

Measurement of top quark pair production in association with a Higgs or Gauge boson at the LHC with the ATLAS detector

- The Standard Model of Particle Physics
- The Large Hadron Collider and the ATLAS detector
- Physics results: coupling of the top quark to Higgs boson
- Perspectives

The Standard Model of Particle Physics

Fermions (spin 1/2 particles):

Quarks

- electric charge 2/3 or -1/3
- . three colours
- cannot be found isolated in nature, must exist as **hadrons**

Leptons

neutrinos, **electrically neutral charged leptons**, -1

* the basic constituents of **matter** (three families)

Ordinary matter: what we are made of

The Standard Model of Particle Physics

Elementary particles cannot be broken down Truly point like particles

* the basic constituents of **matter** (three families)

* the force carriers of the fundamental interactions

Four forces govern our life

And the newly found Higgs to give us mass!

What is the origin of particle masses ?

Volume of sphere proportional to particle mass

Top quark is special

Volume of sphere proportional to particle mass

Top quarks

are crucial to pin down the Standard Model nature of the Higgs can play an important role in the observations related to the electroweak symmetry breaking

The Standard Model does not explain the complete picture

- Despite the SM success, several questions remain unanswered
- * the nature of dark matter and dark energy
- the hierarchy problem: Higgs boson mass (~weak scale)
 much lighter than the Planck mass
- * why only three families of elementary particles ?
- * the non-zero neutrino masses
- * the matter/antimatter imbalance in the Universe
- * gravitation is missing in such theoretical scheme, ...
- Extensive search for possible SM extensions, but not signs of New Physics yet

... we just know the tip of the iceberg

The Large Hadron Collider: factory of top quarks and more

Inelastic proton-proton reactions 10 ⁹ / s					
bb pairs	5 10 ⁶ /s				
tt pairs	8 /s				
$W \rightarrow e \nu$	150 / s				
$Z \rightarrow e e$	15 / s				
Higgs	0.5 /s				
Gluino, Squarks (1 TeV)	0.03 /s				

Run-I phase (2010-2012) $\sqrt{s} = 7 \text{ TeV}, L \sim 5 \text{ fb}^{-1}$ $\sqrt{s} = 8 \text{ TeV}, L \sim 21 \text{ fb}^{-1}$

Run-II phase (2015-2018) $\sqrt{s} = 13 \text{ TeV}, L \sim 140 \text{ fb}^{-1} !!!!!$

Only 4% of data collected so far at the LHC

20/12/18

Reaching tt+X tiny signals

tt+X(W,Z,H) ~18-30 events/h

Very complex analysis with several final state objects.

Top quark couplings

Top quark couples to other SM fields through its **gauge and Yukawa interactions**. $t \rightarrow Wb$ coupling measured already at the Tevatron.

High statistics at the LHC: *tt* + massive bosons (*Z*, *W* and *H*) becomes available

 \rightarrow Observation of these processes reported at the LHC for the first time!!

Flagships measurements but very challenging, both experimental & theoretical side

Top quark couplings

Decay of the top quark and of the Higgs boson

Full detector shining

Neutrinos

from momentum conservation

Also hadronic taus

Several challenges...

Trigger challenge

How to select ~1500 out of 20M events per second while keeping the interesting (including unknown) physics

Computing challenge

How to reconstruct, store and distribute ~1500 increasingly complex events per second (~50 PB per experiment per year \rightarrow now >300PB) [size: ~1MB/event]

Analysis challenge

Maintain high (and as much as possible stable) reconstruction and identification efficiency for physics objects (e, μ , τ , jets, E_T^{miss} , b-jets) up to the highest pile-up

And also physics modelling uncertainties

Monte Carlo generators used at LHC include multi-leg or fixed NLO+PS predictions.

Theoretical modelling uncertainties are typically important/dominant.

Strategies to reach the ultimate precision:

- Experimental side: measurements that allow constraining these uncertainties from data
 - differential measurements, ratios, etc.
 - provide results at particle level in a fiducial region experimentally accessible
 - → allow to improve MC tuning
- Theoretical side: provide higher order calculations (NNLO corrections)

Challenging backgrounds

Categorization by Higgs boson decay:

Evidence reported one year ago (2015+2016 dataset)

Categorization by Higgs boson decay:

Evidence of *tt*+*H* process

4.2σ (3.8σ exp) [36 fb⁻¹@13 TeV]

Phys. Rev. D 97 (2018) 072003

And with more data... observation of *tt+H* process!

Categorization by Higgs boson decay:

tt+H (bb)

• Fermion-only production and decay 🤁

- Higgs boson reconstruction possible, but challenging due to
- multiple *b*-quarks and additional radiation in the final state ...
- Irreducible tt+bb background: large theoretical uncertainty

tt+H (bb): irreducible tt+bb background

Fermion-only production and decay

- Higgs boson reconstruction possible, but challenging due to multiple *b*-quarks and additional radiation in the final state ...
- Irreducible tt+bb background: large theoretical uncertainty

Biggest challenge: good and precise modelling of the *tt*+HF (≥1b, ≥1c) background

Nominal *tt*+jets sample (Powheg+Pythia8): 5-flavour scheme ($m_b=0$) Relative contribution of *tt*+>1b subcomponents scaled to *tt*+*bb* NLO predictions by Sherpa+OpenLoops (4-flavour scheme, $m_b!=0$)

tt+H (bb): divide and conquer

Fermion-only production and decay C

- Higgs boson reconstruction possible, but challenging due to
- multiple *b*-quarks and additional radiation in the final state
 Irreducible *tt+bb* background has large theory uncertainty

Analysis strategy

Categorization

1ℓ & 2ℓ (e,μ) # of jets b-tag score of jets (4 working points)

Several categories with very different fractions of backgrounds tt+light, tt+ \geq 1c, tt+ \geq 1b and tt+H signal + Boosted category (1 top quark & $H \rightarrow bb$ in two large-cone jets)

tt+H (bb): divide and conquer

 $(5,5) \begin{array}{|c|c|c|c|c|c|c|} SR_1 & SR_2 & SR_3 \\ \hline (5,5) & (5,4) & (5,3) & (5,2) & (4,4) & (4,3) & (4,2) & (3,3) & (3,2) & (2,2) & (5,1) & (4,1) & (3,1) & (2,1) & (1,1) & (3^{rd}, 4^{th}) & jet \\ \hline & b-tagging \\ discriminant \\ BRS & t\bar{t} + light & t\bar{t} + \ge 1c & t\bar{t} + \ge 1b \end{array}$

20/12/18

tt+H (bb): several control and signal regions

tt+H (*bb*): very sophisticated analysis

tt+H (bb): cascade of MVAs

• Fermion-only production and decay 代

- Higgs boson reconstruction possible, but challenging due to
- multiple *b*-quarks and additional radiation in the final state .
- Irreducible tt+bb background has large theory uncertainty

Analysis strategy - cascade of MVAs

Categorization

Intermediate BDT (in SRs)

Reco BDT, matrix element &

1ℓ & 2ℓ (e,µ) # of jets

b-tag score of jets (4 working points)

Final BDT

BDT: ttH vs. bkg

20/12/18

Signal extraction: Binned profile likelihood fit to all signal and control regions. Normalization of $tt+\geq 1b$ and $tt+\geq 1c$ left free-floating in the fit.

Significance: 1.4 σ (expected 1.6 σ) NF(tī+≥1b) = 1.24 ± 0.10

 $NF(t\bar{t}+\geq 1c) = 1.63 \pm 0.23$

Dominant systematics

- Modelling of tt+≥1b (±0.46)
- Limited MC statistics (±0.30)
- Jet flavour tagging (±0.16)
- Jet energy scale & resolution (±0.16)

Systematically limited: Requires improvements from both theoretical and experimental communities!

tt+H (multi-leptons)

- Targeting: ZZ*, WW* and ττ decays combined with leptonic *tt* decays - distinct multi-lepton signatures*
- Higgs reconstruction is difficult

*ttH(ZZ \rightarrow 4 ℓ) events within H \rightarrow ZZ \rightarrow 4 ℓ

- Targeting: **ZZ**^{*}, **WW**^{*} and ττ decays combined with leptonic *tt* decays - distinct multi-lepton signatures* 😲
- Higgs reconstruction is difficult

*ttH(ZZ \rightarrow 4 ℓ) events within $H \rightarrow 77 \rightarrow 4\ell$

ATLAS Simulation

 $H \rightarrow other$

 $H \rightarrow \tau \tau$

 $H \rightarrow ZZ$

 $H \rightarrow WW$

2ISS+ Ithad

210S+ 12 had

31+ hrhad

√s = 13 TeV

Categorization

11+2Thad

- Targeting: ZZ^* , WW^* and $\tau\tau$ decays combined with leptonic *tt* decays - distinct multi-lepton signatures* 😲
- Higgs reconstruction is difficult

*ttH(ZZ \rightarrow 4 ℓ) events within $H \rightarrow 77 \rightarrow 4\ell$

Main backgrounds

 Very different background composition tt+W *tt*+7 VV NonPrompt

dedicated control regions for constraining irreducible backgrounds

mainly from tt (semileptonic b-decay, v conversions), estimated from data

- Targeting: ZZ*, WW* and ττ decays combined with leptonic *tt* decays - distinct multi-lepton signatures*
- Higgs reconstruction is difficult

•

*ttH(ZZ \rightarrow 4 ℓ) events within H \rightarrow ZZ \rightarrow 4 ℓ

Main backgrounds

Very different background composition
 tt+W tt+Z VV NonPrompt

dedicated control regions for constraining irreducible backgrounds

mainly from tt (semileptonic b-decay, γ conversions), *estimated from data*

- Targeting: ZZ*, WW* and ττ decays combined with leptonic *tt* decays - distinct multi-lepton signatures*
- Higgs reconstruction is difficult

• *ti

*ttH(ZZ \rightarrow 4 ℓ) events within H \rightarrow ZZ \rightarrow 4 ℓ

Main backgrounds

Very different background composition
 tt+W tt+Z VV NonPrompt

dedicated control regions for constraining irreducible backgrounds

mainly from tt (semileptonic b-decay, γ conversions), *estimated from data*

Object level discrimination:

Isolation BDT to reduce non-prompt background, Charge misID BDT

- lepton and overlapping track jets properties
- lepton track/calorimeter isolation variables

Factor O(20) rejection for leptons from b-hadrons

- Targeting: ZZ^{*}, WW^{*} and ττ decays combined with leptonic *tt* decays - distinct multi-lepton signatures^{*}
- Higgs reconstruction is difficult

*

*ttH(ZZ \rightarrow 4 ℓ) events within H \rightarrow ZZ \rightarrow 4 ℓ

Main backgrounds

Very different background composition
 tt+W tt+Z VV NonPrompt

dedicated control regions for constraining irreducible backgrounds

mainly from tt (semileptonic b-decay, γ conversions), *estimated from data*

Object level discrimination:

Isolation BDT to reduce non-prompt background, Charge misID BDT

- lepton and overlapping track jets properties
- lepton track/calorimeter isolation variables

Event level discrimination

	2ℓSS	3ℓ	4ℓ	1ℓ + $2\tau_{had}$	$2\ell SS+1\tau_{had}$	$2\ell OS + 1\tau_{had}$	3ℓ + $1\tau_{had}$
BDT trained against	Fakes and $t\bar{t}V$	$t\bar{t}, t\bar{t}W, t\bar{t}Z, VV$	$t\bar{t}Z$ / -	tī	all	$t\bar{t}$	-
Discriminant	2×1D BDT	5D BDT	Event count	BDT	BDT	BDT	Event count
Number of bins	6	5	1/1	2	2	10	1
Control regions	-	4	-	-	-	-	-

tt+H (multi-leptons): background validation

20/12/18

tt+H (multi-leptons): results

Signal extraction: Binned profile likelihood fit to all signal and control regions.

Channel	Significance		
	Observed	Expected	
$2\ell OS+1\tau_{had}$	0.9σ	0.5σ	
1ℓ + $2\tau_{\rm had}$	-	0.6σ	
4ℓ	-	0.8σ	
$3\ell + 1\tau_{had}$	1.3σ	0.9σ	
$2\ell SS+1\tau_{had}$	3.4σ	1.1σ	
3ℓ	2.4σ	1.5σ	
2ℓSS	2.7σ	1.9σ	
Combined	4.1σ	2.8σ	

Signal strength: $\mu = \sigma / \sigma_{SM}$

4.1 σ (expected 2.8 σ)
tt+*H* (multi-leptons): results

Signal extraction: Binned profile likelihood fit to all signal and control regions.

Signal strength: $\mu = \sigma / \sigma_{SM}$

Dominant systematics

tt+H theory cross-section unc. (+0.20,-0.10) Jet energy scale/resolution (±0.17) Non-prompt e/µ (±0.14) large contribution from limited CR stat.

Systematic ~ statistical unc. New data will improve the precision on channels that are still statistically limited and help constraining tt+Z & tt+W background

tt+*H* (multi-leptons): results

Signal extraction: Binned profile likelihood fit to all signal and control regions.

Signal strength: $\mu = \sigma / \sigma_{SM}$

- Compatibility (7 chan.) = 34%
- Alternative fit:

ftZ and ftW normalisation free-floating very similar result,15% loss in sensitivity

• Small rate 😕

 Higgs boson can be reconstructed as a "narrow" peak, side-bands can be used to estimate the background.

Analysis strategy (new!)

- Categorization based on *tt* decay: **leptonic** ($\geq 1\ell$) and **hadronic** (0ℓ)
- Further categorization based on XGBoost BDT discriminant value: 4 hadronic and

(events w/ low BDT scores rejected)

3 leptonic categories

Input variables to XGBoost BDT: photons 4-vectors (p_T/m_{yy}) , jets, E_T^{miss} (both cat), lepton(s) (lep cat), b-tag (had cat)

Training tt+H (from simulation) vs. main backgrounds: $\gamma\gamma$, $tt+\gamma\gamma$ (from data CRs), other *H* (from simulation)

• Small rate 😕

 Higgs boson can be reconstructed as a "narrow" peak, (side-bands can be used to estimate the background.

Analysis strategy (new!)

- Categorization based on tt decay: leptonic ($\geq 1\ell$) and hadronic (0ℓ)
- Further categorization based on XGBoost BDT discriminant value: 4 hadronic and

(events w/ low BDT scores rejected)

3 leptonic categories

Input variables to XGBoost BDT: photons 4-vectors (p_T/m_{vv}), jets, E_{T}^{miss} (both cat), lepton(s) (lep cat), b-tag (had cat)

Training *tt*+*H* (from simulation) vs. main backgrounds: $\gamma\gamma$, tt+ $\gamma\gamma$ (from data CRs), other H (from simulation)

María Moreno Llácer – BNL Leona Woods lectureship: seminar 20/12/18

tt+H (γγ): results

Background estimation and signal extraction

performed by simultaneous **unbinned fit** of **m**_{vv} spectra (105-160 GeV) in all **7 categories**:

- Higgs signal parametrization: double-sided Crystal Ball function
- Continuous background parametrization: smooth function (power-law or exponential)

Dominant uncertainties

statistical (~29%) *tt+H* parton shower model (8%) photon isolation, energy resolution & scale (8%) jet energy scale & resolution (6%)

Significance: 4.1 σ (expected 3.7 σ)

tt+*H* (γγ & *ZZ**→4*I*)

• Extremely low rate

Very clean final state with high S/B

Now	
@80fb-1	

	Expected						
Bin	$t\bar{t}H$ (signal)	Non- $t\bar{t}H$ Higg	gs Non-Higgs	Total	Total		
	-	H	$\rightarrow \gamma \gamma$				
Had 1	4.2(11)	0.49(33)	1.76(55)	6.4(13)	10		
Had 2	3.41(74)	0.69(56)	7.5(11)	11.6(15)	14		
Had 3	4.70(88)	2.0(17)	32.9(22)	39.6(32)	47		
Had 4	3.00(55)	3.2(31)	55.0(28)	61.3(47)	67		
Lep 1	4.5(10)	0.25(9)	2.19(59)	6.9(12)	7		
Lep 2	2.23(39)	0.27(10)	4.59(91)	7.1(10)	7		
Lep 3	0.82(18)	0.30(13)	4.58(91)	5.70(88)	5		
	-	$H \rightarrow$	$ZZ^* \to 4\ell$				
Had 1	0.169(31)	0.021(7)	0.008(8)	0.198(33)	0		
Had 2	0.216(32)	0.20(9)	0.22(12)	0.63(16)	0		
Lep	0.212(31)	0.0256(23)	0.015(13)	0.253(34)	0		

María Moreno Llácer – BNL Leona Woods lectureship: seminar 20/12/18

tt+H combination

tt+H combination

ttH cross-section measurement and top-Yukawa coupling

Imagine *ttH* is measured to be different from SM...

Who is the responsible ?

Eur. Phys. J. C (2017) 77: 887

The power of differential measurements:

-5

 $\sigma_{\rm NLO}^{\rm BSM}/\sigma_{\rm NLO}^{\rm SM}$

SM

1.1

0.8

Variations in Higgs-self coupling (λ_3) will affect the shape of kinematic, e.g. low pt(H) region would be highly affected while it is not deformed in the tail...

New Physics effects?

: differential measurements

20/12/18

María Moreno Llácer – BNL Leona Woods lectureship: seminar

ZH WH

ttH ggF

VBF

– tHj

K₃

10

... need to explore *ttH* differential regime ...

and also further reduce uncertainties in top quark mass

Expectations for HL-LHC: $\kappa_t\!<\!\!4\%$ and $m_{top}\!\sim\!\!0.2~GeV$ (0.1%)

- Outstanding level of precision reached and continue pushing the limit.
- Common effort with the TH/MC community.
- Only 4% of the data have been collected so far, \rightarrow a vast potential for discoveries!

THANKS FOR YOUR ATTENTION

MERRY CHRISTMAS

BACK-UP

Process	Event generator	ME order	Parton Shower	PDF	Tune
$t\bar{t}H$	MG5_AMC	NLO	Pythia 8	NNPDF 3.0 NLO [71]	A14
	$(MG5_AMC)$	(NLO)	(Herwig++)	(CT10 [72])	(UE-EE-5)
tHqb	$MG5_AMC$	LO	Pythia 8	CT10	A14
tHW	$MG5_AMC$	NLO	HERWIG++	CT10	UE-EE-5
$t\bar{t}W$	$MG5_AMC$	NLO	Pythia 8	NNPDF 3.0 NLO	A14
	(Sherpa $2.1.1)$	(LO multileg)	(Sherpa $)$	(NNPDF 3.0 NLO)	(Sherpa default)
$t\bar{t}(Z/\gamma^* \to ll)$	$MG5_AMC$	NLO	Pythia 8	NNPDF 3.0 NLO	A14
	(Sherpa $2.1.1)$	(LO multileg)	(Sherpa $)$	(NNPDF 3.0 NLO)	(Sherpa default)
tZ	$MG5_AMC$	LO	Pythia 6	CTEQ6L1	Perugia2012
tWZ	$MG5_AMC$	NLO	Pythia 8	NNPDF 2.3 LO	A14
$tar{t}t,tar{t}tar{t}$	$MG5_AMC$	LO	Pythia 8	NNPDF 2.3 LO	A14
$t\bar{t}W^+W^-$	$MG5_AMC$	LO	Pythia 8	NNPDF 2.3 LO	A14
$t ar{t}$	Powheg-BOX v2 $[73]$	NLO	Pythia 8	NNPDF 3.0 NLO	A14
$tar{t}\gamma$	MG5_AMC	LO	Pythia 8	NNPDF 2.3 LO	A14
s-, t -channel,	Powheg-BOX v1 [74,75,76]	NLO	Pythia 6	CT10	Perugia2012
Wt single top					
$VV(\rightarrow llXX),$	Sherpa 2.1.1	MEPS NLO	Sherpa	CT10	Sherpa default
qqVV, VVV					
$Z \rightarrow l^+ l^-$	Sherpa 2.2.1	MEPS NLO	Sherpa	NNPDF 3.0 NLO	Sherpa default

Systematic source	Description	<i>tī</i> categories
$t\bar{t}$ cross-section	Up or down by 6%	All, correlated
$k(t\bar{t} + \ge 1c)$	Free-floating $t\bar{t} + \ge 1c$ normalisation	$t\bar{t} + \geq 1c$
$k(t\bar{t} + \ge 1b)$	Free-floating $t\bar{t} + \ge 1b$ normalisation	$t\bar{t} + \ge 1b$
Sherpa5F vs. nominal	Related to the choice of the NLO generator	All, uncorrelated
PS & hadronisation	Powheg-Box+Herwig 7 vs. Powheg-Box+Pythia 8	All, uncorrelated
ISR / FSR	Variations of $\mu_{\rm R}$, $\mu_{\rm F}$, $h_{\rm damp}$ and A14 Var3c parameters	All, uncorrelated
$t\bar{t} + \geq 1c$ ME vs. inclusive	MG5_aMC@NLO+HERWIG++: ME prediction (3F) vs. incl. (5F)	$t\bar{t} + \geq 1c$
$t\bar{t} + \geq 1b$ Sherpa4F vs. nominal	Comparison of $t\bar{t} + b\bar{b}$ NLO (4F) vs. Powheg-Box+Pythia 8 (5F)	$t\bar{t} + \geq 1b$
$t\bar{t} + \ge 1b$ renorm. scale	Up or down by a factor of two	$t\bar{t} + \ge 1b$
$t\bar{t} + \geq 1b$ resumm. scale	Vary $\mu_{\rm Q}$ from $H_{\rm T}/2$ to $\mu_{\rm CMMPS}$	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 1b$ global scales	Set μ_Q , μ_R , and μ_F to μ_{CMMPS}	$t\bar{t} + \geq 1b$
$t\bar{t} + \ge 1b$ shower recoil scheme	Alternative model scheme	$t\bar{t} + \ge 1b$
$t\bar{t} + \geq 1b \text{ PDF} (\text{MSTW})$	MSTW vs. CT10	$t\bar{t} + \ge 1b$
$t\bar{t} + \geq 1b \text{ PDF} (\text{NNPDF})$	NNPDF vs. CT10	$t\bar{t} + \ge 1b$
$t\bar{t} + \geq 1b$ MPI	Up or down by 50%	$t\bar{t} + \ge 1b$
$t\bar{t} + \geq 3b$ normalisation	Up or down by 50%	$t\bar{t} + \ge 1b$

- Many sources of modelling uncertainty considered:
 - Generator: Powheg+Pythia8 vs. Sherpa (5F)
 - Parton shower: Powheg+Pythia8 vs. Powheg+Herwig7
 - 5F vs. 4F in Sherpa+OpenLoops
 - Scale variations in Sherpa+OpenLoops
- All $t\bar{t}$ +jets modelling uncertainties uncorrelated between $t\bar{t}$ + \geq 1b/ \geq 1c/light
- Scale variation uncertainties correlated across each $t\bar{t}+\geq 1b$ sub-component

Extraction of top quark pole mass from N^{0,1+}_{iet},M(tt),y(tt)]

• used α_s from each PDF set ($\alpha_s = 0.118$ in CT and HERAPDF, $\alpha_s = 0.119$ in ABMP)

- precise determination of m_t^{pole} is possible using these data
- no significant dependence on PDF set

Simultaneous PDF+ α_s +top quark pole mass fit

- followed standard approach: using HERA DIS data only, or HERA + $t\bar{t}$ data to demonstrate added value from $t\bar{t}$ on PDF and α_s determination
- settings follow HERAPDF2.0 fit (very similar to TOP-14-013), use xFitter-2.0.0
- input data: combined HERA DIS [1506.06042] + $t\bar{t}$ (further details in BACKUP)

 $\alpha_s(M_Z) = 0.1135 \pm 0.0016 (\text{fit})^{+0.0002}_{-0.0004} (\text{mod})^{+0.0008}_{-0.0001} (\text{par})^{+0.0011}_{-0.0005} (\text{scale}) = 0.1135^{+0.0021}_{-0.0017} (\text{total})$ $m_t^{\text{pole}} = 170.5 \pm 0.7 (\text{fit})^{+0.1}_{-0.1} (\text{mod})^{+0.0}_{-0.1} (\text{par})^{+0.3}_{-0.3} (\text{scale}) \text{ GeV} = 170.5 \pm 0.8 (\text{total}) \text{ GeV}$

 \rightarrow two SM parameters are simultaneously determined from these data to high precision with only weak correlation between them ($\rho = 0.3$) + constraints on PDFs (next slides)

https://indico.cern.ch/event/746611/contributions/3202851/attachments/1755641/

Top quark coupling to gluons and $g \rightarrow bb$ splitting: tt+bb

Generator sample	Process	Matching	Tune	Use
Powheg-Box v2 + Pythia 8.210	$t\bar{t}$ NLO	Powheg $h_{damp} = 1.5 m_t$	A14	nom.
MadGraph5_aMC@NLO + Pythia 8.210	$t\bar{t} + V/H$ NLO	MC@NLO	A14	nom.
Powheg-Box v2 + Pythia 8.210 RadLo Powheg-Box v2 + Pythia 8.210 RadHi Powheg-Box v2 + Herwig 7.01 Sherpa 2.2.1 $t\bar{t}$	$tar{t}$ NLO $tar{t}$ NLO $tar{t}$ NLO $tar{t}$ +0,1 parton at NLO +2,3,4 partons at LO	Powheg $h_{damp} = 1.5m_t$ Powheg $h_{damp} = 3.0m_t$ Powheg $h_{damp} = 1.5m_t$ MePs@Nlo	A14Var3cDown A14Var3cUp H7UE SHERPA	syst. syst. syst. syst.
MadGraph5_aMC@NLO + Pythia 8.210	tŦ NLO	$\begin{array}{l} \mathrm{MC@NLO} \\ \mathrm{MC@NLO} \\ \mathrm{Powheg} \; h_{\mathrm{damp}} = H_{\mathrm{T}}/2 \\ \mathrm{Powheg} \; h_{\mathrm{damp}} = H_{\mathrm{T}}/2 \\ \mathrm{Powheg} \; h_{\mathrm{damp}} = H_{\mathrm{T}}/2 \end{array}$	A14	comp.
Sherpa 2.2.1 $t\bar{t}b\bar{b}$ (4FS)	tŦbb NLO		Sherpa	comp.
Powheg-Box v2 + Pythia 8.210 $t\bar{t}b\bar{b}$ (4FS)	tŦbb NLO		A14	comp.
PowHel + Pythia 8.210 (4FS)	tŦbb NLO		A14	comp.
PowHel + Pythia 8.210 (5FS)	tŦbb NLO		A14	comp.

Top quark coupling to gluons and $g \rightarrow bb$ splitting: tt+bb

Top coupling to vector bosons: *tt+Z/W*

ttZ: directly sensitive to neutral current top coupling

ttW: charge asymmetric process, source of same-sign leptons,

 \rightarrow Both are backgrounds for new physics searches and ttH(ML) process

Top coupling to vector bosons: *tt+Z/W*

ttZ: directly sensitive to neutral current top coupling

ttW: charge asymmetric process, source of same-sign leptons,

 \rightarrow Both are backgrounds for new physics searches and ttH(ML) process

tt+Z/W: many experimental signatures

• Experimental analyses focus on 2I OS or SS, 3I and 4I channels with e and/or μ .

tt+Z/W: several analysis regions

tt+Z

tt+Z/W: cross-section measurements

2D: tt+Z vs. tt+W

Uncertainty	$\sigma_{t\bar{t}Z}$	$\sigma_{t\bar{t}W}$
Luminosity	2.9%	4.5%
CR and simulated sample statistics	1.8%	7.6%
JES/JER	1.9%	4.1%
Flavor tagging	4.2%	3.7%
Other object-related	3.7%	2.5%
Data-driven background normalization	2.4%	3.9%
Modeling of backgrounds from simulation	5.3%	2.6%
Background cross sections	2.3%	4.9%
Fake leptons and charge misID	1.8%	5.7%
$t\bar{t}Z$ modeling	4.9%	0.7%
$t\bar{t}W$ modeling	0.3%	8.5%
Total systematic	10.2%	16.0%
Statistical	8.4%	15.2%
Total	13.0%	22.2%

Inclusive cross-sections

Top quark coupling to photons: $tt+\gamma$

0.5

0.5

50

100

150

200

250

 $p_{\tau}(\gamma)$ [GeV]

Other/Nom.

• 7 TeV data: Observation of $tt+\gamma$ (fiducial cross-section)

- First differential measurements with 8 TeV data in single lepton channel: photon p_{τ} and |n|
- At 13 TeV: single and dilepton channels explored $p_T(\gamma)$, $|\eta(\gamma)|$, $\Delta R(\gamma, \ell)_{min}$, $[\Delta \eta(\ell, \ell), \Delta \Phi(\ell, \ell)]$

In agreement with the NLO QCD+LO EW prediction Main uncertainties

20/12/18

- Single-lepton: jet-related and background modelling
- Dilepton: data statistics, followed by signal and background modelling

María Moreno Llácer – BNL Leona Woods lectureship: seminar

300

tt+H (multi-leptons): systematic uncertainties

$$L(\mu,\theta) = L_{Pois}(\mu,\theta) \cdot \prod_{p} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{\theta_p^2}{2}\right) \cdot \prod_{i,j} \frac{1}{\sqrt{2\pi}\sigma_{\gamma,ij}} \exp\left(-\frac{(\gamma_{ij}-1)^2}{2\sigma_{\gamma,ij}^2}\right)$$

Systematic uncertainty	Type	Components
Luminosity	Ν	1
Pileup reweighting	SN	1
Physics Objects		
Electron	SN	6
Muon	SN	15
$ au_{ m had}$	SN	10
Jet energy scale and resolution	SN	28
Jet vertex fraction	SN	1
Jet flavor tagging	SN	126
$E_{ m T}^{ m miss}$	SN	3
Total (Experimental)	_	191
Data-driven non-prompt/fake leptons and charge misassignment		
Control region statistics	SN	38
Light-lepton efficiencies	SN	22
Non-prompt light-lepton estimates: non-closure	Ν	5
γ -conversion fraction	Ν	5
Fake $\tau_{\rm had}$ estimates	N/SN	12
Electron charge misassignment	SN	1
Total (Data-driven reducible background)	_	83
$t\bar{t}H$ modeling		
Cross section	Ν	2
Renormalization and factorization scales	\mathbf{S}	3
Parton shower and hadronization model	SN	1
Higgs boson branching fraction	Ν	4
Shower tune	SN	1
$t\bar{t}W \ {f modeling}$		
Cross section	Ν	2
Renormalization and factorization scales	\mathbf{S}	3
Matrix-element MC event generator	SN	1
Shower tune	SN	1
$t\bar{t}Z {f modeling}$		
Cross section	Ν	2
Renormalization and factorization scales	\mathbf{S}	3
Matrix-element MC event generator	SN	1
Shower tune	SN	1
Other background modeling		
Cross section	Ν	15
Shower tune	SN	1
Total (Signal and background modeling)	_	41
Total (Overall)	-	315

$$L_{Pois}(\mu) = \prod_{j}^{reg} \prod_{i}^{bins(j)} \frac{(\mu s_{ij} + b_{ij})^{n_{ij}}}{n_{ij}!} \exp\left(-(\mu s_{ij} + b_{ij})\right)$$

One parameter of interest: μ (ttH) 315 nuisance parameters

20/12/18

tt+H (multi-leptons): object definition

Thad

Icolation	$ \begin{array}{c c} e \\ L & L^{\dagger} & L^{\ast} \\ \hline No & Vor \end{array} $	Г Т*	L L [†]	$\frac{\mu}{L^*/T/T^*}$	Medium BDT ID to reject jets (1M, 1T in 1ℓ+2τ)
Non-prompt lepton BDT	No Tes	V _{es}	No	Ves	pt > 25 GeV
Identification Charge missesime est sets BDT	Loose	Tight	L	voose	BDT to reject el faking т
Transverse impact parameter significance, $ d_0 /\sigma_{d_0}$	NO < 5	res		NO < 3	т-µ overlap removal
Longitudinal impact parameter, $ z_0 \sin \theta $		< 0.5 1	nm		
					b-jet veto
L = Loose T = L t = + Loose isolated T* =	= Tight (PL = + QMisID	l isol MVA	ated) veto	(el only)	т _{had} vertex is PV
		101 07 1	VOLO	(eromy)	
L [^] = + PLI Isolated					Jets $p_T > 25$ GeV
					BJets MV2c10 70% WP

	$2\ell SS$	3ℓ	4ℓ	$1\ell + 2\tau_{had}$	$2\ell SS+1\tau_{had}$	$2\ell OS + 1\tau_{had}$	$3\ell + 1\tau_{had}$
Light lepton	$2T^*$	$1L^*, 2T^*$	2L, 2T	$1\mathrm{T}$	$2T^*$	$2\mathrm{L}^{\dagger}$	$1L^{\dagger}, 2T$
$ au_{ m had}$	0M	OM	—	1T, 1M	$1\mathrm{M}$	$1\mathrm{M}$	$1\mathrm{M}$
$N_{\rm jets}, N_{b-\rm jets}$	$\geq 4, = 1, 2$	$\geq 2, \geq 1$	$\geq 2, \geq 1$	$\geq 3, \geq 1$	$\geq 4, \geq 1$	$\geq 3, \geq 1$	$\geq 2, \geq 1$

María Moreno Llácer – BNL Leona Woods lectureship: seminar 20/12/18

tt+H (multi-leptons): non-prompt and fake leptons

Method [parametr.]		2ℓSS+0т		3ℓ+0т	4 ℓ	2 <i>ℓ</i> SS+1⊤	Other т channels
Non- prompt lepton	DD (MM) el: [p _T , NBjets] μ: [p _T , dR(μ,j)]			pseudo- DD (Fake SF)	DD (FF) el/µ: [p⊤]	MC (very small)	
DD/MC	ee: 2.0±0.5	еµ: 1.7±0.4	μμ: 1.5 ±0.5	SR: 1.8 ± 0.8			

tt+H (multi-leptons): fake taus

Estimate method [parametrisation]	1ℓ+2т	2ℓOS+1τ	2ℓSS+1τ	3ℓ+1т
Fake tau	DD (SS data)	DD (FF) [p _T]	pseudo-DD (MC 2ℓOS+1	correction with т DD SF)

tt+H (multi-leptons): results

For most of the channels, MVAs are used to separate tt+H signal from tt+V and tt+jets (fakes). One of the most discriminant variables in nJets. Thus, tt+W/Z+jets estimation seems relevant...

 $tt+H \rightarrow 4W+2b \rightarrow 6j \text{ (inc. 2b)}+2ISS + E_{T,miss} \text{ or } 4j \text{ (inc. 2b)}+3I+_{T,miss} \text{ or } 4j \text{ (inc. 2b)}+4I+E_{T,miss}$ $tt+V \rightarrow 2W+V+2b \rightarrow 4j \text{ (inc. 2b)}+2ISS + E_{T,miss} \text{ or } 2-4j \text{ (inc. 2b)}+3I+E_{T,miss} \text{ or } 2j \text{ (inc. 2b)}+4I+E_{T,miss}$

 $tt \rightarrow 2W+2b \rightarrow 4j$ (inc. 2b)+1I+E_{T,miss}

or 2j (inc. 2b)+2lOS +E_{T.miss} [1 jet fakes a lepton]

Accuracy of *tt+Z/W* predictions of ~12-13% (NLO QCD+EW):

			$\sigma_{t\bar{t}Z} = 0.8393 \pm ^{+9.6\%}_{-11.3\%}$ (so	cale) $^{+2.8\%}_{-2.8\%}$ (PDF) $^{+1.8\%}_{-2.8\%}$	$\frac{2.8\%}{2.8\%}(\alpha_{\rm S})$ pb
$\mu = 1.6 \begin{array}{c} +0.3 \\ -0.3 \end{array}$ (stat.) $\begin{array}{c} +0.4 \\ -0.3 \end{array}$	(syst.)		$\sigma_{t\bar{t}W} = 0.6008 \pm ^{+12.9\%}_{-11.5\%} (sc$	cale) $^{+2.0\%}_{-2.0\%}$ (PDF) $^{+2.0\%}_{-2.0\%}$	$2.7\% (\alpha_{\rm S})$ pb
Uncertainty Source $t\bar{t}H$ modeling (cross section)	▲ +0.20	-0.09	$\mu = 1.23 + 0.45 - 0.43$	^{+0.26} (stat.) ^{+0.4} -0.3	³⁷ (syst.)
Non-prompt light-lepton estimates	+0.18 +0.15	-0.13	Source /	Uncertainty [%]	<u>Δμ/μ[%]</u>
Jet flavor tagging and τ_{had} identification	+0.11	-0.09	e, μ selection efficiency	2–4	11
ttW modeling	+0.10	-0.09	$\tau_{\rm h}$ selection efficiency	5	4.5
$t\bar{t}Z$ modeling	+0.08	-0.07	b tagging efficiency	2–15 57	6
Other background modeling	+0.08	-0.07	Reducible background estimate	10_40	11
Luminosity	+0.08	-0.06	Reducible background estimate	10-10	11
$t\bar{t}H$ modeling (acceptance)	+0.08	-0.04	Jet energy calibration	2–15 65	5
Fake $ au_{had}$ estimates	+0.07	-0.07	$\tau_{\rm h}$ energy calibration	3	1
Other experimental uncertainties	+0.05	-0.04	Theoretical courses	~10	10
Simulation sample size	+0.04	-0.04	Theoretical sources	~10	12
Charge misassignment	+0.01	-0.01	Integrated luminosity	2.5	5
Total systematic uncertainty	+0.39	-0.30			
	$\mu = 1.6 \begin{array}{c} +0.3 \\ -0.3 \end{array} (\text{stat.}) \begin{array}{c} +0.4 \\ -0.3 \end{array}$ Uncertainty Source $t\bar{t}H \text{ modeling (cross section)}$ Jet energy scale and resolution Non-prompt light-lepton estimates Jet flavor tagging and τ_{had} identification $t\bar{t}W \text{ modeling}$ $t\bar{t}Z \text{ modeling}$ Other background modeling Luminosity $t\bar{t}H \text{ modeling (acceptance)}$ Fake τ_{had} estimates Other experimental uncertainties Simulation sample size Charge misassignment Total systematic uncertainty	$\mu = 1.6 \begin{array}{c} +0.3 \\ -0.3 \end{array}$ (stat.) $\begin{array}{c} +0.4 \\ -0.3 \end{array}$ (syst.)Uncertainty Source Δ $t\bar{t}H$ modeling (cross section) $\begin{array}{c} +0.20 \end{array}$ Jet energy scale and resolution $\begin{array}{c} +0.18 \end{array}$ Non-prompt light-lepton estimates $\begin{array}{c} +0.15 \end{array}$ Jet flavor tagging and τ_{had} identification $\begin{array}{c} +0.11 \end{array}$ $t\bar{t}W$ modeling $\begin{array}{c} +0.08 \end{array}$ Other background modeling $\begin{array}{c} +0.08 \end{array}$ Luminosity $\begin{array}{c} +0.08 \end{array}$ $t\bar{t}H$ modeling (acceptance) $\begin{array}{c} +0.08 \end{array}$ Fake τ_{had} estimates $\begin{array}{c} +0.07 \end{array}$ Other experimental uncertainties $\begin{array}{c} +0.07 \end{array}$ Other ge misassignment $\begin{array}{c} +0.04 \end{array}$ Charge misassignment $\begin{array}{c} +0.01 \end{array}$ Total systematic uncertainty $\begin{array}{c} +0.39 \end{array}$	$ \mu = 1.6 \begin{array}{c} +0.3 \\ -0.3 \end{array} (stat.) \begin{array}{c} +0.4 \\ -0.3 \end{array} (syst.) $ Uncertainty Source μ $t\bar{t}H$ modeling (cross section) $+0.20 -0.09$ Jet energy scale and resolution $+0.18 -0.15$ Non-prompt light-lepton estimates $+0.15 -0.13$ Jet flavor tagging and τ_{had} identification $+0.11 -0.09$ $t\bar{t}W$ modeling $+0.08 -0.07$ Other background modeling $+0.08 -0.07$ Luminosity $+0.08 -0.06$ $t\bar{t}H$ modeling (acceptance) $+0.08 -0.04$ Fake τ_{had} estimates $+0.05 -0.04$ Simulation sample size $+0.04 -0.04$ Charge misassignment $+0.01 -0.01$	$\sigma_{t\bar{t}Z} = 0.8393 \pm_{-11.3\%}^{+9.6\%} (seten triangle $	$\sigma_{t\bar{t}Z} = 0.8393 \pm \frac{+9.6\%}{-11.3\%} (\text{scale}) \pm \frac{+2.8\%}{2.8\%} (\text{PDF}) \pm \frac{1}{2.3\%} (\text{scale}) \pm \frac{+2.8\%}{2.8\%} (\text{PDF}) \pm \frac{1}{2.3\%} (\text{scale}) \pm \frac{+2.8\%}{2.3\%} (\text{PDF}) \pm \frac{1}{2.3\%} (\text{scale}) \pm \frac{1}{2.3\%} (\text{PDF}) \pm \frac{1}{2.3\%} (\text{scale}) \pm \frac{1}{2.3\%} (\text{PDF}) \pm \frac{1}{2.3\%} (\text{scale}) \pm \frac{1}{2.3\%} (\text{PDF}) \pm \frac{1}{2.3\%} ($

María Moreno Llácer – BNL Leona Woods lectureship: seminar

20/12/18

tt+H (bb): results

Uncertainty source	$\pm \sigma_{\mu}$ (observed)	$\pm \sigma_{\mu}$ (expected)
total experimental	+0.15/-0.16	+0.19/-0.17
b tagging	+0.11/-0.14	+0.12/-0.11
jet energy scale and resolution	+0.06/-0.07	+0.13/-0.11
total theory	+0.28/-0.29	+0.32/-0.29
tt+hf cross-section and parton shower	+0.24/-0.28	+0.28/-0.28
size of MC samples	+0.14/-0.15	+0.16/-0.16
total systematic	+0.38/-0.38	+0.45/-0.42
statistical	+0.24/-0.24	+0.27/-0.27
total	+0.45/-0.45	+0.53/-0.49

Uncertainty source	$\Delta \mu$	
$t\bar{t} + \ge 1b$ modeling	+0.46	-0.46
Background-model statistical uncertainty	+0.29	-0.31
<i>b</i> -tagging efficiency and mis-tag rates	+0.16	-0.16
Jet energy scale and resolution	+0.14	-0.14
$t\bar{t}H$ modeling	+0.22	-0.05
$t\bar{t} + \geq 1c \text{ modeling}$	+0.09	-0.11
JVT, pileup modeling	+0.03	-0.05
Other background modeling	+0.08	-0.08
$t\bar{t}$ + light modeling	+0.06	-0.03
Luminosity	+0.03	-0.02
Light lepton (e, μ) id., isolation, trigger	+0.03	-0.04
Total systematic uncertainty	+0.57	-0.54
$t\bar{t} + \ge 1b$ normalization	+0.09	-0.10
$t\bar{t} + \geq 1c$ normalization	+0.02	-0.03
Intrinsic statistical uncertainty	+0.21	-0.20
Total statistical uncertainty	+0.29	-0.29
Total uncertainty	+0.64	-0.61

20/12/18

Latest *tt*+*H* (*H*→bb) results

Towards a global fit at the LHC

Standard model deviations are described by higher dimensional operators.

 \rightarrow need to identify which operators contribute to each process

EFT operators

Standard model deviations are described by higher dimensional operators:

