

Calculation of weak interaction decays for nuclear data

Nuclear Data Week 2018 | Xavier Mougeot

This work was performed as part of the EMPIR Projects 15SIB10 MetroBeta and 17FUN02 MetroMMC. These projects have received funds from the EMPIR programme co-financed by the participating states and from the European Union's Horizon 2020 research and innovation programme.

Nom événement | Nom Prénom

List CE2tech Outlines

- Context
- BetaShape
 - Physics modelling
 - Structure of the code
 - Validation
- Past and ongoing developments not implemented in BetaShape
 - Atomic effects in beta decays
 - Electron capture decays
 - Inclusion of nuclear structure

Context

Oriented research

Fundamental research

Nuclear physics Particle physics Radiotoxicology

Laboratoire National Henri Becquerel

Ionizing radiation metrology

Radiochemistry

Bq, Gy and Sv units Activity standards ~ 0.1% Atomic and nuclear data

Applied research Industries Nuclear medicine Nuclear energy

Instrumentation

Importance of beta decays

Scientific research

- Nuclear astrophysics (r-process)
- Standard Model (CKM matrix unitarity, weak magnetism)
- Beyond Standard Model (Fierz interference, sterile neutrino)
- Neutrino physics (reactor anomaly, reactor monitoring, non-proliferation)
- New detectors (BrLa₃)

Ionizing radiation metrology

Activity measurements by Liquid Scintillation Counting

Better knowledge of the beta spectra \rightarrow better uncertainties

Atomic and nuclear data

- ENSDF nuclear decay data
- **DDEP** (International collaboration)
 - Decay Data Evaluation Project Atomic and nuclear decay data recommended by the BIPM

Medical uses

Micro-dosimetry, internal radiotherapy

Nuclear fuel cycle Decay heat, nuclear waste

Weak interaction decay in nuclear data

- Beta transition: energy spectrum, ft-value
- Electron capture: capture probability, ft-value

list

Ceatech

If no experimental data \rightarrow Theoretical estimates

The LogFT program is widely used in nuclear data evaluations

- Handles β and ε transitions
- Provides mean energies of β spectra, log *ft* values, β^+ and ε probabilities
- Propagates uncertainties from input parameters
- Reads and writes ENSDF files (*Evaluated Nuclear Structure Data File*)

However

- Too simple analytical models \rightarrow lack of accuracy
- Forbiddenness limitation (allowed, first- and second- forbidden unique)
- Users now require β spectra and correlated v spectra
- Users now requires detailed information for many subshells in ε

61

BetaShape

Executables of the BetaShape program for Windows, Linux and OS X are available at http://www.lnhb.fr/activites-recherche-developpement/logiciels-traitement-spectres/

Nuclear current can be factored out for allowed and forbidden unique transitions

$$C(W) = (2L-1)! \sum_{k=1}^{L} \lambda_k \frac{p^{2(k-1)} q^{2(L-k)}}{(2k-1)! [2(L-k)+1]!}$$

 \rightarrow Solving the Dirac equation for the leptons is sufficient with these assumptions

X. Mougeot, Phys. Rev. C 91, 055504 (2015)

Forbidden non-unique transitions calculated according to the ξ approximation

if
$$2\xi = \alpha Z/R \gg E_{max}$$

1st fnu \rightarrow allowed
applied to 2nd, 3rd, etc.

$\textbf{Assumptions} \rightarrow \textbf{Corrections}$

- Analytical screening corrections
- Radiative corrections

Propagation of uncertainty on E_{max} Reads and writes to/from ENSDF files

Database of experimental shape factors

list ^{Ceatech}

Analytical screening corrections

CEA LIST

Radiative corrections

- Single and total β^+/β^- and $\nu_e/\overline{\nu}_e$ spectra
- Mean energy $\overline{E} = \int_0^{E_0} E \cdot N(E) dE / \int_0^{E_0} N(E) dE$

• Log *ft* value
$$\bowtie f_{\beta^-} = \int_1^{W_0} N(W) dW$$

 $\Join f_{\varepsilon/\beta^+} = f_{\varepsilon} + f_{\beta^+}$ + partial half-life from data: $t_i = T_{1/2}/P_{\beta}$

For allowed and forbidden unique transitions

$$\frac{I_{\varepsilon}}{I_{\beta^+}} = \frac{\lambda_{\varepsilon}}{\lambda_{\beta^+}} = \frac{C_{\rm ns} \sum_{x} n_x C_x f_x}{C_{\rm ns} \int_1^{W_0} N(W) dW} \approx \frac{f_{\varepsilon}}{f_{\beta^+}}$$

 C_x : lepton dynamics

 $C_{\rm ns}$: nuclear structure (allowed, forbidden unique) n_{χ} : relative occupation number of the orbital, not accounted for in the LogFT program

$$\Rightarrow \underline{\log ft} = \log\left(\frac{f_{\varepsilon} + f_{\beta^+}}{I_{\varepsilon} + I_{\beta^+}} T_{1/2}\right)$$

$$= \log\left(\frac{f_{\beta^+}}{I_{\beta^+}} T_{1/2}\right) + \log\left(\frac{1 + f_{\varepsilon}/f_{\beta^+}}{1 + I_{\varepsilon}/I_{\beta^+}}\right)$$

$$\approx \log\left(\frac{f_{\beta^+}}{I_{\beta^+}} T_{1/2}\right)$$

Examples of improved calculations

These two transitions are calculated as allowed by the LogFT program.

list

Ceatech

Nuclear Data Week 2018 | X. Mougeot | 16

From input parameters

		1	********	
		2		
		3	Transitions that have been found.	tropo
1	Information read from the input file: /mnt/hgfs/Donnees/Beta/NNDC/m041.ensdf	4	Only beta +/- transitions will be calculated.	.lians
2		5		
3		7		
4	***************************************	8	Parent nucleus: 17-Cl-41 [1/2+] g.s> Daugh	ter nucleus: 18-Ar-41 [5/2-] 1.7E2 (10) keV
5	read	9	Half-life of the parent nuclide: 38.4 (8) s	
6	Identification record has been found	10	Beta - transition. Order: 1st forbidden unique	
7	Daughter Z: 15 Daughter A: 41 Symbol: P	11	Given transition order different. Determined ord	ler from spins and parities kept.
8	Transition type: B-	12	Transition energy calculated from Q-value and le	vel energies: 5.56E3 (12) keV.
9	Estimated parent nuclide from identification record: Z 14, A 41	13	Global normalization of the beta - decay: 1	
10	Press accord has been found	14	Normalization of this transition: 0 %	
12	Parent feodra has been found	15	Warning: this decay is uncertain or questionable	·.
13	Parent 2. 11 Falent A. 11 Symbol. SI	16	Warning: information about this decay is not tot	ally sure.
14	Soin and parity of the parent level undefined. Allowed transition will be assumed.	17		
15	Parent half-life: 20.0 (25) MS or 0.0200 (25) S	18		
16	Parent O-value: 1.710E4 (38) keV	19	Parent nucleus: 17-Cl-41 [1/2+] g.s> Daugh	ter nucleus: 18-Ar-41 [3/2-] 5.2E2 (30) keV
17		20	Half-life of the parent nuclide: 38.4 (8) s	
18	Normalization record has been found	21	Beta - transition. Order: 1st forbidden non-unig	ne -
19	Total branching ratio: 1	22	Given transition order different. Determined ord	er from spins and parities kept.
20		23	Global normalization of the beta - decay: 1	evel energies: 5.2123 (50) kev.
21		25	Normalization of this transition: 0 %	
22	Level record has been found	26	Warning: this decay is uncertain or questionable	
23	Daughter energy of the final level: G.S.	27	Warning: information about this decay is not tot	ally sure.
24	Level spin and parity Read: (1/2+) Treated as: 1/2+	28	-	-
25	Spin and parity of the daughter level not clearly defined.			
26	Level half-life not given.		: :	:
27		1166		
20	***************************************	1167		
30	Identification record has been found	1168	Summary	
31	Daughter Z: 16 Daughter A: 41 Symbol: S	1169	-	
32	Transition type: B-	1170	5 nuclei and 115 transitions have been read.	
33	Estimated parent nuclide from identification record: Z 15, A 41	1171		
34		1172	Parent nucleus: 17-C1-41	
35	Parent record has been found	1173	19 transitions have been read (19 B-).	
36	Parent Z: 15 Parent A: 41 Symbol: P	1174		
37	Parent energy of the initial level: G.S.	1175	Parent nucleus: 18-Ar-41	
38	Spin and parity of the parent level undefined. Allowed transition will be assumed.	1176	3 transitions have been read (3 B-).	
39	Parent half-life: 150 (15) MS or 0.150 (15) S	1178	Parent nucleus: 20-Ca-41	
40	Parent Q-value: 1.374E4 (24) keV	1179	1 transition has been read (1 EC).	
41		1180	i oranororon nab been read (i bo).	
42	Normalization record has been found	1181	Parent nucleus: 21-5c-41	
43	Total branching ratio: 1	1182	6 transitions have been read (3 EC, 3 B+).	
44		1183		
		1184	Parent nucleus: 22-Ti-41	
		1185	86 transitions have been read (43 EC, 43 B+).	
		1186		
		1187		
		1188	*****	

list ^{Ceatech}

From input parameters

		1					
*******	******************						
1 Information r			. ai				
i Identificatio	on record has been found		.read				
Daughter Z: 1	15 Daughter A: 41 Symb	ol: P	(10)				
6 Identificatic 7 Daughter 2:1 Transition ty	/pe: B-						
8 Transition ty Estimated pay	rent nuclide from identifi	cation record: Z 14, A 41					
0							
 Parent record Parent 2: 14 Parent record 	has been found						
3 Parent energy 4 Spin and pari Darent 7.14	Derent A: 41 Symbol:	Si	-				
5 Parent half-1	Falenc A. Hi Symbol.	51	(30)				
7 Parent energy	y of the initial level: G.	5.					
.8 Normalization Spin and pari	ity of the parent level un	defined. Allowed transition will	l be assumed.				
Parent half-1	Life: 20.0 (25) MS or 0.02	00 (25) S					
2 Level record Parent Q-valu	le: 1.710E4 (38) keV						
4 Level spin an							
5 Spin and pari 6 Level half-li Normalizatior	n record has been found						
Total branchj	ing ratio: 1						
9	-						
1 Daughter Z: 1							
2 Transition ty 3 Estimated par Level record	has been found						
5 Parent record Doughton onoi	and final loval. C	5					
6 Parent Z: 15	d series - Deeds (2(2))						
8 Spin and pari	na parity kead: (1/2+)	ireated as: 1/2+					
9 Parent half-1 Spin and pari	Spin and parity of the daughter level not clearly defined.						
Level half-li	ife not given.						
13 Total branchi		1182 6 transitions have been read (3 EC, 3 B+).					
29		1183 1184 Parent nucleus: 22-Ti-41					
	· · · · · · · · · · · · · · · · · · ·	1185 86 transitions have been read (43 EC, 43 B+).					
		1186 1187					
National		1188					

1187

From input parameters

CARNO

CEA LIST

université

		1 Input file: /mnt/hgfs/Donnees/Beta/NNDC/m041 2 Output file: /mnt/hgfs/Donnees/Beta/NNDC/m041	.ensdf .new	
	****	######################################	*****	1
	41CL P 0 (1/2+,3	/2+) 38.4 S 8	5728 65 - PARENT	-
	41AR N	1.0	- NORMALIZATION	
Check	41AR L 1868 1/2+		- LEVEL	
	***** Daughter level energy ***** Intensity without unce ***** BR*NB from PN record *	without uncertainty: estimated uncertai rtainty: estimated uncertainty (~60%) f ****	nty (~60%) from a flat distribution in [0,2*Energy] rom a flat distribution in [0,2*Intensity] *****	**
	From calculated spectrum Emean 1.7E3 (5) keV lo	g ft 5.1 (9)		
Summa	* log ft 41DR B 3 80F3 15 80	GT 50 IT	C - OID CARD	
	41AR B 3.80E3 15 80	GT 5.1 9	C - NEW CARD	
	* Mean energy			
	41ARS B EAV=1717 32		- OLD CARD	
_ L	4IARS B EAV-1.7E3 5		- NEW CARD	
Report	of the calculations	36 41K PN	- NORMALIZATION 3 - PRODUCTION NORMALIZATION	
and ne		######################################		***
transitid				
	418C D 0 7/2	EDE 2 Mg 17	5405 20 27 DINT	
	41CA N 1.0	1.0 1.0	- NORMALIZATION	
	41CA PN	1.0 1.0	4 - PRODUCTION NORMALIZATION	
	41CA L 0 7/2-		- LEVEL	
	***** BR and NB from N recor	d *****		

Output file

Transition parameters and options for calculation

Experimental shape factor

Mean energies, log *ft* values, analysis parameters

 β and ν spectra

Analytica Author: "	l version: 1.0 (10/06/2016)					bs	
Author: X	. Mougeot (xavie:	r.mougeot@cea.ir) tional Henri Beco	merel (LNHB), Gif	-sur-Yvette F-911	91. France			
Please ci	te: X. Mougeot,	Physical Review C	91, 055504; Erra	atum Phys. Rev. C	92, 059902 (2015)		sinale	trang
							Single	uunc
Parent nu	cleus: 18-Ar-41	[7/2*] g.s>	Daughter nucleus	: 19-K-41 [3/2+]	g.s.			
Jaiculati	on of the 1st fo	rbidden unique tr	ansition from the	e beta - decay or	Ar-41			
Bühring's	screening corre	ction is consider	ed.					
End-point	energy: 2491.60	(40) keV Ene	rgy step: 8 keV	Intensity: 0.0	0784 (19)			
An experi	mental shape fac	tor has been foun	ud: (q^2 + 1_2*p^2	?)				
Energy ra	inge of the measu	rement: 1330 - 24	20 keV					
From [196	[1KA19] G.R. Kart	ashov, N.A. Burgo	v, A.V. Davydov,	Izvest. Akad. Na	uk SSSR, Ser. Fiz	. 25, 189 (1961) or (Columbia Tech. Tran	sl. 25, 1
Input mea	n energy: 1076.6	0 (20) keV						
Mean ener	gy from the calc	ulated spectrum:	1072.92 (19) keV					
Mean ener	gy from the expe	rimental shape fa	ctor: 1076.05 (19) keV				
nean ener	gy from the calc	uiated spectrum 1	.1 1x=1: 10/6.0 (3	00) KEV				
Input log	ft value: 9.72							
Log ft va	lue from the cal	culated spectrum:	log ft 9.735 (11) with componen	ts: log f 3.81177	(42) and log partial	1 T1/2 5.924 (11)	
Log ft va	lue from the exp	erimental shape f	actor: log ft 9.7	28 (11) with co	mponent: log f 3.	80453 (42)		
Log ft va	lue from the cal	culated spectrum	if 1k=1. log ft 9	740 (12)		0.016.051		
		Saradea Spectrum	11 1A 1. 10g 10 3	./40 (12) with	component: log i	3.816 (5)		
		ourable opcobram	11 1A 1. 10g 10 1	./i0 (i2) with	component: log i	3.816 (5)		
Agreement	of the experime	ntal and calculat	ed spectra in [13	330,2420] keV: 99.	98 %	3.816 (3)		
Agreement Correspon Variation	of the experiment	ntal and calculat t: 1.75e-02 %	ed spectra in [13	330,2420] keV: 99.	98 %	3.816 (5)		
Agreement Correspon Variation	of the experime ding disagreemen of the mean ene	ntal and calculat t: 1.75e-02 % rgies: -2.91e-01	ed spectra in [13	330,2420] keV: 99.	98 %	3.616 (5)		
Agreement Correspon Variation E (keV)	ding disagreement of the mean energy dN/dE calc.	ntal and calculat t: 1.75e-02 % rgies: -2.91e-01 unc.	dN/dE exp.	unc.	dN/dE 1k=1	unc.		
Agreement Correspon Variation E(keV) 0 8	ding disagreement of the mean energy dN/dE calc. 1.37491e-06	ntal and calculat t: 1.75e-02 % rgies: -2.91e-01 unc. 4.56604e-10 4.67613e-10	dN/dE exp. 1.36282e-06 1.4058e-06	unc. 4.54479e-10	dN/dE 1k=1 1.35951e-06	unc. 1.58534e-08		
Agreement Correspon Variation E(keV) 0 8 16	of the experime ding disagreemen of the mean ener dN/dE calc. 1.37491e-06 1.41489e-06 1.46578e-06	ntal and calculat t: 1.75e-02 % rgies: -2.91e-01 unc. 4.56604e-10 4.67613e-10 4.82021e-10	dN/dE exp. 1.36282e-06 1.46904e-06	unc. 4.54479e-10 4.63425e-10	dN/dE 1k=1 1.35951e-06 1.39901e-06	unc. 1.58534e-08 1.63497e-08 1.63282e-08		
Agreement Correspon Variation E(keV) 0 8 16 24	of the experime ding disagreemen of the mean ener dN/dE calc. 1.37491e-06 1.41489e-06 1.46578e-06 1.52758e-06	ntal and calculat t: 1.75e-02 % rgies: -2.91e-01 unc. 4.56604e-10 4.67613e-10 4.82021e-10 4.99830e-10	dN/dE exp. 1.36282e-06 1.46404e-06 1.5622e-06	unc. 4.54479e-10 4.67776e-10 4.83425e-10 5.01425e-10	dN/dE 1k=1 1.35951e-06 1.39901e-06 1.51049e-06	unc. 1.58534-08 1.63497e-08 1.69282e-08 1.75890e-08		
Agreement Correspon Variation E(keV) 0 8 16 24	ding disagreemen ding disagreemen of the mean ene dN/dE calc. 1.37491e-06 1.41489e-06 1.45578e-06 1.52758e-06	ntal and calculat t: 1.75e-02 % rgies: -2.91e-01 unc. 4.56604e-10 4.67613e-10 4.82021e-10 4.99830e-10	dN/dE exp. 1.36282e-06 1.40958e-06 1.46404e-06 1.52621e-06	unc. 4.54479e-10 4.63425e-10 5.01425e-10	dN/dE 1k=1 1.35951e-06 1.39901e-06 1.51049e-06 1.51049e-06	unc. 1.58534e-08 1.63497e-08 1.69282e-08 1.75890e-08		
Agreement Correspon Variation E (keV) 0 8 16 24	ding disagreemen ding disagreemen of the mean ene dN/dE calc. 1.37491e-06 1.41489e-06 1.46578e-06 1.52758e-06	ntal and calculat t: 1.75e-02 % rgies: -2.91e-01 unc. 4.56604e-10 4.67613e-10 4.82021e-10 4.99830e-10	dN/dE exp. 1.36282e-06 1.40958e-06 1.46404e-06 1.52621e-06	unc. 4.54479e-10 4.67776e-10 4.83425e-10 5.01425e-10	dN/dE 1k=1 1.35951e-06 1.39901e-06 1.44933e-06 1.51049e-06	unc. 1.58534e-08 1.63497e-08 1.69282e-08 1.75890e-08		
Agreement Correspon Variation E(keV) 0 8 16 24 24 2472	<pre>do f the experime ding disagreemen of the mean ene dN/dE calc. 1.37491e-06 1.41489e-06 1.46578e-06 1.52758e-06 </pre>	ntal and calculat t: 1.75e-02 % rgies: -2.91e-01 unc. 4.56604e-10 4.67613e-10 4.82021e-10 4.99830e-10 2.46104e-10	dN/dE exp. 1.36282e-06 1.46404e-06 1.52621e-06 .6.32780e-09	unc. 4.54479e-10 4.67776e-10 4.83425e-10 5.01425e-10 2.54503e-10	dN/dE 1k=1 1.35951e-06 1.39901e-06 1.51049e-06 .51049e-06	unc. 1.58534-08 1.63497e-08 1.69282e-08 1.75890e-08 2.71767e-10		
Agreement Correspon Variation E (keV) 0 8 16 24 2472 2480 2472	<pre>c of the experime ding disagreemen of the mean ene dN/dE calc. 1.37491e-06 1.4489e-06 1.46578e-06 1.52758e-06 </pre>	ntal and calculat t: 1.75e-02 % rgies: -2.91e-01 unc. 4.56604e-10 4.67613e-10 4.99830e-10 2.46104e-10 1.99830e-0	dN/dE exp. 1.36282e-06 1.46404e-06 1.5262te-06 6.32780e-09 2.24064e-09 2.24064e-09	unc. 4.54479e-10 4.67776e-10 4.83425e-10 5.01425e-10 2.54503e-10 1.54856e-10	dN/dE 1k=1 1.35951e-06 1.359901e-06 1.41933e-06 1.51049e-06 6.12687e-09 2.16118e-09 2.16118e-09	unc. 1.58534-08 1.63497e-08 1.69282e-08 1.75890e-08 2.71767e-10 1.54915e-10 1.54915e-10		
Agreement Correspon Variation 0 8 16 24 2472 2480 2488 2491 6	<pre>c of the experime dding disagreemen dof the mean ene dN/dE calc. 1.37491e-06 1.4489e-06 1.46578e-06 1.52758e-06 </pre>	ntal and calculat t: 1.75e-02 % rgies: -2.91e-01 unc. 4.56604e-10 4.67613e-10 4.82021e-10 4.99830e-10 2.46104e-10 1.49183e-10 4.86455e-11 0.00000e+00	dN/dE exp. 1.36282e-06 1.46404e-06 1.52621e-06 .52621e-06 .6.32780e-09 2.24064e-09 2.18157e-10 0.0000e+c0	unc. 4.54479e-10 4.67776e-10 4.63425e-10 5.01425e-10 1.54856e-10 5.09102e-11 0.0000e+00	dN/dE 1k=1 1.35951e-06 1.39901e-06 1.41933e-06 1.51049e-06 .51049e-06 .6.12687e-09 2.16118e-09 2.08648e-10 0.0000e+00	unc. 1.58534e-08 1.63497e-08 1.69282e-08 1.75890e-08 2.71767e-10 1.54915e-10 4.76298e-11 0.0000e+00		
Agreement Correspon Variation E (keV) 0 8 16 24 24 2472 2480 2488 2491.6	<pre>dof the experimen ding disagreemen of the mean ene dN/dE calc. 1.37491e-06 1.41498e-06 1.46578e-06 1.46578e-06 .09655e-09 2.15057e-09 2.07631e-10 0.00000e+00</pre>	<pre>http://www.spectrum.html and calculat t: 1.75e-02 % rgies: -2.91e-01 unc. 4.56604e-10 4.67613e-10 4.82021e-10 4.99830e-10 2.46104e-10 1.49183e-10 4.86465e-11 0.00000e+00</pre>	dN/dE exp. 1.36282e-06 1.40958e-06 1.46404e-06 1.52621e-06 	unc. 4.54479e-10 4.67776e-10 4.63425e-10 5.01425e-10 2.54503e-10 1.54856e-10 5.09102e-11 0.00000e+00	dN/dE 1k=1 1.35951e-06 1.35951e-06 1.44933e-06 1.51049e-06 .51049e-06 .6.12687e-09 2.16118e-09 2.08648e-10 0.00000e+00	unc. 1.58534=-08 1.63497=-08 1.69282=-08 1.75890e-08 2.71767e-10 1.54915e-10 4.76298e-11 0.00000e+00		
Agreement Correspon Variation E (keV) 0 8 16 24 24 2472 2480 2491.6	diversion of the experiment diversion of the mean energy of the mean e	ntal and calculat t: 1.75e-02 % rgies: -2.91e-01 unc. 4.56604e-10 4.67613e-10 4.82021e-10 4.99830e-10 2.46104e-10 1.49183e-10 4.86465e-11 0.00000e+00	dN/dE exp. 1.36282e-06 1.40958e-06 1.46404e-06 1.52621e-06 	unc. 4.54479e-10 4.67776e-10 4.63425e-10 5.01425e-10 1.54856e-10 5.09102e-11 0.00000e+00	dN/dE 1k=1 1.35951e-06 1.39901e-06 1.44933e-06 1.51049e-06 .51049e-06 .6.12687e-09 2.16118e-09 2.08648e-10 0.00000e+00	unc. 1.58534e-08 1.63497e-08 1.63282e-08 1.75890e-08 2.71767e-10 1.54915e-10 4.76298e-11 0.00000e+00		
Agreement Correspon Variation E (keV) 0 8 16 24 24 2480 2488 2491.6	ding disagreemen ding disagreemen of the mean ene dN/dE calc. 1.37491e-06 1.41489e-06 1.4578e-06 1.52758e-06 6.09655e-09 2.15057e-09 2.07631e-10 0.00000e+00	ntal and calculat t: 1.75e-02 % rgies: -2.91e-01 unc. 4.56604e-10 4.67613e-10 4.82021e-10 4.99830e-10 2.46104e-10 1.49183e-10 4.8645se-11 0.00000e+00	dN/dE exp. 1.36282e-06 1.40958e-06 1.46404e-06 1.52621e-06 6.32780e-09 2.24064e-09 2.18157e-10 0.00000e+00	unc. 4.54479e-10 4.654479e-10 4.67776e-10 4.83425e-10 5.01425e-10 1.54856e-10 5.09102e-11 0.00000e+00	dN/dE 1k=1 1.35951e-06 1.39901e-06 1.44933e-06 1.51049e-06 6.12687e-09 2.16118e-09 2.0646e-10 0.00000e+00	unc. 1.58534e-08 1.63497e-08 1.69282e-08 1.75890e-08 2.71767e-10 1.54915e-10 4.76298e-11 0.00000e+00		
Agreement Correspon Variation E (keV) 0 8 16 24 248 2480 2488 2491.6	ding disagreemen ding disagreemen of the mean ene dN/dE calc. 1.37491e-06 1.41489e-06 1.45578e-06 1.52758e-06 6.09655e-09 2.15057e-09 2.15057e-09 2.07631e-10 0.00000e+00 	ntal and calculat t: 1.75e-02 % rgies: -2.91e-01 unc. 4.56604e-10 4.67613e-10 4.82021e-10 4.99830e-10 2.46104e-10 1.49183e-10 4.86465e-11 0.00000e+00	dN/dE exp. 1.36282e-06 1.40958e-06 1.46404e-06 1.52621e-06 	unc. 4.54479e-10 4.67776e-10 4.83425e-10 5.01425e-10 2.54503e-10 1.54856e-10 5.09102e-11 0.00000e+00	dN/dE 1k=1 1.35951e-06 1.359901e-06 1.49932e-06 1.51049e-06 6.12687e-09 2.16118e-09 2.0648e-10 0.00000e+00	unc. 1.58534-08 1.63497e-08 1.69222e-08 1.75890e-08 2.71767e-10 1.54915e-10 4.7629e-11 0.00000e+00		
Agreement Correspon Variation E (keV) 0 8 16 24 2472 2480 2488 2491.6	<pre>dof the experime ding disagreemen of the mean ene dN/dE calc. 1.37491e-06 1.41489e-06 1.46578e-06 1.52758e-06 2.05655e-09 2.05631e-10 0.00000e+00</pre>	ntal and calculat t: 1.75e-02 % rgies: -2.91e-01 unc. 4.56604e-10 4.67613e-10 4.82021e-10 4.99830e-10 2.46104e-10 1.49183e-10 4.86465e-11 0.00000e+00	dN/dE exp. 1.36282e-06 1.46404e-06 1.52621e-06 	unc. 4.54479e-10 4.67776e-10 4.83425e-10 5.01425e-10 2.54503e-10 1.54856e-10 5.09102e-11 0.00000e+00	dN/dE 1k=1 1.35951e-06 1.359901e-06 1.44933e-06 1.51049e-06 6.12687e-09 2.16118e-09 2.08648e-10 0.00000e+00	unc. 1.58534-08 1.63497e-08 1.69282e-08 1.75890e-08 2.71767e-10 1.54915e-10 4.76298e-11 0.00000e+00		
Agreement Correspon Variation E (keV) 0 8 16 24 2472 2480 2472 2480 2491.6	<pre>c of the experime ding disagreemen of the mean ene dN/dE calc. 1.37491e-06 1.41489e-06 1.46578e-06 1.52758e-06 </pre>	<pre>ntal and calculat t: 1.75e-02 % rgies: -2.91e-01 unc. 4.56604e-10 4.67613e-10 4.82021e-10 4.99830e-10 2.46104e-10 1.49183e-10 4.86465e-11 0.00000e+00</pre>	dN/dE exp. 1.36282e-06 1.46404e-06 1.52621e-06 	unc. 4.54479e-10 4.67776e-10 4.83425e-10 5.01425e-10 1.54856e-10 5.09102e-11 0.00000e+00	dN/dE 1k=1 1.35951e-06 1.359901e-06 1.44933e-06 1.51049e-06 6.12687e-09 2.16118e-09 2.08648e-10 0.00000e+00	unc. 1.58534-08 1.63497e-08 1.69282e-08 1.75890e-08 2.71767e-10 1.54915e-10 4.76298e-11 0.00000e+00		
Agreement Correspon Variation E (keV) 0 8 16 24 2472 2480 2491.6 Antineutr Mean ener Mean ener	<pre>do f the experimen ding disagreemen of the mean ene dN/dE calc. 1.37491e-06 1.41498e-06 1.46578e-06 1.46578e-06 2.15057e-09 2.15057e-09 2.07631e-10 0.00000e+00</pre>	<pre>ntal and calculat t: 1.75e-02 % rgies: -2.91e-01 unc. 4.56604e-10 4.67613e-10 4.82021e-10 4.99830e-10 2.46104e-10 1.49183e-10 4.86465e-11 0.00000e+00 ulated spectrum: rimental shape face</pre>	dN/dE exp. 1.36282e-06 1.46404e-06 1.52621e-06 	unc. 4.54479e-10 4.67776e-10 4.63425e-10 5.01425e-10 2.54503e-10 1.54856e-10 5.09102e-11 0.00000e+00 9) keV	dN/dE 1k=1 1.35951e-06 1.359901e-06 1.41933e-06 1.51049e-06 6.12687e-09 2.16118e-09 2.08648e-10 0.00000e+00	unc. 1.58534-08 1.63497e-08 1.69282e-08 1.75890e-08 2.71767e-10 1.54915e-10 4.76298e-11 0.00000e+00		
Agreement Correspon Variation E (keV) 0 8 16 24 2482 2482 2488 2491.6 Antineutr Mean ener Mean ener Mean ener	<pre>do f the experime ding disagreemen of the mean ene dN/dE calc. 1.37491e-06 1.41499e-06 1.4578e-06 1.46578e-06 2.0565e-09 2.15057e-09 2.07631e-10 0.00000e+00</pre>	ntal and calculat t: 1.75e-02 % rgies: -2.91e-01 unc. 4.56604e-10 4.67613e-10 4.82021e-10 4.99830e-10 2.46104e-10 1.49183e-10 4.86465e-11 0.00000e+00 ulated spectrum: rimental shape feulated spectrum i	dN/dE exp. 1.36282e-06 1.40958e-06 1.46404e-06 1.52621e-06 6.32780e-09 2.24064e-09 2.18157e-10 0.00000e+00 1416.48 (29) keV totor: 1416.24 (2) if lk=1: 1413.4 (3)	unc. 4.54479e-10 4.67776e-10 4.63425e-10 5.01425e-10 1.54856e-10 5.09102e-11 0.00000e+00	dN/dE 1k=1 1.35951e-06 1.39901e-06 1.44933e-06 1.51049e-06 .6.12687e-09 2.16118e-09 2.08648e-10 0.00000e+00	unc. 1.58534e-08 1.63497e-08 1.69282e-08 1.75890e-08 2.71767e-10 1.54915e-10 4.76298e-11 0.00000e+00		
Agreement Correspon Variation E (keV) 0 8 16 24 2482 2480 2488 2491.6 Antineutr Mean ener Mean ener Mean ener	<pre>do f the experime ding disagreemen of the mean ene dN/dE calc. 1.37491e-06 1.41489e-06 1.45778e-06 1.52758e-06 0.0655e-09 2.15057e-09 2.07631e-10 0.00000e+00 cino spectrum gy from the calc gy from the calc dN/dE calc</pre>	unc. 4.56604=10 4.56604=10 4.67613e=10 4.82021e=10 4.99830e=10 2.46104e=10 1.49183e=10 4.86465e=11 0.00000e+00 ulated spectrum: rimental shape feulated spectrum i	dN/dE exp. 1.36282e-06 1.40958e-06 1.46404e-06 1.52621e-06 6.32780e-09 2.24064e-09 2.24064e-09 2.24064e-09 2.15157e-10 0.00000e+00 1416.48 (29) keV actor: 1416.24 (2) 1416.48 (29) keV	unc. 4.54479e-10 4.54479e-10 4.67776e-10 4.83425e-10 5.01425e-10 1.54856e-10 5.09102e-11 0.00000e+00 9) keV 34) keV	dN/dE 1k=1 1.35951e=06 1.39901e=06 1.44933e=06 1.51049e=06 6.12687e=09 2.16118e=09 2.0646e=10 0.00000e+00	unc. 1.58534e-08 1.63497e-08 1.69282e-08 1.75890e-08 2.71767e-10 1.54915e-10 4.76298e-11 0.00000e+00		
Agreement Correspon Variation E (keV) 0 8 16 24 2480 2480 2488 2491.6 	ding disagreemen of the experiment of the mean ener- dN/dE calc. 1.37491e-06 1.41489e-06 1.42578e-06 6.09655e-09 2.15057e-09 2.07631e-10 0.00000e+00 	unc. 4.56604e-10 4.56604e-10 4.67613e-10 4.82021e-10 4.99830e-10 2.46104e-10 1.49183e-10 4.8945se-11 0.00000e+00 ulated spectrum; rimental shape faulated spectrum i unc. 0.00000e+00	<pre>dN/dE exp. 1.36282e-06 1.40958e-06 1.40958e-06 1.46404e-06 1.52621e-06</pre>	unc. 4.54479e-10 4.54479e-10 4.67776e-10 4.83425e-10 5.01425e-10 1.54856e-10 5.09102e-11 0.00000e+00 8) keV 9) keV unc. 0.00000e+00	dN/dE 1k=1 1.35951e-06 1.35951e-06 1.35940e-06 1.51049e-06 6.12687e-09 2.16118e-09 2.0646e-10 0.00000e+00 dN/dE 1k=1 0.00000e+00	unc. 1.58534e-08 1.63497e-08 1.69282e-08 1.75890e-08 2.71767e-10 1.54915e-10 4.76298e-11 0.00000e+00 unc. 0.00000e+00		
Agreement Correspon Variation E (keV) 0 8 16 24 2482 2488 2491.6 Antineutr 4ean ener fean ener fean ener 2 (keV) 0 8	<pre>dof the experime ding disagreemen of the mean ene dN/dE calc. 1.37491e-06 1.41489e-06 1.45578e-06 1.52758e-06 2.15057e-09 2.07631e-10 0.00000e+00 2.07631e-10 0.00000e+00 2.07631e-10 0.00000e+00 2.07631e-10 0.00000e+00 1.06916e-09</pre>	unc. 4.56604e-10 4.56604e-10 4.67613e-10 4.82021e-10 4.99830e-10 2.46104e-10 1.49183e-10 4.86465e-11 0.00000e+00 ulated spectrum: rimental shape fe ulated spectrum i unc. 0.00000e+00 5.37713e-13	<pre>dN/dE exp. 1.36282e-06 1.40958e-06 1.40958e-06 1.46404e-06 1.52621e-06 </pre>	<pre>unc. 4.54479e-10 4.67776e-10 4.67776e-10 4.83425e-10 5.01425e-10 2.54503e-10 1.54856e-10 5.09102e-11 0.00000e+00 9) keV unc. 0.00000e+00 5.37166e-13</pre>	dN/dE 1k=1 1.35951e-06 1.359901e-06 1.44933e-06 1.51049e-06 6.12687e-09 2.16118e-09 2.06648e-10 0.00000e+00 1.07040e-09	unc. 1.58534-08 1.63497e-08 1.63497e-08 1.75890e-08 2.71767e-10 1.54915e-10 4.76298e-11 0.00000e+00 0.00000e+00 5.77388e-12		
Agreement Correspon Variation E (keV) 0 8 16 24 2472 2480 2488 2491.6 	<pre>dof the experime ding disagreemen of the mean ene dN/dE calc. 1.37491e-06 1.41498e-06 1.46578e-06 2.15057e-09 2.07631e-10 0.00000e+00</pre>	<pre>untail and calculat tr 1.75e-02 % rgies: -2.91e-01 unc. 4.56604e-10 4.67613e-10 4.82021e-10 4.99830e-10 2.46104e-10 1.49183e-10 4.86465e-11 0.00000e+00 ulated spectrum: rimental shape faulated spectrum i unc. 0.00000e+00 5.37713e-13 2.12127e-12</pre>	dN/dE exp. 1.36282e-06 1.40958e-06 1.46404e-06 1.52621e-06 	<pre>unc. 4.54479e-10 4.67776e-10 4.67776e-10 4.83425e-10 5.01425e-10 2.54503e-10 1.54856e-10 5.09102e-11 0.00000e+00 9) keV 90 keV unc. 0.00000e+00 5.37166e-13 2.11910e-12</pre>	dN/dE 1k=1 1.35951e-06 1.35951e-06 1.359901e-06 1.44933e-06 1.51049e-06 6.12687e-09 2.16118e-09 2.08648e-10 0.00000e+00 1.00000e+00 1.07440e-09 4.25140e-09	unc. 1.58534-08 1.63497e-08 1.69282e-08 1.75890e-08 2.71767e-10 1.54915e-10 4.76298e-11 0.00000e+00 5.77388e-12 2.3004e-11		

list ceatech	Output file	1 2 3 BetaShape 4 Analytica 5 Author: X 6 CEA, LIST	al version: 1.0 (K. Mougeot (xavie G. Laboratoire Na	10/06/2016) rr.mougeot@cea.fr) tional Henri Becc) guerel (LNHB), Gi:	f-sur-Yvette F-911	91, France		.bs
Transition options fo	parameters and r calculation	7 Please ci 8 9 9 Parent nu 2 Calculati 3 Bühring's 5 End-point 7 An experi 9 Energy ra 9 From [196]	Lte: X. Mougeot, Incleus: 18-Ar-41 Lon of the 1st for a screening corre c energy: 2491.60 Limental shape fac ange of the measu 51KA19] G.R. Kart	Physical Review ([7/2*] g.s> rbidden unique tr action is consider (40) keV Ener tor has been four rement: 1330 - 24 ashov, N.A. Burgo	Daughter nucleu: Daughter nucleu: ransition from the red. ergy step: 8 keV nd: (q^2 + 1_2*p^: 220 keV ov, A.V. Davydov,	atum Phys. Rev. C s: 19-K-41 [3/2+] e beta - decay of Intensity: 0.0 2) Izvest. Akad. Na	92, 059902 (2015) 	. 25, 189 (1961) or C	single transitior
Parent :	nucleus: 18-Ar-41	[7/2*	'] g.s.	>	Daughte	r nucle	us: 19-	K-41 [3/2	?+] g.s.
Calculat	tion of the 1st fo	rbidd	den uni	que tra	nsition	from t	he beta	- decay	of Ar-41
Bühring	's screening corre	ction	n is com	nsidere	d.				
Bühring	's screening corre	ction	n is com	nsidere	d.				
Bühring End-poir	's screening corrent	ction) (40)	n is co keV	nsidere Ener	d. gy step	: 8 keV	In	tensity:	0.00784 (19)
Bühring End-poir	's screening corrent	(40)	keV 1.41489e-06 1.46578e-06 1.52758e-06	4.67613e-10 4.82021e-10 4.99830e-10	d. gy step 1.40958-06 1.46404e-06 1.52621e-06	. 8 keV 4.67776e-10 4.83425e-10 5.01425e-10	1.39901e-06 1.44933e-06 1.51049e-06	tensity: 1.63497e-08 1.69282e-08 1.75890e-08	0.00784 (19)
Bühring End-poir	's screening corrent	(40) (40) (40)	keV 1.41489e-06 1.46578e-06 1.52758e-06	Ener 4.67613e-10 4.82021e-10 4.99830e-10	d. gy step 1.40958e-06 1.46404e-06 1.52621e-06	: 8 keV 4.67776e-10 4.83425e-10 5.01425e-10	In 1.39901e-06 1.44933e-06 1.51049e-06	1.63497e-08 1.69282e-08 1.75890e-08	0.00784 (19)
Bühring End-poir	's screening corrent nt energy: 2491.60	ection (40) (40) 8 8 9 16 0 24	keV 1.41489e-06 1.46578e-06 1.52758e-06 . 6.09655e-09 2.15057e-09	4.67613e-10 4.62021e-10 4.99830e-10 2.46104e-10 1.49183e-10	d. gy step 1.40958e-06 1.46404e-06 1.52621e-06 	4.67776e-10 4.63425e-10 5.01425e-10 2.54503e-10 1.54856e-10	In 1.39901e-06 1.44933e-06 1.51049e-06 6.12687e-09 2.16118e-09	1.63497e-08 1.69282e-08 1.75890e-08 2.71767e-10 1.55915e-10	0.00784 (19)
Bühring End-poir	's screening corrent nt energy: 2491.60	(40) (40) (40) (40) (40) (40) (40) (40)	keV 1.41489e-06 1.46578e-06 1.52758e-06 . 6.09655e-09 2.15057e-09 2.07631e-10 2.07631e-10	4.67613e-10 4.82021e-10 4.99830e-10 2.46104e-10 1.49183e-10 4.86465e-11 4.86465e-11	d. gy step 1.40958-06 1.46404e-06 1.52621e-06 	8 keV 4.67776e-10 4.83425e-10 5.01425e-10 2.54503e-10 1.54856e-10 5.09102e-11 5.09102e-11 5.09102e-11	1.39901e-06 1.41933e-06 1.51049e-06 6.12687e-09 2.16118e-09 2.08648e-10 0.0000-000	tensity: 1.63497e-08 1.69282e-08 1.75890e-08 2.71767e-10 1.54915e-10 4.76298e-11 4.76298e-10	0.00784 (19)
Bühring End-poir	's screening corrent of the screening correct	ection (40) (40) (40) (40) (40) (40) (40) (40)	1.41489e-06 1.46578e-06 1.52758e-06 1.52758e-06 2.15057e-09 2.07631e-10 0.00000e+00	4.67613e-10 4.67613e-10 4.82021e-10 4.99830e-10 2.46104e-10 1.49183e-10 4.86465e-11 0.00000e+00	d. <u>gy step</u> 1.40958e-06 1.46404e-06 1.52621e-06 6.32780e-09 2.24064e-09 2.24064e-09 2.18157e-10 0.00000e+00	8 keV 4.67776e-10 4.83425e-10 5.01425e-10 1.54856e-10 5.09102e-11 0.00000e+00	In 1.39901e-06 1.41933e-06 1.51049e-06 6.12687e-09 2.16118e-09 2.08648e-10 0.00000e+00	1.63497e-08 1.69282e-08 1.75890e-08 2.71767e-10 1.54915e-10 4.76298e-11 0.00000e+00	0.00784 (19)
Bühring End-poir	's screening corrent of the screening correct	ection (40) (40) (40) (40) (40) (40) (40) (40)	1.41489e-06 1.46578e-06 1.52758e-06 1.52758e-06 2.15057e-09 2.07631e-10 0.00000e+00	Ener 4.67613e-10 4.82021e-10 4.99830e-10 2.46104e-10 1.49183e-10 4.86465e-11 0.00000e+00	d. gy step 1.40958e-06 1.46404e-06 1.52621e-06 6.32780e-09 2.24064e-09 2.24064e-09 2.18157e-10 0.00000e+00	: 8 keV 4.67776e-10 4.83425e-10 5.01425e-10 2.54503e-10 1.54856e-10 5.09102e-11 0.00000e+00	In 1.39901e-06 1.44933e-06 1.51049e-06 6.12687e-09 2.16118e-09 2.0648e-10 0.00000e+00	tensity: 1.63497e-08 1.69282e-08 1.75890e-08 2.71767e-10 1.54915e-10 4.76298e-11 0.00000e+00	0.00784 (19)
Bühring End-poir	's screening corrent of energy: 2491.60	(40) (40)	L 13 CO keV 1.41489e-06 1.46578e-06 1.45758e-06 6.09655e-09 2.15057e-09 2.07631e-10 0.00000e+00 cino spectrum	4.67613e-10 4.62021e-10 4.99830e-10 2.46104e-10 1.49183e-10 4.86465e-11 0.00000e+00	d. gy step 1.40958e-06 1.46404e-06 1.52621e-06 .52621e-06 .52621e-09 2.24064e-09 2.24064e-09 2.24064e-09 2.28157e-10 0.00000e+00	8 keV 4.67776e-10 4.67776e-10 5.01425e-10 2.54503e-10 1.54856e-10 5.09102e-11 0.00000e+00	In 1.39901e-06 1.44933e-06 1.51049e-06 6.12687e-09 2.16118e-09 2.08648e-10 0.00000e+00	1.63497e-08 1.69282e-08 1.75890e-08 2.71767e-10 1.54915e-10 4.76298e-11 0.00000e+00	0.00784 (19)
Bühring End-poir	's screening corrent of energy: 2491.60	(40) (40)	is col keV 1.41489e-06 1.46578e-06 1.52758e-06 2.15057e-09 2.07631e-10 0.00000e+00	**************************************	d. <u>gy step</u> 1.40958e-06 1.46404e-06 1.52621e-06 6.32780e-09 2.24064e-09 2.18157e-10 0.00000e+00	8 keV 4.67776e-10 4.83425e-10 5.01425e-10 2.54503e-10 1.54856e-10 5.09102e-11 0.00000e+00	In 1.39901e-06 1.41933e-06 1.51049e-06 6.12687e-09 2.16118e-09 2.08648e-10 0.00000e+00	<pre>tensity: 1.63497e-08 1.69282e-08 1.75890e-08 2.71767e-10 1.54915e-10 4.76298e-11 0.00000e+00</pre>	0.00784 (19)
Bühring End-poir	's screening corrent of the energy: 2491.60	(40) (40)	<pre>1 is col keV 1.41489e-06 1.46578e-06 1.52758e-06 2.15057e-09 2.07631e-10 0.00000e+00 cino spectrum cryy from the calo cryy from the expectation cryy from the expectation</pre>	4.67613e-10 4.67613e-10 4.99830e-10 2.46104e-10 1.49183e-10 4.86465e-11 0.00000e+00	d. <u>gy step</u> 1.40958e-06 1.46404e-06 1.52621e-06 6.32780e-09 2.24064e-09 2.18157e-10 0.00000e+00 1416.48 (29) keV actor: 1416.24 (2)	 8 keV 4.67776e-10 4.83425e-10 5.01425e-10 2.54503e-10 1.54856e-10 5.09102e-11 0.00000e+00 9) keV 	In 1.39901e-06 1.44933e-06 1.51049e-06 6.12687e-09 2.16118e-09 2.08649e-10 0.00000e+00	1.63497e-08 1.69282e-08 1.75890e-08 2.71767e-10 1.54915e-10 4.76298e-11 0.00000e+00	0.00784 (19)
Bühring End-poir	's screening corrent of energy: 2491.60	ection (40) 8 9 10 2480 2480 2480 2481 2481 2491.6 1 2 3 Antineutz 5 6 Mean ener 9 9	L 13 CO KEV 1.41489e-06 1.46578e-06 1.52758e-06 2.15057e-09 2.15057e-09 2.07631e-10 0.00000e+00 Control of the control of the contro	4.67613e-10 4.82021e-10 4.99830e-10 2.46104e-10 1.49183e-10 4.86465e-11 0.00000e+00	d. gy step 1.40958e-06 1.46404e-06 1.52621e-06 6.32780e-09 2.24064e-09 2.18157e-10 0.00000e+00 1416.48 (29) keV actor: 1416.24 (2 if lk=1: 1413.4 (2)	 8 keV 4.67776e-10 4.83425e-10 5.01425e-10 2.54503e-10 1.54856e-10 5.09102e-11 0.00000e+00 9) keV 34) keV 	In 1.39901e-06 1.44933e-06 1.51049e-06 .51049e-06 .16118e-09 2.0648e-10 0.00000e+00	tensity: 1.63497e-08 1.69282e-08 1.75890e-08 2.71767e-10 1.54915e-10 4.76298e-11 0.00000e+00	0.00784 (19)
Bühring End-poir	's screening corrent of energy: 2491.60	(40) (40)	L 13 CO keV 1.41489e-06 1.46578e-06 1.46578e-06 6.09655e-09 2.15057e-09 2.07631e-10 0.00000e+00 rino spectrum rgy from the calc dN/dE calc. 0.0000e+00	A.67613e-10 4.67613e-10 4.82021e-10 4.99830e-10 2.46104e-10 1.49183e-10 4.86465e-11 0.00000e+00	d. gy step 1.40958e-06 1.46404e-06 1.52621e-06 6.32780e-09 2.24064e-09 2.18157e-10 0.00000e+00 1416.48 (29) keV actor: 1416.24 (2 if lk=1: 1413.4 (dN/dE exp. 0.00000e+00	 8 keV 4.67776e-10 4.83425e-10 5.01425e-10 2.54503e-10 1.54856e-10 5.09102e-11 0.00000e+00 9) keV 34) keV unc. 0.00000e+00 	In 1.39901e-06 1.44933e-06 1.51049e-06 6.12687e-09 2.08648e-10 0.00000e+00 dN/dE 1k=1 0.00000e+00	<pre>unc. 0.00000e+00</pre>	0.00784 (19)
Bühring End-poir	's screening corrent of energy: 2491.60	(40) (40)	L 13 CO keV 1.41489e-06 1.46578e-06 1.5057e-09 2.15057e-09 2.07631e-10 0.00000e+00 crino spectrum rgy from the calc cryy from the calc dN/dE calc. 0.00000e+00 1.06916e-09 4.2507e-02	4.67613e-10 4.67613e-10 4.82021e-10 4.99830e-10 2.46104e-10 1.49183e-10 4.86465e-11 0.00000e+00 4.86465e-11 0.00000e+00 5.37713e-13 2.10127-13	d. gy step 1.40958e-06 1.46404e-06 1.52621e-06 	 8 keV 4.67776e-10 4.83425e-10 5.01425e-10 2.54503e-10 1.54856e-10 5.09102e-11 0.0000e+00 9) keV 34) keV unc. 0.00000e+00 5.37166e-13 5.37166e-13 	L.39901e-06 1.44933e-06 1.51049e-06 6.12687e-09 2.08648e-10 0.00000e+00 0.00000e+00 1.07440e-09 4.35140e-06	unc. 0.00000e+00 5.77388e-12 0.00000e+00	0.00784 (19)
Bühring End-poir	's screening corrent of energy: 2491.60	ction (40) 8 9 16 24 6 2488 2491.6 1 2 3 Antineutz 5 6 6 9 1 2 7 4 7 4 6 6 6 6 10 2 8 9 0 2 10 2 8 16 4 24	L 13 CO keV 1.41489e-06 1.46578e-06 1.52758e-06 .52758e-09 2.15057e-09 2.07631e-10 0.00000e+00 crino spectrum rgy from the calc rgy from the calc 0.00000e+00 1.06916e-09 4.23052e-09 9.41583e-09	4.67613e-10 4.67613e-10 4.82021e-10 4.99830e-10 2.46104e-10 1.49183e-10 4.86465e-11 0.00000e+00 4.86465e-11 0.00000e+00 5.37713e-13 2.1217e-12 4.70705e-12	<pre>d. gy step 1.40958e-06 1.46404e-06 1.52621e-06</pre>	 8 keV 4.67776e-10 4.63425e-10 5.01425e-10 2.54503e-10 1.54856e-10 5.09102e-11 0.00000e+00 9) keV 94) keV unc. 0.00000e+00 0.00000e+00 0.00000e+00 1.1910e-12 4.70220e-12 	In 1.39901e-06 1.41933e-06 1.51049e-06 6.12687e-09 2.16118e-09 2.08648e-10 0.00000e+00 0.00000e+00 1.07440e-09 4.25140e-09 9.46266e-09	unc. 0.00000e+00 0.77388e-12 0.0000e+01 0.00000e+01 0.00000e+01 0.00000e+11 0.153826-11	0.00784 (19)

liet		1									
<u>Clatech</u>	Output file	3 BetaShape 4 Analytica 5 Author: 5 6 CEA, LIST 7 Please ci 8 9	e al version: 1.0 (1 K. Mougeot (xavier F, Laboratoire Nat ite: X. Mougeot, F	10/06/2016) r.mougeot@cea.fr) pional Henri Beog Physical Review C	uerel (LNHB), Gif 91, 055504; Erra	-sur-Yvette F-911 Ltum Phys. Rev. C	91, France 92, 059902 (2015)		. <mark>bs</mark> sing	s gle tr	ansition
		10 11 Parent nu 12 Calculati 13 14 Bühring's 15 16 End-point	icleus: 18-Ar-41 ion of the 1st for s screening correct	<pre>[7/2*] g.s> rbidden unique tr ction is consider (40) keV Fre</pre>	Daughter nucleus ansition from the ed. rgy step: 8 keV	: 19-K-41 [3/2+] : beta - decay of	g.s. Ar-41 0784 (19)				
Experime	ntal shape factor	17 18 An experi 19 Energy ra 20 From [196 21	imental shape fact ange of the measur 51KA19] G.R. Karta	tor has been foun rement: 1330 - 24 ashov, N.A. Burgo	d: (q^2 + 1_2*p^2 20 keV v, A.V. Davydov,	IIIOCIDIOJ, OIO	uk SSSR, Ser. Fiz	. 25, 189 (1961)	or Columbia Tec	n. Transl	. 25, 184 (1962)
An experimen Energy range From [1961KA	tal shape factor has of the measurement: 19] G.R. Kartashov, 1	been f 1330 - N.A. Bu	ound: (q^ 2420 keV rgov, A.V	2 + 1_2* 7 7. Davydo	p^2) v, Izves	st. Akad.	Nauk SSS	R, Ser.	Fiz. 25,	189	(1961)
		30 Log ft va	alue from the calo	culated spectrum	if lk=1: log ft 9	.740 (12) with	component: log f	3.816 (5)			
		32 Agreement 33 Correspon	t of the experimer nding disagreement	ntal and calculat t: 1.75e-02 %	ed spectra in [13	330,2420] keV: 99.	98 %				
		34 Variation 35	n of the mean ener	rgies: -2.91e-01	9						
		36 E(keV)	dN/dE calc.	unc.	dN/dE exp.	unc.	dN/dE 1k=1	unc.			
		38 8	1.41489e-06	4.67613e-10	1.40958e-06	4.67776e-10	1.39901e-06	1.63497e-08			
		39 16 40 24	1.46578e-06 1.52758e-06	4.82021e-10 4.99830e-10	1.46404e-06 1.52621e-06	4.83425e-10 5.01425e-10	1.44933e-06 1.51049e-06	1.69282e-08 1.75890e-08			
	1	346 2472	6.09655e-09	2.46104e-10	6.32780e-09	2.54503e-10	6.12687e-09	2.71767e-10			
		347 2480 348 2488	2.15057e-09 2.07631e-10	1.49183e-10 4.86465e-11	2.24064e-09 2.18157e-10	1.54856e-10 5.09102e-11	2.16118e-09 2.08648e-10	1.54915e-10 4.76298e-11			
		349 2491.6 350 351	0.00000e+00	0.00000e+00	0.00000e+00	0.00000e+00	0.00000e+00	0.00000e+00			
		352	rino spectrum								
		354									
		356 Mean ener	rgy from the calcu	ulated spectrum:	1416.48 (29) keV						
		357 Mean ener 358 Mean ener	rgy from the expe rgy from the calcu	rimental shape fa ulated spectrum i	ctor: 1416.24 (29 f lk=1: 1413.4 (3	9) keV 34) keV					
		359 360 E(keV)	dN/dE calc.	unc.	dN/dE exp.	unc.	dN/dE lk=1	unc.			
		361 0	0.00000e+00	0.00000e+00	0.00000e+00	0.00000e+00	0.00000e+00	0.00000e+00			
		363 16	4.23052e-09	5.3//13e-13 2.12127e-12	4.23474e-09	5.3/166e-13 2.11910e-12	4.25140e-09	5.//388e-12 2.30004e-11			
		364 24	9.41583e-09	4.70705e-12	9.42521e-09	4.70220e-12	9.46266e-09	5.15326e-11			
			:		•		:				

list	1	
CEALECH Output file	<pre>BetaShape Analytical version: 1.0 (10/06/2016) Author: X. Mougeot (xavier.mougeot@cea.fr) CEA, LIST, Laboratoire National Henri Becquerel (LNHB), Gif-sur-Yvette F-91191, France Please cite: X. Mougeot, Physical Review C 91, 055504; Erratum Phys. Rev. C 92, 059902 (2015) </pre>	. <mark>bs</mark> single transition
Mean energies, log <i>ft</i> values, analysis parameters	Parent nucleus: 18-Ar-41 [7/2*] g.s> Daughter nucleus: 19-K-41 [3/2+] g.s. Calculation of the 1st forbidden unique transition from the beta - decay of Ar-41 Bühring's screening correction is considered. End-point energy: 2491.60 (40) keV Energy step: 8 keV Intensity: 0.00784 (19) An experimental shape factor has been found: (q ² + 1_2*p ²) Pnergy range of the measurement: 1330 - 2420 keV From [1961KA19] G.R. Kartashov, N.A. Burgov, A.V. Davydov, Izvest. Akad. Nauk SSSR, Ser. Fiz. 25, 189 (1961) Input mean energy: 1076.60 (20) keV Mean energy from the calculated spectrum: 1072.92 (19) keV Mean energy from the calculated spectrum: 1076.05 (19) keV Mean energy from the calculated spectrum if 1k=1: 1076.0 (33) keV Input log ft value: 9.72 Log ft value from the calculated spectrum: log ft 9.735 (11) with components: log f 3.81177 (42) and log par Log ft value from the calculated spectrum if 1k=1: log ft 9.748 (11) with component: log f 3.80453 (42) Log ft value from the calculated spectrum if 1k=1: log ft 9.740 (12) with component: log f 3.816 (5) Agreement of the experimental and calculated spectra in [1330,2420] keV: 99.98 % Corresponding disagreement: 1.75e-02 % Variation of the mean energie: -2.91e-01 %	or Columbia Tech. Transl. 25, 184 (1962)
Input mean energy: 1076.60 (20) keV		
Mean energy from the calculated spectru Mean energy from the experimental shape	m: 10/2.92 (19) KeV factor: 1076.05 (19) keV	
Mean energy from the calculated spectru	m if lk=1: 1076.0 (33) keV	
Input log ft value: 9.72 Log ft value from the calculated spectr Log ft value from the experimental shap Log ft value from the calculated spectr	um: log ft 9.735 (11) with components: log f 3.81177 (42) and log p e factor: log ft 9.728 (11) with component: log f 3.80453 (42) um if lk=1: log ft 9.740 (12) with component: log f 3.816 (5)	partial T1/2 5.924 (11)
Agreement of the experimental and calcu Corresponding disagreement: 1.75e-02 % Variation of the mean energies: -2.91e-	lated spectra in [1330,2420] keV: 99.98 % 01 %	
	362 0 1.003102-05 3.071302-13 1.072202-05 3.071002-13 1.073102-05 3.773002-12 363 16 4.23052e-09 2.12127e-12 4.23474e-09 2.11910e-12 4.25140e-09 2.30004e-11 364 24 9.41583e-09 4.70705e-12 9.42521e-09 4.70220e-12 9.46266e-09 5.15326e-11	

Ceatech Output file			BetaShape Analytical version: 1.0 (1 Author: X. Mougeot (xavier CEA, LIST, Laboratoire Nat Please cite: X. Mougeot, P	0/06/2016) .mougeot@cea.fr) ional Henri Becquerel (LNHB), Gif hysical Review C 91, 055504; Erra	-	.bs single transition	
[E (keV) 0 8 16	dN/dE calc. 1.37491e-06 1.41489e-06 1.46578e-06	unc. 4.56604e-10 4.67613e-10 4.82021e-10	dN/dE exp. 1.36282e-06 1.40958e-06 1.46404e-06	unc. 4.54479e-10 4.67776e-10 4.83425e-10	dN/dE 1k=1 1.35951e-06 1.39901e-06 1.44933e-06	unc. 1.58534e-08 1.63497e-08 1.69282e-08
	24 32	1.52758e-06 1.59207e-06	4.99830e-10 5.18314e-10	1.52621e-06 1.59014e-06	5.01425e-10 5.19795e-10	1.51049e-06 1.57433e-06	1.75890e-08 1.82615e-08
		23 24	Mean energy from the calcu Mean energy from the exper	lated spectrum: 1072.92 (19) keV imental shape factor: 1076.05 (19) keV		
	Antineutri Mean energ Mean energ E(keV) 0 8 16	no spectrum y from the calcu y from the expen y from the calcu dN/dE calc. 0.00000e+00 1.06916e-09 4.23052e-09	ulated spectrum: simental shape f ulated spectrum unc. 0.00000e+00 5.37713e-13 2.12127e-12	1416.48 (29) keV actor: 1416.24 (29) if lk=1: 1413.4 (3) dN/dE exp. 0.00000e+00 1.07023e-09 4.23474e-09) keV 4) keV unc. 0.00000e+00 5.37166e-13 2.11910e-12	dN/dE 1k=1 0.00000e+00 1.07440e-09 4.25140e-09	unc. 0.00000e+00 5.77388e-12 2.30004e-11
β and ν s	spectra	351 352 353 354 355 356 357 358 359 360 361 362 363 364	Antineutrino spectrum Mean energy from the calcu Mean energy from the exper Mean energy from the calcu E(keV) dN/dE calc. 0 0.0000e+00 8 1.06916e-09 16 4.23052e-09 24 9.41583e-09	lated spectrum: 1416.48 (29) keV imental shape factor: 1416.24 (29) lated spectrum if lk=1: 1413.4 (29) unc. dN/dE exp. 0.00000e+00 0.000000e+00 5.37713e-13 1.07023e-09 2.12127e-12 4.23474e-09 4.70705e-12 9.42521e-09	<pre>9) keV 41) keV unc. dN/dE 1k=1 0.00000e+00 0.00000e+00 5.37166e-13 1.07440e-09 2.11910e-12 4.25140e-09 4.70220e-12 9.46266e-09 </pre>	unc. 0.00000e+00 5.77388e-12 2.30004e-11 5.15326e-11	

12					
13	Mean energy	from the total	beta - spectrum	: 461.24 (29) keV	
14	Mean energy	from the total	antineutrino sp	ectrum: 746.94 (40	6) keV
15					
16	E(keV)	dNtot/dE b-	unc.	dNtot/dE nu	unc.
17	0	6.46345e-04	4.33494e-07	0.00000e+00	0.00000e+00
18	2	6.48384e-04	4.34182e-07	3.06131e-08	3.42335e-11
19	4	6.51291e-04	4.35438e-07	1.21807e-07	1.36066e-10
20	6	6.55064e-04	4.37264e-07	2.73582e-07	3.05496e-10
21	8	6.59705e-04	4.39659e-07	4.85147e-07	5.41442e-10
22	10	6.65079e-04	4.42530e-07	7.56347e-07	8.43690e-10

Mean energies of total spectra

Total β spectrum

Total ν spectrum

.bs total spectra

Analysis of ENSDF database (2015)

- + 21 768 β^{\pm} transitions read in ENSDF database
- 19 602 β^{\pm} transitions with $I_{\beta} \ge 0$ and $E_{\max} \ge 0$ keV
- 4 529 transitions calculated as allowed due to lack of spins and parities

Study of the consistency of the results from LogFT and BetaShape at 1σ , 2σ , 3σ (68.3%, 95.4%, 99.7% C.L.)

2FU

1%

2FNU

3%

1FU

→ Validation of BetaShape

list

Ceatech

BetaShape vs LogFT

For allowed and forbidden unique β^+/ε transitions

$$\log ft \approx \log \left(\frac{f_{\beta^+}}{I_{\beta^+}} T_{1/2} \right)$$
?

 \rightarrow 21 of 8 506 β^+ transitions with inconsistent log *ft* at 1σ (experimental shape factors, no uncertainty on intensities, disagreement \leq 2.5%)

This approximation leads to consistent results with LogFT for β^+/ε transitions at the precision level of current nuclear data.

list

Ceatech

Well-defined transitions

- Well-defined forbiddenness: spins and parities firmly assigned.
- Well-defined Q-values, parent half-life, energies, intensities and their uncertainties.
- Ionized or excited atomic states, uncertain or questionable states and decays, and decays with more than one parent (mixed source) are not considered.
- Transitions Type Total 3868 Allowed 2427 1FNU 1049 1FU 288 2FNU 63 2FU 27 3FNU 8 3FU 2 3 4FNU 5FNU 1

• Pandemonium radionuclides are still present.

Henri Becquere

Atomic effects in beta decays

Metallic magnetic calorimetry at LNHB

Indirect magnetic coupling

System cooled down to 10 mK

universite

⁶³Ni and ²⁴¹Pu beta spectra

list

Ceatech

CEA LIST
⁶³Ni

list

Ceatech

X. Mougeot, C. Bisch, Phys. Rev. A 90, 012501 (2014)

X. Mougeot, C. Bisch, Phys. list 63Ni Rev. A 90, 012501 (2014) Ceatech $\times 10^3$ 10 22 10.7 % at 500 eV 8 20 with Exchange factor (%) with 6 ntot 98 keV 18 -10.6 % at 100 eV for the 3s orbital 16 بη^{2s} 2 2 0 0[,] 10 20 30 40 50 60 0 10 20 30 40 50 60 Energy (keV) Energy (keV) Analytic: $\overline{E} = 17.45 \text{ keV}$ **Allowed transition** Mean energy of the With screening: $\overline{E} = 17.40 \text{ keV}$ spectrum decreased **Experimental spectrum** by **1.8 %** With screening and exchange: $\overline{E} = 17.14 \text{ keV}$ C. Le-Bret, PhD thesis,

Laboratoire National LNHB Henri Becquerel

Université Paris 11 (2012)

n HB ri Becquerel

Nuclear Data Week 2018 | X. Mougeot | 39

X. Mougeot, C. Bisch, Phys. Rev. A 90, 012501 (2014)

list

Ceatech

²⁴¹Pu

Nuclear Data Week 2018 | X. Mougeot | 40

Influence of orbital energies: ⁶³Ni

Past study on atomic effects in allowed beta decays, with inclusion of the **atomic exchange effect for** $s_{1/2}$ **orbitals** and an ad hoc new screening correction.

X. Mougeot, C. Bisch, Phys. Rev. A 90, 012501 (2014)

Formalism has been revised to **include the** $p_{1/2}$ **orbitals**, initially expected to be negligible \rightarrow ad hoc screening correction not necessary anymore.

L. Hayen et al., Rev. Mod. Phys. 90, 015008 (2018)

In addition, **new radiative correction** and **new orbital energies** have been considered.

The relativistic local-density approximation (RLDA) approximates the electron correlations and self-consistently solves a set of single particle equations.

Eigenvalues obtained for the ground-state configuration of atoms from H to U are available on NIST website. Claimed accuracy is 0.05 meV.

list

ceatech

Influence of orbital energies: ⁶³Ni

Past study on atomic effects in allowed beta decays, with inclusion of the **atomic exchange effect for** $s_{1/2}$ **orbitals** and an ad hoc new screening correction.

X. Mougeot, C. Bisch, Phys. Rev. A 90, 012501 (2014)

Formalism has been revised to **include the** $p_{1/2}$ **orbitals**, initially expected to be negligible \rightarrow ad hoc screening correction not necessary anymore.

L. Hayen et al., Rev. Mod. Phys. 90, 015008 (2018)

In addition, **new radiative correction** and **new orbital energies** have been considered.

The relativistic local-density approximation (RLDA) approximates the electron correlations and self-consistently solves a set of single particle equations.

Eigenvalues obtained for the ground-state configuration of atoms from H to U are available on NIST website. Claimed accuracy is 0.05 meV.

list

Influence of orbital energies: ²⁴¹Pu

Orbital energies have been interpolated from NIST values with lower Z.

list

Ceatech

Nuclear Data Week 2018 | X. Mougeot | 43

Influence of orbital energies: ²⁴¹Pu

Orbital energies have been interpolated from NIST values with lower Z.

list

Ceatech

Nuclear Data Week 2018 | X. Mougeot | 44

Electron capture decays

Allowed and forbidden unique transitions can be calculated without any nuclear structure.

If transition energy $\geq 2m_e$

 \rightarrow competition with a β^+ transition

Atomic wave functions

Relativistic electron wave functions for the atomic bound states are needed.

The method used was initially developed for the atomic exchange effect in β^{-} decay calculations.

X. Mougeot, C. Bisch, Phys. Rev. A 90, 012501 (2014)

Dirac equation is solved numerically

Local power series expansion

$$\begin{cases} f(r) \\ g(r) \end{cases} = \frac{(pr)^{k-1}}{(2k-1)!!} \sum_{n=0}^{\infty} \begin{cases} a_n \\ b_n \end{cases} r^n$$

- Coulomb potential = extended nucleus (uniformly charged sphere)

 + screened potential (Coulomb influence of electrons)
 + exchange potential (indistinguishability of fermions)
- Iterative procedure to reach atomic energies from a multi-configurational Dirac-Fock code.

J.P. Desclaux, At. Data Nucl. Data Tab. 12, 311 (1973)

Overlap effect

ST

Clatech

Variation of nuclear charge: the **spectator electrons** contribute to the total decay rate.

 \rightarrow Imperfect overlap between initial and final atomic wave functions

Exchange effect

Vacancy in the K shell?

+ M₁, etc.

Two approaches for overlap and exchange corrections

J.N. Bahcall, Phys.	E. Vatai, Nucl. Phys.			
Rev. 129, 2683 (1963)	A 156, 541 (1970)			

- **Bahcall**: only K, L₁ and M₁ shells
- Vatai: up to N₁ shell; other shells taken into account for overlap
- No multiple exchange process

$$B_{n\kappa} = \left| \frac{b_{n\kappa}}{\beta_{n\kappa}} \right|^{2} \text{ with}$$

$$B_{n\kappa} = t_{n\kappa} \left[\prod_{m \neq n} \langle (m, \kappa)' | (m, \kappa) \rangle \right] \left[\beta_{n\kappa} - \sum_{m \neq n} \beta_{m\kappa} \frac{\langle (m, \kappa)' | (n, \kappa) \rangle}{\langle (m, \kappa)' | (m, \kappa) \rangle} \right]$$

$$B_{n\kappa} = t_{n\kappa} \left[\prod_{m \neq n} \langle (m, \kappa)' | (m, \kappa) \rangle \right] \left[\beta_{n\kappa} - \sum_{m \neq n} \beta_{m\kappa} \frac{\langle (m, \kappa)' | (n, \kappa) \rangle}{\langle (m, \kappa)' | (m, \kappa) \rangle} \right]$$

$$Overlap$$

$$B_{n\kappa} = 1$$

$$Vatai$$

$$t_{n\kappa} = 1$$

$$Vatai$$

$$t_{n\kappa} = \langle (n, \kappa)' | (n, \kappa) \rangle^{n_{n\kappa} - 1/2|\kappa|} \left[\prod_{\substack{m, \mu \\ \mu \neq \kappa}} \langle (m, \mu)' | (m, \mu) \rangle^{n_{m\mu}} \right]$$

No shake-up and shake-off, but **more comprehensive** approach

overestimation of others

list

Shaking effects

Each electron has only three possible final states

- Spectator: same original quantum numbers
- Shake-up: excitation to an unoccupied bound state
- Shake-off: ionization to a continuum state

Creation of a secondary vacancy

For a given captured electron, **sum of shaking probability for each atomic electron**

$$\lambda_{n\kappa} \longrightarrow \lambda_{n\kappa} \left(1 + \sum_{m,\kappa} P_{m\kappa} \right)$$

The **capture** process induces that the **daughter** atom is in an **excited state** \rightarrow Influence of the hole on the bound wave functions

First order perturbation theory $(\mathcal{H}_0 + \mathcal{H}')|(i,\kappa)'\rangle = (E_0 + E')|(i,\kappa)'\rangle$

Initial: parent atom

Perturbation: the electron (n, κ) is captured

$$\mathcal{H}' = \frac{\alpha}{r} - \langle (n,\kappa) | \frac{\alpha}{|\vec{r_{n\kappa}} - \vec{r}|} | (n,\kappa) \rangle \longrightarrow |(i,\kappa)'\rangle = |(i,\kappa)\rangle - \sum_{j \neq i} \frac{\langle (j,\kappa) | \mathcal{H}' | (i,\kappa) \rangle}{W_j - W_i} | (j,\kappa) \rangle$$

The correction of the hole effect is thus only applied through the **asymmetric overlaps**

 $\langle (j,\kappa)'|(i,\kappa)\rangle = \frac{\langle (j,\kappa)|\mathcal{H}'|(i,\kappa)\rangle}{W_j - W_i}$

universite

with

$$\langle (j,\kappa) | \mathcal{H}' | (i,\kappa) \rangle = \int_0^\infty (\alpha r) [f_{j\kappa}(r) f_{i\kappa}(r) + g_{j\kappa}(r) g_{i\kappa}(r)] \times$$

$$\left\{1 - \int_0^r x^2 [g_{n\kappa}^2(x) + f_{n\kappa}^2(x)] dx - r \int_r^\infty x [g_{n\kappa}^2(x) + f_{n\kappa}^2(x)] dx\right\} dr$$

Allowed transitions

Mean values of two highprecision measurements

list

Ceatech

Nuclear Data Week 2018 | X. Mougeot | 52

Forbidden unique transitions

list

List Influence of orbital energies (preliminary study)

The relativistic local-density approximation (RLDA) approximates the electron correlations and self-consistently solves a set of single particle equations.

Eigenvalues obtained for the ground-state configuration of atoms from H to U are available on NIST website. Claimed accuracy is 0.05 meV.

		Previous calculation			With RLDA energies		
⁵⁵ Fe	Experiment	Final	Bahcall	Vatai	Final	Bahcall	Vatai
L/K	0.1165 (12)	0.1182 (3)	0.1185	0.1179	0.1166 (3)	0.1169	0.1163
M/L	0.1556 (26)	0.1708 (12)	0.1714	0.1701	0.1577 (11)	0.1583	0.1570
M/K	0.0178 (6)	0.0202 (1)	0.0203	0.0201	0.0184 (1)	0.0185	0.0183

 \rightarrow Now results are compatible with measurements.

- → It seems also possible to see the better predictive power of Vatai's approach, as expected from a pure theoretical point of view.
- \rightarrow Same tendency is observed for other radionuclides: ⁸¹Kr, ¹³³Ba, ¹³⁸La, ²⁰²Tl, ²⁰⁴Tl.

Influence of orbital energies (preliminary study)

list

- Precise measurements, with relative uncertainty < 5%, are scarce.
- Radiative corrections are different as β^+ transition competes.

	Hagberg et al., Nucl. Phys. A 357, 365 (1981)				I his work with RLDA energies			
¹³⁰ Cs	Experiment	Theory	Rad. Corr.	Total Theory	Theory	Rad. Corr.	Total Theory	
K /β+	1.025 (22)	1.063 (23)	1.3%	1.077 (23)	1.025 (18)	1.24%	1.038 (18)	

- \rightarrow Now results are compatible with measurements.
- \rightarrow Still difficult to distinguish between Bahcall's and Vatai's approaches.
- → Difficult also to be conclusive with other radionuclides due to the precision of the measurements. Tested: ¹¹C, ²²Na, ²⁶Al, ⁶⁵Zn, ⁸⁴Rb, ¹²²Sb, ¹²⁶I.
- \rightarrow New measurements would be very interesting.

Inclusion of nuclear structure

Nuclear Data Week 2018 | X. Mougeot | 57

list ^{Ceatech}

Beta transition probability per beta particle energy

$$P(W_e) dW_e = \frac{G_{\beta}^2}{2\pi^3} F_0 L_0 C(W_e) p_e W_e (W_0 - W_e)^2 dW_e$$

Fermi Shape
function factor

H. Behrens, W. Bühring, Electron Radial Wave functions and Nuclear Beta Decay, Oxford Science Publications (1982)

Theoretical shape factor

$$C(W_e) = \sum_{Kk_ek_\nu} \lambda_{k_e} \left[M_K^2(k_e, k_\nu) + m_K^2(k_e, k_\nu) - \frac{2\mu_{k_e}\gamma_{k_e}}{k_eW_e} M_K(k_e, k_\nu) m_K(k_e, k_\nu) \right]$$

This formulation allows the calculation of **beta transition of every nature** (allowed, forbidden unique and forbidden non-unique).

Decay constants, partial half-lives, branching ratios and log *ft* values are integrated quantities of the beta spectrum.

 $M_K(k_e, k_{\nu})$ and $m_K(k_e, k_{\nu})$ couple the nuclear component with the lepton component.

M_{κ} for beta minus transitions

St

ceatech

universite

These coefficients come from the coupling of the angular momenta of many particles

- \rightarrow 2 particles: Clebsch-Gordan coefficient (or 3j-symbol)
- \rightarrow 3 particles: 6j-symbol
- \rightarrow 4 particles: 9j-symbol

$$G_{KLs}(\kappa_{e},\kappa_{\nu}) = \imath^{l_{e}+l_{\nu}+L}(-1)^{j_{e}-j_{\nu}} \times \sqrt{(2s+1)(2K+1)(2j_{e}+1)(2j_{\nu}+1)} \times \sqrt{(2l_{e}+1)(2l_{\nu}+1)} \times C(l_{e}\ l_{\nu}\ L;00) \begin{cases} K \ s \ L \\ j_{e}\ \frac{1}{2}\ l_{e} \\ j_{\nu}\ \frac{1}{2}\ l_{\nu} \end{cases}$$

Racah's formulas allow the calculation of 3j-symbols, Clebsch-Gordan coefficients and 6j-symbols. 9j-symbols can be linked to a combination of 3j- or 6j-symbols.

The geometrical coefficients ensure the consistency of the formalism between the angular momenta of nucleons and leptons.

Nuclear matrix elements

Nuclear matrix elements are embedded within M_{κ} quantities.

In the case of single-particle matrix elements, an analytical integration over the transferred momentum q in the M_K quantities can be conducted.

This procedure is mathematically consistent with the usual statement for allowed transitions, namely that electron wave functions can be approximated by their value at the nucleus surface.

 \rightarrow Input from a nuclear structure model is necessary here.

St

ceatech

Two simple tests in spherical symmetry

1. Non-relativistic harmonic oscillator

$$V(r) = -V_0 + \frac{1}{2}(\hbar\omega_0)^2 r^2$$

No Coulomb potential: only nucleons, proton = neutron

Relativistic small component estimated from non-relativistic (large) component

$$f_{\kappa}(r) = \frac{\operatorname{sign}(\kappa)}{2m} \left(\frac{\mathrm{d}}{\mathrm{d}r} + \frac{\kappa + 1}{r} \right) g_{\kappa}(r)$$

2. Relativistic harmonic oscillator

Introduction of a purely imaginary vector potential: $\vec{p} \rightarrow \vec{p} + i\beta m\omega \vec{r}$ This approach induces a very strong spin-orbit coupling (ω/\hbar)

Protons \neq neutrons: introduction of a quadratic Coulomb potential \rightarrow only a shift in the harmonic oscillator frequency

Naive shell model

In the present study, a naive shell model has been used to determine the nucleon configurations.

> L. Valentin, Noyaux et particules : modèles et symétries, Paris Hermann (1989)

list

Ceatech

Nuclear Data Week 2018 | X. Mougeot | 63

CARNO

CEA LIST

e

 $\bar{\nu}_e$

list

ceatech

- Vertex of the weak interaction is assumed to be pointlike.
- No W^{\pm} boson is propagated.
- The effective coupling constant G_F is used.

nucleons are assumed Other to be spectators with respect to the weak decay process.

Description of the weak decay process

List Theoretical shape factor: ³H

Theoretical shape factor: ¹¹C

list

Theoretical shape factor: ¹³N

list

Theoretical shape factor: ²⁷Si

list

List Theoretical shape factor: ⁶³Ni

Theoretical shape factor: ²⁰⁷TI

list

Theoretical shape factor: ²⁰⁹**Pb**

list

Theoretical shape factor: ²⁴¹Pu

list

Nuclear Data Week 2018 | X. Mougeot | 73

Theoretical shape factor: ¹⁸⁷Re

list

Ceatech

Beta decay to and from an even-even ground state

Many particle matrix elements in the j - j coupling scheme are "simply" related to single particle matrix elements by a coefficient which depends on *K*:

 $\mathcal{M}_{KLs}^{\text{many part.}}(q^2) = \mathcal{C}(K) \times \mathcal{M}_{KLs}^{\text{sing. part.}}(q^2)$

A sum has to be performed over different configurations, weighted by C(K). This coefficient depends on fractional parentage coefficients, which are very difficult to calculate.

An even-even nucleus can be considered as the vacuum of particle-hole excitations used to describe adjacent nuclei.

The ground state of such reference nucleus is always 0⁺. A transition to or from this state is therefore constrained to a single *K* value, the spectrum shape being only normalized by $C^{2}(K)$.

From:
$$C(K) = \sqrt{2K_{\min} + 1}$$

To: $C(K) = (-1)^{j_{i,\text{part.}}-j_{i,\text{hole}}+K_{\min}}\sqrt{2K_{\min}+1}$

St

List Allowed transition of ¹⁴C decay

$$\begin{split} {}^{14}_{6}\text{C}_8 &\to {}^{14}_{7}\text{N}_7 \\ 0^+ &\to 1^+ \\ \big| \pi, 1p_{1/2}; \nu^{-1}, 1p_{1/2} \big\rangle \\ \mathcal{C}(1) &= \sqrt{3} \\ \text{E}_0 &= 156, 476(4) \text{ keV} \\ \text{t}_{1/2} \text{ exp.} &= 5700(30) \text{ a} \\ \text{t}_{1/2} \text{ NR} &= 0,009 \text{ a} \end{split}$$

 $t_{1/2} R = 0,012 a$

Nuclear Data Week 2018 | X. Mougeot | 76

Third forbidden unique transition of ⁴⁰K decay

list

Ceatech

Second forbidden non-unique transition of ³⁶Cl decay

list

Ceatech

Summary

Nuclear Data Week 2018 | X. Mougeot | 79

The precise knowledge of low-energy weak interaction decays is becoming an important limitation in many applicative and research fields. Both highprecision measurements and calculations are necessary to improve the situation.

We are urged to provide more information, better accuracy and better uncertainties than before. Evolution of the ENSDF format and supplementary databases are two possibilities which should be closely considered.

The BetaShape code is a first answer for beta decays. It has been designed to be fast and easy to use. This is a serious impediment for more precise, but more complicated, calculations.

Ongoing developments

Ongoing

- European EMPIR project MetroBeta (2016-2019): improved beta decay calculations. Inclusion of more precise nucleon wave functions from a semi-phenomenological nuclear mean-field approach, still in spherical symmetry. Will be used afterwards for electron captures.
- European EMPIR project MetroMMC (2018-2021): improved electron capture calculations. Development of an atomic code for high precision wave functions. Will be used afterwards for atomic effects in beta decays.

Future (European EMPIR project RealBq submitted in October, review in progress)

- Nuclear component: introduction of nuclear deformation and pairing correlations, which is expected to inherently account for configuration mixing.
- Atomic component: extension of exchange effect to forbidden beta decays.
- Uncertainties: estimate of theoretical components and propagation via a Monte Carlo method.

Thank you for your attention

Commissariat à l'énergie atomique et aux énergies alternatives Institut List | CEA SACLAY NANO-INNOV | BAT. 861 – PC142 91191 Gif-sur-Yvette Cedex - FRANCE www-list.cea.fr

Établissement public à caractère industriel et commercial | RCS Paris B 775 685 019