
Adventures in
Machine Learning

Maxim Perelstein, Cornell
BNL/Stony Brook Joint Seminar, November 7 2018

Figure 4. E�ciency vs. Mis-tag rate curves for the ANN tagger (blue/solid lines), for jets in three
representative pT ranges. For comparison, corresponding curves for three existing top taggers are
also shown: d12 tagger (yellow/dashed), top template tagger (green/dotted), and N-subjettiness
(red/dash-dotted).

– 9 –

0.35 0.40 0.45 0.50 0.55 0.60
-1.0

-0.5

0.0

0.5

1.0

m12 (GeV)

co
s
θ

Talk 1: Boosted Top Tagging
with Neural Networks

Almeida, Backovic, Cliche, Seung Lee, MP, 1501.05968
S. Choi, S. Lee, MP, 1806.01263

Talk 2: Monte Carlo Simulations
with Neural Networks

Matthew Klimek, MP, 1810.11509

Hadronic Boosted Top

• Sources of boosted tops:

• High-pT tail of SM t-tbar

• Extra Dimensions: KK gluon decays

• SUSY: e.g. gluino decays

• Spin-1/2 top partners:

• As interesting new physics scale is pushed higher by LHC bounds, boosted tops
become ever more important in searches for BSM

Boosted Top ID

• Cluster jets with a large cone, typically (“fat jets”)

• Each boosted top appears as one fat jet

• Challenge: distinguish “QCD jets” (light quark/gluon-initiated) from “boosted
tops”, based on “jet substructure”

• QCD rates are >> top rates, so need high efficiency and good rejection power
(i.e. small mis-tag rate)

Efficiency = Prob(top-tag|top)
Mis-tag = Prob(top-tag|QCD)

Top Taggers
• Since the subject became popular (circa 2009), many jet-substructure

observables and “tagging algorithms” have been proposed

• Simplest observable is the jet invariant mass (corrected to remove effects of
pile-up, by “pruning”, “trimming”, etc.)

• Other methods include “N-subjettiness”, template algorithms, etc.

5.3 Algorithm Performance Comparison in Simulation 13

 = 8 TeVsCMS Simulation,

Top Tag Efficiency
0 0.1 0.2 0.3 0.4 0.5

M
is

ta
g

R
at

e

-410

-310

-210

-110

Matched parton
 > 400 GeV/c

T
p

Top Tag Efficiency
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

M
is

ta
g

R
at

e

-410

-310

-210

-110

Matched parton
 > 600 GeV/c

T
p

Top Tag Efficiency
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

M
is

ta
g

R
at

e

-410

-310

-210

-110

Matched parton
 > 800 GeV/c

T
p

CMS Top Tagger
subjet b-tag

2τ/3τN-subjettiness ratio
CMS + subjet b-tag

 + subjet b-tag2τ/3τCMS +
HEP Top Tagger

 + subjet b-tag2τ/3τHEP +
HEP WP0
HEP Comb. WP1
HEP Comb. WP2
HEP Comb. WP3

CMS WP0
CMS Comb. WP1
CMS Comb. WP2
CMS Comb. WP3
CMS Comb. WP4

Figure 4: Mistag rate vs. top-jet tagging efficiency as measured from QCD PYTHIA 6 Monte
Carlo and POWHEG tt Monte Carlo, respectively. In the cases where a jet mass cut is applied,
the cut is not varied and is fixed at 140 < mjet < 250 GeV/c

2. N-subjettiness is calculated
using R = 0.8 jets except when used in combination with the HEP Top Tagger in which case
R = 1.5 jets are used. Signal jets are matched to simulated all-hadronic generated top quarks,
while background jets are matched to simulated partons from the hard scatter. Distributions
are shown for three pT selections, where the pT cut is applied to the matched generated parton.

Jet as an Image
• We propose a new algorithm to distinguish top-jets from QCD-jets

• We only use HCAL information

• HCAL output = digital image of the jet: each cell=pixel, energy deposit in each
cell = grayscale color/intensity

• Top-jets and QCD-jets make different patterns - apply techniques from
pattern recognition (a.k.a. computer vision)! Our algorithm uses Artificial
Neural Network (ANN) approach

Best QCD Jet Best QCD Jet Best QCD Jet

Worst QCD JetWorst QCD JetWorst QCD Jet

[Cogan, Kagan, Strauss, Schwarzmann, ’14]

Neural Network Basics

• ANN is a highly non-linear (but fully deterministic) map from N inputs to 1 output

• Our ANN has 30x30=900 inputs (~0.1x0.1 HCAL cells); 2 hidden layers of 100
nodes each; and 1 output node

• There are ~100,000 “neurons” (connections), each with its own “weight” W

Input layer Hidden layer 1 Hidden layer 2 Output layer

Bias nodes

Calorimeter image

Input layer Hidden layer 1 Hidden layer 2 Output layer

Bias nodes

Calorimeter image

Figure 1. Graphical representation of the Artificial Neural Network (ANN).

Networks in the context of image recognition, see for example [42].) Mathematically, the
ANN can be thought of as a succession of non-linear transformations:3

✏i ! h(1)
i = f (W(1)

i j ✏ j + b(1)
i)! · · ·! h(l)

i = f (W(l)
i j h(l�1)

j + b(l)
i)! Y = f (W(O)

j h(l)
j + b(O)),(3.1)

where f is the so-called activation function, chosen to be

f (z) =
1

1 + e�z . (3.2)

The inputs ✏i are simply the normalized energy deposits "ab defined above, rearranged
in a single 900-dimensional vector: "ab ⌘ ✏30a+b. The weights W(L)

i j and the biases b(L)
i are

numbers determined by the training procedure, which we will now describe.
To train the network, we use a set of N/2 top and N/2 QCD jets, where N is a large

number. For the i-th jet, we assign the “target output” variable: yi = 1 if it is a top jet,
and yi = 0 if it is a QCD jet. Training consists of adjusting the weights so that the actual
outputs of the ANN Yi correspond as close as possible to the target outputs yi, across the
training set. To quantify the error, we use the logarithmic loss variable

Log-loss = �
1
N

NX

i=1

⇥
yi log(Yi) + (1 � yi) log(1 � Yi)

⇤
. (3.3)

The goal of training is to choose weights that minimize this function. We use the back-
propagation algorithm [43], combined with gradient-descent minimization. In its simplest
version, the algorithm can be summarized as follows [44]:

1. Initialize the weights of each link to small random values.
3In Eq. (3.1) and below, repeated indices are always summed over.

– 5 –

Input layer Hidden layer 1 Hidden layer 2 Output layer

Bias nodes

Calorimeter image

Figure 1. Graphical representation of the Artificial Neural Network (ANN).

Networks in the context of image recognition, see for example [42].) Mathematically, the
ANN can be thought of as a succession of non-linear transformations:3

✏i ! h(1)
i = f (W(1)

i j ✏ j + b(1)
i)! · · ·! h(l)

i = f (W(l)
i j h(l�1)

j + b(l)
i)! Y = f (W(O)

j h(l)
j + b(O)),(3.1)

where f is the so-called activation function, chosen to be

f (z) =
1

1 + e�z . (3.2)

The inputs ✏i are simply the normalized energy deposits "ab defined above, rearranged
in a single 900-dimensional vector: "ab ⌘ ✏30a+b. The weights W(L)

i j and the biases b(L)
i are

numbers determined by the training procedure, which we will now describe.
To train the network, we use a set of N/2 top and N/2 QCD jets, where N is a large

number. For the i-th jet, we assign the “target output” variable: yi = 1 if it is a top jet,
and yi = 0 if it is a QCD jet. Training consists of adjusting the weights so that the actual
outputs of the ANN Yi correspond as close as possible to the target outputs yi, across the
training set. To quantify the error, we use the logarithmic loss variable

Log-loss = �
1
N

NX

i=1

⇥
yi log(Yi) + (1 � yi) log(1 � Yi)

⇤
. (3.3)

The goal of training is to choose weights that minimize this function. We use the back-
propagation algorithm [43], combined with gradient-descent minimization. In its simplest
version, the algorithm can be summarized as follows [44]:

1. Initialize the weights of each link to small random values.
3In Eq. (3.1) and below, repeated indices are always summed over.

– 5 –

“Activation Function”: (sigmoid)

First NN: “Perceptron”
Frank Rosenblatt, Cornell, 1957

Network Training
• The weights W are determined through a “training” procedure:

• Generate large MC samples of top-jets (SM ttbar) and QCD jets (dijet)

• “Feed” these samples to ANN, record output Y_i for each jet

• Compute the “error function” (desired outputs: y_i=1 for top, y_i=0 for
QCD):

• Adjust weights iteratively to minimize the error function

• Minimizing a function of 100,000 variables is not trivial, but there are well-
know numerical techniques for this; we use the back-propagation
algorithm, with “batch gradient descent with momentum” minimization

• Outcome: a set of weights such that Y_i close to 1 for top jets, close to 0 for
QCD jets

• ANN “learns” how to tell them apart, using all available info! (or: it just
constructed a complicated but optimal - in some sense - observable)

Input layer Hidden layer 1 Hidden layer 2 Output layer

Bias nodes

Calorimeter image

Figure 1. Graphical representation of the Artificial Neural Network (ANN).

Networks in the context of image recognition, see for example [42].) Mathematically, the
ANN can be thought of as a succession of non-linear transformations:3

✏i ! h(1)
i = f (W(1)

i j ✏ j + b(1)
i)! · · ·! h(l)

i = f (W(l)
i j h(l�1)

j + b(l)
i)! Y = f (W(O)

j h(l)
j + b(O)),(3.1)

where f is the so-called activation function, chosen to be

f (z) =
1

1 + e�z . (3.2)

The inputs ✏i are simply the normalized energy deposits "ab defined above, rearranged
in a single 900-dimensional vector: "ab ⌘ ✏30a+b. The weights W(L)

i j and the biases b(L)
i are

numbers determined by the training procedure, which we will now describe.
To train the network, we use a set of N/2 top and N/2 QCD jets, where N is a large

number. For the i-th jet, we assign the “target output” variable: yi = 1 if it is a top jet,
and yi = 0 if it is a QCD jet. Training consists of adjusting the weights so that the actual
outputs of the ANN Yi correspond as close as possible to the target outputs yi, across the
training set. To quantify the error, we use the logarithmic loss variable

Log-loss = �
1
N

NX

i=1

⇥
yi log(Yi) + (1 � yi) log(1 � Yi)

⇤
. (3.3)

The goal of training is to choose weights that minimize this function. We use the back-
propagation algorithm [43], combined with gradient-descent minimization. In its simplest
version, the algorithm can be summarized as follows [44]:

1. Initialize the weights of each link to small random values.
3In Eq. (3.1) and below, repeated indices are always summed over.

– 5 –

Network Testing
• Once training is complete, all weights and biases are fixed

• Generate a new, independent large MC sample of top and QCD jets

• Feed these jets to ANN and see how well it can tell them apart

Ar
bi

tr
ar

y
U

ni
ts

QCD Jet

O

Ar
bi

tr
ar

y
U

ni
ts

QCD Jet

O

Ar
bi

tr
ar

y
U

ni
ts

QCD Jet

O

Figure 3. Distributions of the ANN output O on top (red) and QCD (blue) jet samples in three
representative pT ranges. All distributions are normalized to unit area.

To discuss the performance of the ANN tagger, it is convenient to define e�ciency

– 8 –

Ar
bi

tr
ar

y
U

ni
ts

QCD Jet

O

Ar
bi

tr
ar

y
U

ni
ts

QCD Jet

O

Ar
bi

tr
ar

y
U

ni
ts

QCD Jet

O

Figure 3. Distributions of the ANN output O on top (red) and QCD (blue) jet samples in three
representative pT ranges. All distributions are normalized to unit area.

To discuss the performance of the ANN tagger, it is convenient to define e�ciency

– 8 –

Network Testing
• Once training is complete, all W’s are fixed

• Generate a new, independent large MC sample of top and QCD jets

• Feed these jets to ANN and see how well it can tell them apart

Ar
bi

tr
ar

y
U

ni
ts

QCD Jet

O

Ar
bi

tr
ar

y
U

ni
ts

QCD Jet

O

Ar
bi

tr
ar

y
U

ni
ts

QCD Jet

O

Figure 3. Distributions of the ANN output O on top (red) and QCD (blue) jet samples in three
representative pT ranges. All distributions are normalized to unit area.

To discuss the performance of the ANN tagger, it is convenient to define e�ciency

– 8 –

Ar
bi

tr
ar

y
U

ni
ts

QCD Jet

O

Ar
bi

tr
ar

y
U

ni
ts

QCD Jet

O

Ar
bi

tr
ar

y
U

ni
ts

QCD Jet

O

Figure 3. Distributions of the ANN output O on top (red) and QCD (blue) jet samples in three
representative pT ranges. All distributions are normalized to unit area.

To discuss the performance of the ANN tagger, it is convenient to define e�ciency

– 8 –

Set tagging threshold, compute efficiency and mistag rate
TOPQCD

ANN Tagger Performance
• ANN tagger outperforms the “standard” algorithms applied to the same MC

samples, especially for high-pT tops

Figure 4. E�ciency vs. Mis-tag rate curves for the ANN tagger (blue/solid lines), for jets in three
representative pT ranges. For comparison, corresponding curves for three existing top taggers are
also shown: d12 tagger (yellow/dashed), top template tagger (green/dotted), and N-subjettiness
(red/dash-dotted).

– 9 –

Figure 4. E�ciency vs. Mis-tag rate curves for the ANN tagger (blue/solid lines), for jets in three
representative pT ranges. For comparison, corresponding curves for three existing top taggers are
also shown: d12 tagger (yellow/dashed), top template tagger (green/dotted), and N-subjettiness
(red/dash-dotted).

– 9 –

Some Images

Figure 5. Energy deposit patterns for three jets with the highest (top row) and lowest (bottom row)
ANN scores in the top sample with pT 2 [800, 900] GeV.

and mis-tag rates as follows:

E↵ =
Ntop

top

Ntop
, Mistag =

Ntop
QCD

NQCD
, (4.1)

where Ntop and NQCD are the total number of jets in the top and QCD jet samples,
respectively, and Nb

a is the number of jets in sample a tagged as jets of type b (a, b =top,
QCD). E�ciency and mis-tag rates can be varied by varying the threshold Oth. The
performance of the ANN tagger is shown in Fig. 4, where for comparison we also show
the performance of three representative existing taggers, described in the Appendix. In
all cases, the ANN tagger outperforms the existing taggers, achieving lower mis-tag rates
for the same tagging e�ciency. The improvement is especially dramatic for high jet pT:
for example, for jets with pT 2 [1.1, 1.2] TeV range, the ANN tagger achieves 60% tagging
e�ciency with about 4% mis-tag rate, about a factor of 2 lower than the best of the existing
taggers in our comparison pool. This clearly demonstrates the promise of the ANN-based
approach.

What physical features of the jet are identified by the ANN as the primary charac-
teristics of a top jet? Some insight is provided by the energy deposit patterns of the
highest-scoring and lowest-scoring jets, according to the ANN output O, in the top sam-
ple. These are shown in Fig. 5. It is clear that the jets receiving high scores are characterized
by well-defined three-prong structure, with each of the three quarks from top decay form-
ing a well-defined, relatively isolated subjet. The lowest-scoring jets are those where
either the quarks are nearly collinear, or one of them is much softer than the other two (in
the detector frame). Likewise, the QCD jets receiving the highest scores, and thus most

– 10 –

Some More Images
Best QCD Jet Best QCD Jet Best QCD Jet

Worst QCD JetWorst QCD JetWorst QCD Jet

Figure 6. Energy deposit patterns for three jets with the lowest (top row) and highest (bottom row)
ANN scores in the QCD jet sample with pT 2 [800, 900] GeV.

Figure 7. Correlation between the rankings of jets according to N-subjettiness (horizontal axis) and
ANN score (vertical axis). Left: top sample, pT 2 [1100, 1200] GeV. Right: QCD jet sample, same
pT range. Jets are ranked in order of increasing “topness” for both samples.

likely to be mis-identified as tops, have well-defined, isolated subjets, while the QCD jets
correctly tagged as such do not: see Fig. 6.

To gain further insight, we studied correlations of the ANN scores with other observ-
ables used to tag tops. Table 1 contains the correlation coe�cients between the ANN score
and the output of the other taggers in our comparison pool, on a variety of samples used
in our analysis. (The correlation coe�cients are normalized so that 1.0 indicates perfect
correlation and �1.0 perfect anti-correlation, while 0 indicates absence of correlation.) In
all cases, we observe significant, though far from perfect, positive correlations, with coef-

– 11 –

Suggests that the # of “prongs” (subjets) and/or angular size are the dominant discriminants

Correlation with Other Taggers

Fairly well correlated… but NN found some additional information not captured by others

Top Jets

Events

QCD Jets

Events

Tagger Top Dijet
pT 2 [500, 600] pT 2 [1100, 1200] pT 2 [500, 600] pT 2 [1100, 1200]

TOM 0.50 0.52 0.52 0.65
N-sub. 0.59 0.52 0.48 0.31
ATLAS 0.33 0.44 0.42 0.72

Table 1. Correlation coe�cients between the ANN score and the output of alternative taggers, in
a variety of samples.

QCD Jet

P

m [GeV]

Figure 8. Left: Jet mass distributions for top (blue) and dijet (red) samples with pT 2 [800, 900]
GeV window, and no mass cut. Dashed lines: all jets; solid lines: jets tagged as tops by the ANN
tagger. All distributions are normalized to unit total area. Right: probabilities for a jet in the top
(blue) and dijet (red) samples to be tagged as a top jet by the ANN tagger.

all cases, we observe significant, though far from perfect, positive correlations, with coef-
ficients ranging from about 0.3 to 0.7. A visual illustration is provided by Fig. 7, which
shows that the ranking of jets according to the ANN score and the N-subjettiness are
indeed correlated, in both top and light-jet samples; correlation plots for all other taggers
and pT ranges look very similar. This should not be surprising since all top taggers to
some extent exploit the same physical characteristics of the boosted top jets. Nevertheless,
as noted above, ANN systematically outperforms the other taggers in terms of tagging
e�ciency vs. mistag rates, indicating that the complicated non-linear observable created
by the ANN learning process captures the information present in the jet substructure in a
more optimal way. In other words, it seems that all taggers find roughly the same subset
of jets to be “easily classifiable”, and all have a very good success rate on this subset.
However, the ANN tagger seems to be able to correctly classify a higher fraction of the jets
outside of this subset, leading to higher overall success rate.

Another interesting question is how the ANN performance varies with the jet mass.
The training samples and test samples in all plots shown so far only contain jets in a
130 . . . 210 GeV mass window, where most top jets are expected to lie. We also applied

– 12 –

2018 Update: Convolutional NN

Advanced NN architecture yields improved performance

[Choi, Lee, MP, ’18]

[Software:
MXNet]

Scales in High-Energy Collision
• 10^-16 cm: core event (e.g. BSM

production+decay)

• 10^-16->10^-13 cm: parton
shower (gluon emission/splitting)

• 10^-13 cm: hadronization (form
pions, kaons, etc.)

• 10^-1 - 10^3 cm: particles
interact with detector

Overview

[Gleisberg,Krauss,Schönherr,Schumann,Siegert,Winter,SH] arXiv:0811.4622
[Bothmann,Krauss,Kuttimalai,Li,Schönherr,Schulz,Schumann,Siegert,Zapp,SH] soon

I Matrix Element generators
AMEGIC++ (SM)
and Comix (SM, BSM)

I Parton shower based on
Catani-Seymour subtraction
and new dipole-like shower

I Multiple interaction model
à la Pythia (non-interleaved)

I In-house cluster hadronization
and interface to PYTHIA string
fragmentation (cross-checks!)

I Built-in hadron decay package
⇡ 400 hadrons, ⇡ 2500 channels

I Photon emission generator
based on YFS formalism

1

perturbative expansion
in coupling constant

perturbative expansion in log(Q^2/s);
independent of new physics

non-perturbative QCD;
requires non-first-principles modeling;

independent of new physics
[from S. Hoeche]

MC Challenge: simulate this
multi-scale process

Is NN Learning MC Artifacts?
• NN training and validation used Monte Carlo samples of top/QCD jets

• Since NN map is complicated, it not clear what features are important for
tagging, and whether these features are well-modeled by MC

• Data validation is needed (task for experimentalists)

• Necessary condition: NN output must be unaffected by soft/collinear splittings
in the parton shower (“Infrared/Collinear Safety”)

• To test IRC safety, we apply NN tagger to parton-level samples, compare output
with and without an extra soft/collinear parton

Figure 1. Parton-level top decays, with and without a final-state gluon respectively.

from significant (and poorly quantified) theoretical uncertainties. At the same time, unlike

traditional taggers, the highly non-linear, multi-variable nature of the NN tagger output

makes it very di�cult to identify the specific features in the jet substructure that the NN

focuses on, let alone assess their robustness in the simulation. To date, this issue has been

addressed by cross-comparisons of NN taggers trained on samples produced by di↵erent MC

generators, which employ di↵erent algorithms to model parton showers (see e.g. Refs. [2, 5]).

While the results seem to indicate that the NN output is robust, a deeper understanding of

this issue is clearly desirable to put this approach to jet tagging on a firm foundation.1

Traditionally, observables in jet physics are thought to be robust with respect to uncer-

tainties in parton shower modeling if they satisfy the requirement of Infrared/Collinear (IRC)

Safety.2 The notion of IRC safety applies to parton-level events. An observable O is IRC safe

if a soft or collinear splitting of one of the partons leaves O unchanged:

On(p1, . . . , pi, pi+1, . . . , pn) ! On�1(p1, . . . , pi + pi+1, . . . , pn) (1.1)

whenever pi+1 becomes soft or collinear with pi. For example, consider the two events shown

in Fig. 1. In the limit when gluon in Fig. 1 (b) becomes either soft (pT,g ! 0) or collinear

with one of the quarks (pg · pi ! 0), the value of O evaluated on the final state (b) should

approach its value evaluated on the final state (a).

NN tagger is an observable that maps the matrix of energy deposits in individual HCAL

cells onto a number between 0 and 1, the “topness” of the jet. The goal of this paper is to

check whether this observable is IRC safe. We perform this test in the particular context of a

Convolutional Neural Network (CNN) top tagger. The CNN is first trained on particle-level

(showered and hadronized) MC samples of boosted top jets and “QCD” (light quark/gluon)

jets. We then apply this CNN to parton-level hadronic top events. This defines a parton-

1An alternative would be to avoid the use of MC generators altogether by training directly on real data.

This would require one to identify training sets, tagged by an object external to the jet, in the data. For recent

interesting work in that direction, see Ref. [11, 21].
2It’s worth noting that IRC safety is not the necessary condition for calculability of physical observables.

Sudakov safe observable [22, 23] is a notable example which is IRC unsafe, but calculable if all-orders e↵ects

are resummed.

– 2 –

if

Tagging Parton-Level Events

• CNN tagger trained on particle-level events was applied to parton-level top
events

• Similar output distribution indicates that most of the important information is
already present in parton-level events

particle-level
events

parton-level
eventssame NN

Infrared/Collinear Safety

• Plot difference in NN output on parton-level events with/without extra gluon, as
a function of the gluon’s “relative pT”:

• Observed convergence of the NN output with/without extra gluon in the IRC
limit - numerical confirmation that the observable defined by the NN is IR-safe

Figure 5. Left panel: Di↵erence in CNN output between merged and unmerged events, |�NN |, as
a function of the gluon transverse momentum relative to its nearest quark, pgT . Red dots show the
width of the |�NN | distribution. Background colors indicate the relative density of events for given
pgT . Right panel: |�NN | width as a function of pgT , shown separately for 10 NN output bins. The lines
indicate an interpolating curve (third-order polynomial) fit to the data in each NN output bin.

values in our event sample is shown in the left panel of Fig. 5, where each blue dot corresponds

to an individual event. For most events, |�NN | is small, which is reassuring: adding a soft

gluon does not lead to a dramatic change in the CNN output. There is, however, a tail of

events where the change is significant. To better characterize this tail, we bin the data in

relative pT and calculate the width of the |�NN | distribution in each bin. The width |�NN |90

for each bin is defined by requiring that 90% of the events in that bin have |�NN | |�NN |90.

The values of |�NN |90 are plotted as red dots in Fig. 5. The data exhibits a clear correlation

between decreasing relative pT and decreasing width, indicative of IRC safety. In fact, the

data is consistent with the hypothesis that |�NN |90 ! 0 in the limit of pgT ! 0.

In the right panel of Fig. 5, the data is further subdivided into 10 bins according to the

NN output evaluated on the merged sample, and dependence of the width on relative pT is

shown separately for each bin.4 For events in the last bin, 0.9 Y 1, emission of an extra

gluon has almost no e↵ect even if it has a relatively large relative pT . This is presumably due

to the fact that Y is already close to the upper boundary. The events in this bin are therefore

consistent with the IRC safety hypothesis, but do not show much variation as relative pT is

varied. On the other hand, events in all other Y bins show a very clear convergence between

the output values with and without the extra gluon in the pgT ! 0 limit.

The relative pT observable goes to zero in both soft and collinear limits. It is interesting

4In some bins, the distribution of �NN is sharply asymmetric around zero, mainly because Y is restricted

to lie between 0 and 1 by construction. To account for this, in the right panel of Fig. 5 we do not take the

absolute value of �NN , but instead define the “NN di↵erence width” as the width of the mimimal interval

containing 90% of events, not necessarily centered at 0.

– 7 –

Figure 4. Neural network output distribution on parton-level top sample.

and replacing that quark and the gluon with a single parton with 4-momentum equal to the

sum of the two. Applying the CNN map to the unmerged and merged samples corresponds

to evaluating the left-hand side and the right-hand side of Eq. (1.1), respectively. Checking

the IRC safety criterion then amounts to comparing the CNN outputs on these two samples.

3 Results

Training the CNN on particle-level top and QCD samples and applying it to the parton-

level top sample produces the output distribution shown in Fig. 4. Clearly, the network

predominantly still perceives such events as top-like, indicating that details of parton shower

pattern are not crucially important for recognizing an event as top-like. The fact that the

NN did not need to be retrained when a switch from particle-level to parton-level input was

made already provides some evidence that the observable defined by the CNN is likely IRC-

safe. In the rest of this section, we will attempt to establish the IRC safety more directly, by

comparing CNN outputs on merged and unmerged samples as explained above.

To gauge the impact of soft/collinear gluon radiation, we compute the di↵erence �NN

between the CNN output from an event in the unmerged sample and the corresponding event

in the merged sample. A convenient measure of soft/collinear kinematics of the gluon is

provided by its “relative pT ”, defined by

pgT =

����pg �
pg · pq

|pq|
2
pq

���� , (3.1)

where pq is the 3-momentum of the quark nearest (in terms of �Rqg separation) to the gluon.

Physically, pgT is the component of the gluon 3-momentum transverse to the nearest quark,

and it vanishes in both soft and collinear limits. If the CNN observable is IRC safe, we expect

�NN to go to zero in the limit of vanishing relative pT . The distribution of |�NN | and pgT

– 6 –

Infrared AND Collinear Safety

Figure 6. Left panel: Di↵erence in CNN output between merged and unmerged events, |�NN |, as
a function of the gluon’s angular separation from its nearest quark, �Rqg. Red dots show the width
of the |�NN | distribution. Background colors indicate the relative density of events for given �Rqg.
Right panel: |�NN | width as a function of �Rqg, binned in 10 NN output intervals. The lines indicate
an interpolating curve (third-order polynomial) fit to the data in each NN output bin.

Figure 7. Left panel: Di↵erence in CNN output between merged and unmerged events, |�NN |, as
a function of the longitudinal momentum ratio defined in Eq. (3.2). Red dots show the width of the
|�NN | distribution. Background colors indicate the relative density of events for given longitudinal
momentum ratio. Right panel: |�NN | width as a function of longitudinal momentum ratio, binned in
10 NN output intervals. The lines indicate an interpolating curve (third-order polynomial) fit to the
data in each NN output bin.

to probe the convergence of the CNN output in each of these limits separately. To this end,

we study two observables. The first one is the angular separation between the gluon and the

nearest quark, �Rqg, which goes to zero in the collinear limit, but not the soft limit. The

– 8 –

Figure 6. Left panel: Di↵erence in CNN output between merged and unmerged events, |�NN |, as
a function of the gluon’s angular separation from its nearest quark, �Rqg. Red dots show the width
of the |�NN | distribution. Background colors indicate the relative density of events for given �Rqg.
Right panel: |�NN | width as a function of �Rqg, binned in 10 NN output intervals. The lines indicate
an interpolating curve (third-order polynomial) fit to the data in each NN output bin.

Figure 7. Left panel: Di↵erence in CNN output between merged and unmerged events, |�NN |, as
a function of the longitudinal momentum ratio defined in Eq. (3.2). Red dots show the width of the
|�NN | distribution. Background colors indicate the relative density of events for given longitudinal
momentum ratio. Right panel: |�NN | width as a function of longitudinal momentum ratio, binned in
10 NN output intervals. The lines indicate an interpolating curve (third-order polynomial) fit to the
data in each NN output bin.

to probe the convergence of the CNN output in each of these limits separately. To this end,

we study two observables. The first one is the angular separation between the gluon and the

nearest quark, �Rqg, which goes to zero in the collinear limit, but not the soft limit. The

– 8 –

collinear
limit

soft
limit

“Multi-Dimensional” Tagging
[Csaki, De Freitas, Li, Ma, MP, Shu,

1811.01961, Appendix C]

NN Basics Each hidden node takes a linear
combination of the inputs, specified by
the weights w1

i plus a constant bias
b1, and transforms it by some
non-linear activation function A.

The weights and biases together
comprise the parameters of the net.

x1

x2

w
11

Figure 6. Jet tagging performance for the first region selection 400 < pfatjetT < 800 GeV by ROC
curve. From the top left plot, we have the jat tagging e�ciency for top, Higgs (top right), Z (bottom
left) and W (bottom right) jet respectively. The y-axis are the 1 minus false rate. In the plot labels
we display the miss identification for 50% and 80% benchmark points.

• Two Maxpooling layers;

• Classification block layers, including two linear layers with Dropout of 50% and ReLu

activation function. The final linear layer classifies the jet images into 6 categories:

top fat jet, Higgs fat jet, W fat jet, Z fat jet, b fat jet and light jet.

Further, each jet is assigned randomly to either the training sample or the validation

sample. In each sample, jets are divided into three bins according to their pT : 200 GeV <

pjet
T

< 400 GeV, 400 GeV < pjet
T

< 800 GeV and pjet
T

> 800 GeV. Jets with pjet
T

< 200 GeV

are discarded, since they are not expected to exhibit relevant sub-structure. The CNN

is trained using the traning sample, separately for each pT bin. The performance is then

tested using jets in the validation sample. The tagger performance can be characterized

by the Receiver Operating Characteristic curve (ROC curve). For each pair of jet classes

a and b, the ROC curve shows “tag e�ciency” (probability of correctly tagging the jet

of class a as a) on the horizontal axis, and 1� mistag rate (the probability of incorrectly

tagging jet of class b as a) on the vertical axis. Benchmark working points used in the

collider analysis correspond to 50% and 80% e�ciency for the relevant jet class (t, H, or

W/Z, depending on the analysis). These benchmark points are labeled on each of the

curves, and the corresponding mistag rates are listed in the plot legend.

– 31 –

6 output nodes:
top, Higgs, W, Z,

b, QCD jets
WZ

Htop

Talk 1: Conclusions/Outlook

• Jet substructure tagging (e.g. top vs. QCD jets) is essentially an image recognition
problem

• Neural Network seems a natural candidate to tackle this

• Simple NN outperforms existing taggers/observables in MC studies, correlated
with traditional observables but contain extra information (2015)

• Convolutional NN performs even better (2018)

• NN output seems “IR safe” to a good approximation - MC is probably not
misleading

• Studies with real data in progress in ATLAS/CMS (e.g. B. Nachman et.al.)

• “Multi-dimensional tagging” (top/Higgs/W/Z/QCD jets) is also possible

Talk 1: Boosted Top Tagging
with Neural Networks

Almeida, Backovic, Cliche, Seung Lee, MP, 1501.05968
S. Choi, S. Lee, MP, 1806.01263

Talk 2: Monte Carlo Simulations
with Neural Networks

Matthew Klimek, MP, 1810.11509

MC Simulation/Integration
• Monte Carlo Problem: Given a function f(y), such that , generate a set

of “random” points {y_i} with density proportional to f(y).

• In particle physics, typically y=phase space points, f(y)=differential cross section
or decay rate, {y_i}=Monte Carlo sample (“pseudo-experiment”)

• Most Naive MC algorithm: randomly select points in 2D box, discard the points
with z > f(y).

• Fraction of points that are actually used = “unweighting efficiency”:If the function is highly peaked and variable, the unweighting efficiency
will also be low:

Accurate integration/generation becomes computationally expensive.

Physical cross sections are often highly variable/peaked in some regions of
phase space: on-shell resonances, collinear singularities, etc.

Solution: Importance Sampling

The basic technique

y

z

Problem: Resonances,
Collinear/Infrared Singularities

In modern applications, is often
numerically expensive to evaluate

(e.g. NNLO - may require numerical
integrations)

integration:

Importance Sampling
• Classic solution: construct a number of “bounding boxes” in yz plane, covering

the function’s domain, with heights adjusted to correspond to local values of f(y)

• Classic implementation: VEGAS [Lepage, 1978]

• Divide the domain into N bins, roughly compute “weight” = in each
bin

• Iteratively adjust bin boundaries until each bin contains the same weight

• Simulation: choose a bin at random (equal probabilities), then follow Naive
algorithm in that bin. Repeat.If the function is highly peaked and variable, the unweighting efficiency

will also be low:

Accurate integration/generation becomes computationally expensive.

Physical cross sections are often highly variable/peaked in some regions of
phase space: on-shell resonances, collinear singularities, etc.

Solution: Importance Sampling

The basic technique

y

z

Construct a piecewise-constant
approximation to f(y),

then sample from that distribution

Importance Sampling as a Map
• Importance sampling can also be described as a map from “input space” x to

“target space” y

• Randomly choose (uniform distribution)

• Deterministic, piecewise-linear map

• Equivalent to “pick a box + random point within the box”

• Unweighting: keep the point with probability

If the function is highly peaked and variable, the unweighting efficiency
will also be low:

Accurate integration/generation becomes computationally expensive.

Physical cross sections are often highly variable/peaked in some regions of
phase space: on-shell resonances, collinear singularities, etc.

Solution: Importance Sampling

The basic technique

y

z
y

x0 1

1

-1

MC with Neural Networks
• Idea: Generalize importance sampling from piecewise-linear to nonlinear maps

• Simulation would be 100% efficient if we found a nonlinear map such that

• Generalization to functions in N dimensions (same dimensionality for input and
target spaces, =dimensionality of phase space)

• Universal Approximation Theorem: under mild assumptions, a neural network can
approximate any continuous functional map (where is an N-
dimensional hypercube)

• This makes a NN a natural choice to implement nonlinear importance sampling

[Cybenko, ’89; Hornik, ’91]

MC with Neural Networks

• Error function: Kullbeck-Leibler divergence between and

• Training: generate a batch of 100 points, compute , adjust weights, iterate

x y
input I target T

to the phase space dimension. Various choices for the numbers of hidden layers and nodes
per layer, collectively referred to as hyperparameters, have been tested. A comparison
of the training performance under these choices is given in the appendix A. We find that
larger NNs train in fewer training epochs. A larger NN takes longer to evaluate per data
point. However, we hope this technique will be most useful in cases where the matrix
element is very costly to evaluate. In these cases, the NN evaluation time is subdominant,
and a larger NN that requires fewer matrix element evaluations to train is ideal.

We choose the simplest option of uniform sampling over a unit hypercube as the
input. These inputs are to be mapped onto phase space, which we parametrize as a
second hypercube in a coordinate system that will be described below.

The NN is an event generator, that is, a map yw(x) between points in an input space
and points in phase space. Note that this map is specified by the parameters of the NN,
which are collectively labeled as w and indicate with a subscript. The distribution py(y) on
phase space induced by this map is given by its Jacobian with respect to the input space

py(y) = py(yw(x)) =
�����
@yw

@x

�����
�1

. (2.1)

The NN must be trained so that py(y) matches the true di↵erential cross section f (y) as
closely as possible. As suggested in [1], we can use the Kullbeck-Leibler (KL) divergence
DKL between py(y) and f (y)

DKL[py(y); f (y)] ⌘
Z

py(y) log
py(y)
f (y)

dy (2.2)

to define the loss function to be minimized during training. Since we are working with
a discrete set of sampled points {xi}, Monte Carlo integration can be performed to obtain
the loss function

L(w) =
X

{xi}
log

py(yw(xi))
f (yw(xi))

. (2.3)

Note that the loss function should be viewed as a function of the NN parameters w with
respect to which it will be minimized. For su�ciently large random sample sets {xi},
L(w) will be independent of the sample to a good approximation. The KL divergence
has a minimum at zero when the two distributions are identical. However, note that this
assumes that the two distributions have the same normalization. For a given di↵erential
cross section, the total cross section is usually not known a priori, and thus the loss function
will in general have a minimum at some non-zero value. The training procedure, however,
depends only on the derivatives of the loss function. Knowledge of the total cross section
is therefore not necessary.

Each node in a hidden layer of the NN takes a linear combination of the outputs of
the nodes in the previous layer, as determined by the current values of the parameters,
and applies a non-linear function known as the activation function. The nodes in the final
layer again take a linear combination of the values in the next-to-last layer, but then apply
another function, the output function, which is chosen to map onto the set of possible

– 4 –

Output Functions
• An important subtlety is the choice of output function (=activation function for

the last layer)
Our basic implementation

➢ A common choice of output function is the sigmoid:

Approaches
asymptotic values
slowly → hard to
populate the edges of
phase space

Output layer considerations

We also investigated a “soft clipping” function with
faster asymptotic behavior:

➢ Always takes values in [0,1]
➢ Approaches limiting values rapidly
➢ Approximately linear between [0,1]
➢ p controls how sharp the edges are

p = 50

With this choice, a
traditional ELU activation
function is sufficient.

sigmoid: “soft clipping function”:

Output layer considerations

We also investigated a “soft clipping” function with
faster asymptotic behavior:

➢ Always takes values in [0,1]
➢ Approaches limiting values rapidly
➢ Approximately linear between [0,1]
➢ p controls how sharp the edges are

p = 50

With this choice, a
traditional ELU activation
function is sufficient.

ELU/SC
Sinh/Sigmoid
Bendavid 1707.00028

0 500 1000 1500

0.1

0.2

0.5

1

2

Training Epochs

lo
g 1
0
Lo
ss

3 Layers, 128 nodes

Sample Applications
• Simulate 3-body decay of a scalar X, with a resonance Y

• Choose phase-space coordinates

• Simulated with

• Achieved unweighting efficiency 30-70%, depending on resonance width

• MadGraph (off-the-shelf) efficiency: 6%

0.72 0.73 0.74 0.75 0.76 0.77 0.78
0

500

1000

1500

m23 (GeV)

E
ve
nt
s
/2
M
eV

3-body Dalitz with intermediate resonance

We can include a matrix
element along with phase
space:

3-body decay via an
intermediate resonance
with mass 0.75 GeV.

NN average 10x

Our efficiency: 30-71%, depending on
resonance width

MadGraph’s efficiency (VEGAS-based): 6%

Sample Applications
• Simulate 3-body decay of a scalar X, with resonances in two channels

• NN was able to learn both the feature aligned with coordinate axis, and the
feature with complicated shape in these coordinates

• In contrast, VEGAS needs each feature to be aligned with a coordinate axis
(coordinate choice handled separately by “multi-channeling”)

Contrast with VEGAS (rectangular grid)

Our Neural Net approach has no
intrinsic axes.

x1

x2

w
11

Each node is free to
rotate to a new
coordinate system.

The Neural Net handles
features well in any coordinate
system.
Indeed it learns what the most
interesting coordinates are.

We trained the NN on a decay that can
proceed through two different diagrams:

In our coordinate system, these cannot
be orthogonal!

0.35 0.40 0.45 0.50 0.55 0.60
-1.0

-0.5

0.0

0.5

1.0

m12 (GeV)

co
s
θ

Contrast with VEGAS (rectangular grid)

For multi-dimensional integrals,
VEGAS needs any sharp feature to be
aligned with a grid axis.

What about matrix elements that have
multiple, non-orthogonal sharp
features? (E.g. multiple resonances)

This is currently handled with
multi-channel integration:

Define multiple grids, each aligned
with one feature, and sample from all.

Potential slow, and relative
weights among grids must be tuned. qi

(c
os

 𝜽
 +

 1
) /

 2

NN output VEGAS grid/output

Sample Applications
• A more realistic example:

• Soft/collinear singularities need to impose kinematic cuts

• Simple rectangular cuts aligned with target-space coordinates can be simply
handled by redefining the target space boundaries

• In practice we need to be able to handle more general cuts:

• Naively, we could just replace

• However NN target function must be differentiable! So we opt for

Figure 5. A sample of 105 events generated by the trained NN described in section 3.3 without
unweighting. The matrix element contains two diagrams with di↵erent resonant structures. Both
are clearly visible in the NN output.

the trained NN before unweighting can be seen in Fig. 5, where both resonance features
are clearly visible. Due to our choice of masses, the partial width of the decay through the
aligned resonance is greater than through the misaligned resonance, which explains why
the misaligned resonance is less populated. The NN achieves an unweighting e�ciency
of 54%, compared to MadGraph5’s 6%.

3.4 e+e� ! qq̄g

The preceding examples contained matrix elements with sharply varying but finite fea-
tures. Many physically interesting matrix elements also contain singularities, such as the
soft and collinear singularities of QCD. As an example, we consider the process of quark
pair production from e+e� annihilation with an additional final state gluon, and ignoring
the contribution of the Z boson. The tree-level di↵erential cross section for this process is
proportional to

d�
dm2

qgdm2
q̄g
/

(s �m2
qg)2 + (s �m2

q̄g)2

m2
qgm2

q̄g
, (3.4)

where s is the center of mass energy squared, mqg is the invariant mass of the quark
and gluon pair, and mq̄g similarly for the antiquark. The cross section is singular for
mqg, mq̄g ! 0, and kinematic cuts must be imposed to deal with this singularity. More
generally, it is often desirable to impose kinematic cuts, even where singularities are not
present, to avoid generating events that are not useful for some reason, e.g., in regions of
phase space that lack detector coverage.

We would like the trained NN to generate as many events as possible that satisfy
the imposed cuts. However, in general it is not possible to train the NN to completely
exclude the cut region. If the value of the target distribution is set exactly to zero in the cut
region, the derivative computed during training for any point that falls in the cut region
will also be zero. In that case, the trainer will not know how to adjust the parameters of
the NN to bring that point inside the desired region. Likewise, a very sharp change in the

– 9 –

The NN also has no trouble
handling singularities such as are
present in gluon emission from
quarks. (Singularities at quark
momentum fraction x = 1.)

An appropriate kinematic cut can
be specified in the code.

qqg

NN average 10x

To cut on a quantity x > xcut > 0, multiply
the cross section during training by

sqrt(s) = 1 GeV, mqg < 0.1 GeV, n=8

Our efficiency: 65-75% depending on cuts
and n

MadGraph’s efficiency (VEGAS-based): 4%

where

with

Sample Applications
• A more realistic example:

• In this example, we used n=8.

• Unweighting efficiency is 70% (vs. 4% for off-the-shelf MadGraph)

Figure 5. A sample of 105 events generated by the trained NN described in section 3.3 without
unweighting. The matrix element contains two diagrams with di↵erent resonant structures. Both
are clearly visible in the NN output.

the trained NN before unweighting can be seen in Fig. 5, where both resonance features
are clearly visible. Due to our choice of masses, the partial width of the decay through the
aligned resonance is greater than through the misaligned resonance, which explains why
the misaligned resonance is less populated. The NN achieves an unweighting e�ciency
of 54%, compared to MadGraph5’s 6%.

3.4 e+e� ! qq̄g

The preceding examples contained matrix elements with sharply varying but finite fea-
tures. Many physically interesting matrix elements also contain singularities, such as the
soft and collinear singularities of QCD. As an example, we consider the process of quark
pair production from e+e� annihilation with an additional final state gluon, and ignoring
the contribution of the Z boson. The tree-level di↵erential cross section for this process is
proportional to

d�
dm2

qgdm2
q̄g
/

(s �m2
qg)2 + (s �m2

q̄g)2

m2
qgm2

q̄g
, (3.4)

where s is the center of mass energy squared, mqg is the invariant mass of the quark
and gluon pair, and mq̄g similarly for the antiquark. The cross section is singular for
mqg, mq̄g ! 0, and kinematic cuts must be imposed to deal with this singularity. More
generally, it is often desirable to impose kinematic cuts, even where singularities are not
present, to avoid generating events that are not useful for some reason, e.g., in regions of
phase space that lack detector coverage.

We would like the trained NN to generate as many events as possible that satisfy
the imposed cuts. However, in general it is not possible to train the NN to completely
exclude the cut region. If the value of the target distribution is set exactly to zero in the cut
region, the derivative computed during training for any point that falls in the cut region
will also be zero. In that case, the trainer will not know how to adjust the parameters of
the NN to bring that point inside the desired region. Likewise, a very sharp change in the

– 9 –

0.005 0.010 0.050 0.100
5

10

50

100

mqg2 (GeV2)

E
ve
nt
s/
bi
n

Talk 2: Conclusions/Outlook
• Neural Network seems a natural candidate to realize “nonlinear importance

sampling”

• With a bit of tweaking (e.g. proprietary “soft clipping” output function), we got it
to work

• Can handle resonances, in a nicely coordinate-choice-independent way

• Can handle soft/collinear enhancements, generic kinematic cuts

• High unweighting efficiency achieved in all examples

• This may be a crucial advantage in situations when matrix element is
computationally expensive to evaluate

• Next: Integration with automated Matrix Element calculators

• Next-to-next: Parton showers? NLO?

