Assessment of ENDF/B-VIII.0 and TENDL-2015 Evaluated Nuclear Data Libraries Using Stellar Nucleosynthesis Modeling

Boris Pritychenko¹

1 National Nuclear Data Center, Brookhaven National

Laboratory, Upton, NY 11973-5000, USA

Stellar Nucleosynthesis Observables

- Stellar nucleosynthesis manifest itself by the present variety of elements and isotopes.
- ⁵⁶Fe has the highest binding energy per nucleon, and it is very common in the Earth's crust.
- For nuclei lighter than ⁵⁶Fe fusion is preferable and fission for heavier.
- Stellar nucleosynthesis: Big Bang, explosive burning, *s*-, *r* and *rp* processes (slow and rapid neutron capture).
- Most of the stable nuclei in ⁵⁶Fe-²¹⁰Po range are produced by the *s*-process and (*s*+*r*).
- Very neutron rich and actinide nuclides are produced by *r*-process.

Slow Neutron Capture, s-process

- Takes place in AGB or Red Giants stars.
- It is all about neutron capture, neutron magic numbers and β-decays along the valley of stability in nuclear chart.
- *s*-process golden rules:
 - Neutron closed shell (N=50, 82, 126) nuclei have low neutron-capture cross sections, and they act as bottlenecks.
 - In-between neutron bottlenecks the abundances are in equilibrium.
 - Branching points may occur on the s-process path when β -decay rate competes with neutron capture.

ENDF & Slow Neutron Capture

- ENDF neutron materials list matches well with an sprocess path.
- Slow neutron capture Maxwellian-averaged cross sections (MACS) can be expressed as

$$\sigma^{Maxw}(kT) = \frac{2}{\sqrt{\pi}} \frac{(m_1/(m_1 + m_2))^2}{(kT)^2} \int_0^\infty \sigma(E_n^L) E_n^L \exp(-\frac{aE_n^L}{kT}) dE_n^L$$

where *k* and *T* are the Boltzmann constant and temperature of the system, respectively, and E is an energy of relative motion of the neutron with respect to the target. Here E_n^L is a neutron energy in the laboratory system and m_1 and m_2 are masses of a neutron and target nucleus.

 We can calculate MACS and astrophysical reaction rates by Doppler broadening cross sections and numerical integration.

Data for Stellar Nucleosynthesis

- In the recent years CSEWG collaboration has released ENDF/B-VII.0, ENDF/B-VII.1 and ENDF/B-VIII.0 evaluated nuclear data libraries.
- They are widely used in nuclear energy, national security appilactions, MCNP and GEANT codes. Why not in nuclear astophysics where people rely on narrowdefined data colections like KADoNiS?
- Maxwellian-averaged cross sections (MACS) for slow neutron capture (s) process:
 - ENDF/B-VII.0 MACS & Reaction Rates: ADNDT 96, 645 (2010).
 - ENDF/B-VII.1 MACS & Reaction Rates with Uncertainties: NDS 113, 3120 (2012).
 - ENDF/B-VIII.0 MACS with Uncertainties: NDS 148, 1 (2018).

First test: s-process Time Scale Estimates

- In the classical model we assume that neutron temperature (*kT*) and density stay constant during the nucleosynthesis.
- To verify this assumption *s*-process we calculate time scale (τ_n) using neutron density of $N_n=10^8$ n/cm³ that is within a typical *s*-process range of 10^7-10^{11} n/cm³:

$$\tau_n = \sum_{i=56}^{209} \frac{1}{N_n \langle \sigma_i \upsilon_i \rangle},$$

where $R(T_9)/N_A = \langle \sigma v \rangle$ is astrophysical reaction rate.

- The obtained values could be compared with an AGB star lifetime of about one million years.
- s-process takes less than 1% of the star lifetime, and it is sensitive to magic nuclei cross sections (²⁰⁸Pb,²⁰⁹Bi where MACS can be deficient).

Cable 2: s-process lifetime scale estinbraries [5, 6, 10].	nates for ENDF/B-VI	II.0, TENDL-2015	and KADoNiS	
s-process	ENDF/B-VIII.0	TENDL-2015	KADoNiS	
Complete (y)	5.229E + 3	5.344E + 3	6.993E + 3	
Excluding ²⁰⁸ Pb, ²⁰⁹ Bi (y	2.721E + 3	2.730E + 3	2.717E + 3	

ENDF Validation: *s*-process Modeling

(7)

The *s* -process abundance of an isotope $N_{(A)}$ depends on its precursor $N_{(A-1)}$ quantity as: $dN_{(A)}/dt = \sigma_{(A-1)}N_{(A-1)} + \sigma_{(A)}N_{(A)}$ (5) •

The equation 5 was solved analytically by Clayton & Ward (Clayton & Ward 1974) for an exponential average flow
of neutron exposure assuming that temperature remains constant over the whole time scale of the s-process, and the
product of MACS and isotopic abundance (
$$\sigma_{(A)}N_{(A)}$$
) was deduced as
$$\sigma_{(A)}N_{(A)} = \frac{fN_{56}}{\tau_0} \prod_{i=56}^{A} \left[1 + \frac{1}{\sigma(i)\tau_0}\right]^{-1},$$
(6)
where f and τ_0 are neutron fluence distribution parameters, and N_{56} is the initial abundance of ⁵⁶Fe seed. Finally, at

the *s*-process equilibrium, the equation 5 becomes

$$\sigma_{(A-1)}N_{(A-1)} = \sigma_{(A)}N_{(A)} = constant.$$

- Next, we select *s*-process only nuclides along the *s*-process path and fit present-day MACS abundance product values with Formula 6 ٠ using least squares.
- Fitting parameters allow to calculate expected s-process contributions and compare with the presently-observed product values. ٠
- The observed surplus is commonly attributed to an *r*-process (rapid neutron capture) contribution, and it can be deduced by subtracting the *s*-process input from the neutron capture MACS Anders & Greevese solar system abundances product, and dividing the remainder by evaluated MACS. •

Heavy Elements Production in a Neutron Star Merger

- Can we apply nuclear data libraries to address current astrophysical observations such as a multi-messenger signal from the NGC 4993 galaxy?
- GW170817 was a gravitational wave signal observed by the LIGO and Virgo detectors on 17 August 2017; plus EM signal.
- The rapid-neutron capture (*r*) process element production was tentatively observed.
- The Doppler-shifted ejecta optical spectra consistent with Lanthanide and heavy elements.
- The *r*-process abundances can be deduced from evaluated neutron cross sections and solar system element abundances.
- Courtesy of NASA (Unique Gamma-Ray Burst): https://www.nasa.gov/vision/universe/watchtheskies/sh ort_burst.html.

Comparison with Others

- Several *r*-process calculations produced isotopic abundances.
- Multi-event model results of *M. Arnould et al., Phys. Rep. 450, 97 (2007)*.
- Classical model based on ENDF/B-VIII.0 cross sections and Anders & Greevese solar system abundances agrees with the multi-event model predictions.
- The ratio of ENDF/B-VIII.0 and Arnould et al (2007) provides information on potential deficiencies, possible ENDF library improvements.
- Next stage (in progress), it would be necessary to calculate ENDF/B-VIII.0 & TENDL-2015 reaction rates, fit data into REACLIB (astrophysical data format) and start a new round of testing with codes like MESA....

ENDF/B-VIII.0 & M. Arnould et al. 2007

- Documentation multi-event model vs. ENDF procedures: ENDF/B-VIII.0 is clearly better documented.
- Deviations are within error bars except ⁹²Zr and ²⁰³TI:
 - ¹³⁷Ba,¹³⁹La,¹⁴¹Pr higher *r*-process abundances in Arnould.
 - ⁹²Zr,⁹⁵Mo,^{118,120}Sn, ¹²¹Sb,¹⁴⁶Nd,^{178,180}Hf,¹⁸¹Ta,^{183,184}W, ²⁰³TI lower *r*-process abundances in Arnould.
 - *s*-process overproduction (lower in Arnould): ²⁰²Hg.
 - Pure r-process abundances differences between experimental compilation of Anders & Greevese and theoretical calculation of Arnould et al.: ¹¹⁶Cd, ¹²²Sn, ¹²³Sb, ¹⁴²Ce, ¹⁸⁶W.
 - ⁸⁸Sr, ¹³⁸Ba, ¹⁴⁰Ce negative ratios will be discussed later.
- Work on tracing the differences is in progress.

ENDF/B-VIII.0 & KADoNiS

- Multiple changes to ENDF/B-VIII.0 library compare to ENDF/B-VII.1.
- ¹⁴¹Pr, ¹²¹Sb, ¹⁷⁸Hf MACS agree with KADoNiS.
- ⁹²Zr,⁹⁵Mo,^{118,120}Sn (small difference), ¹³⁹La, ¹⁴⁶Nd, ¹⁸¹Ta, ^{183,184}W, ²⁰²Hg,²⁰³TI MACS are lower in ENDF/B-VII.1 compare to KADoNiS.
- ¹³⁷Ba, ⁸⁸Sr, ¹⁴⁰Ce and ¹³⁸Ba (small difference) MACS are higher in ENDF/B-VIII.0 compare to KADoNiS.
- ¹³⁷Ba is difficult to judge, while ⁸⁸Sr,¹⁴⁰Ce and ¹³⁸Ba more interesting.
- Finally, 63 target nuclei (¹⁰³Rh-¹⁹⁷Au) have been updated in KADoNiS recently using the ENDF recommendations from Dr. A. Carlson, see 2018RE13. This update makes the current analysis obsolete.
- Interesting finding, 1996KA03 is missing in EXFOR (Area #2), and asked NEA-DB to compile it. Ce was measured relative to gold, corrections are needed. ENSDF evaluators would not allow such situation, while ENDF relies on X4 or X4toC4??

Potential ENDF Library Deficiencies

- First, we have to verify ²⁰⁸Pb and ²⁰⁹Bi cross sections in ENDF and • **TENDL** libraries.
- 76 Se(n, γ) cross section is important for massive stars but Viktor's interface fails to show data coded as kT=30 keV instead of E.
- Probable issues with ${}^{116}Sn$, ${}^{122}Te(n,\gamma)$ *s*-process model fitting (non flat) in • ENDF and ¹¹⁶Sn, ^{123,124}Te (n,γ) in TENDL.
- ⁸⁸Sr (*N*=50), ¹³⁸Ba and ¹⁴⁰Ce (*N*=82) capture cross section abundance products are lower than s-process only predictions for ENDF/TENDL result in negative *r*-process abundances:
 - Wrong cross section/ resonance parameters values in "SG23: International library of fission product evaluations".
 - Wrong abundances for ⁸⁸Sr, ¹³⁸Ba and ¹⁴⁰Ce in Anders & Greevese's compilation.
 - s-process overproduction of ¹³⁸Ba and ⁸⁸Sr?????
- The similar negative *r*-process abundance values for ¹²⁷I,²⁰²Hg,²⁰³TI in • TENDL-2015.
- Practical nucleosynthesis network coverage in ENDF/B-VIII.0:
 - We have only 197 Au, no 198 Au (T_{1/2}=2.7 d) in ENDF/B-VIII.0.
- U.S. DEFARTMENQ.... Ra gap, why no calculated values for α -decaying nuclides?

Conclusions & Outlook

- The recent releases of the ENDF/B-VIII.0 and TENDL-2015 libraries provide a unique opportunity to apply these data for astrophysical applications.
- GW170817 neutron star merger renewed interest in stellar nucleosynthesis calculations.
- This astrophysical event is timely-matched with the ENDF/B-VIII.0 library release.
- r-process abundances have been calculated using ENDF/B-VIII.0 and TENDL-2015 evaluated neutron cross sections and Anders & Greevese solar system abundances.
- These results have been compared with a multi-event model of of *M. Arnould et al., Phys. Rep. 450, 97 (2007)*, and the agreement is good.
- The s-process timescales have been estimated for ENDF/B-VIII.0, TENDL-2015 and KADoNiS library reaction rates.
- Several potential deficiencies in ENDF/B-VIII.0 and TENDL-2015 libraries were found, and recommendations for future releases were produced.
- Current work involves fitting of ENDF reaction rates, production of REACLIB files and future testing/computations with nuclear astrophysics codes.

