000000 0.0

4.0000000 0.0

0.0

0.0

Λ

Ω

11.2600000 .670000000 0.0

11.2600000 1.33000000 0.0

ISO/IEC/IEEE 12207, IEEE Standard 828

0

0.0

4.0000000 0.0

Version control and configuration management

0.0

4.0000000 0.0

11.2600000 1.33000000 0.0

First validation test

Electron ionisation cross sections

- ~ 2800 K shell cross section measurements
- efficiency = fraction of test cases where H0 is not rejected

Maria Grazia Pia, INFN Genova

Goodness-of-fit tests

- χ²
- Anderson-Darling
- Cramer-von Mises
- Kolmogorov-Smirnov

0.01 significance level

Slightly different results with EPICS2017 w.r.t. EEDL91, however the difference in compatibility with experiment is **not statistically significant**

Conclusion

First assessment of long-awaited new versions of widely used Evaluated Atomic Data Libraries

Promising move from theoretical atomic binding energies to empirical ones Other physics improvements identified by validation tests not yet included

Min Cheol Han

Ample room for improvement in quality assurance

Critical: version control

Responsibility of the scientific community

M. C. Han et al., "First Assessment of ENDF/B-VIII and EPICS Atomic Data Libraries", *IEEE Trans. Nucl. Sci.*, <u>https://doi.org/10.1109/TNS.2018.2849328</u>

Acknowledgments

- D. E. Cullen for valuable information
- CERN Library
- INFN National Computing Service

