High-pT partons traveling through the quark-gluon plasma (QGP) lose energy due to strong interactions. This effect, called jet-quenching, is attributed to collisional and radiative energy losses as high-pT partons travel through and interact with the dense medium. Over the years jet-quenching has become well established in high-energy heavy-ion collisions. In high-energy A+A collisions, the observation of jet-quenching is considered to be clear evidence of QGP formation. The Beam Energy Scan program at RHIC provided a unique opportunity to study the QCD phase diagram and to search for the turn off of key QGP signatures, such as jet-quenching, at sufficiently low collision energies. The collision energy dependence of jet-quenching effects, quantified through the nuclear modification factor (Rcp) of charged and identified hadrons will be discussed. The limitations of Rcp as an observable will be discussed and compared with a more differential technique for quantifying jet-quenching. Finally, the outlook for improved jet-quenching measurements in the second phase of the RHIC Beam Energy Scan will be presented.