sPHENIX – Science, status, collaboration

David Morrison (BNL) Gunther Roland (MIT)

co-spokespersons

Strongly coupled Quark-Gluon Plasma

Gunther Roland

Plii

1st sPHENIX Russia Workfest

sPHENIX Science Mission in the DOE/NSF LRP

Section 2.2, page 22

Gunther Roland

There are two central goals of measurements planned at RHIC, as it completes its scientific mission, and at the LHC: (1) Probe the inner workings of QGP by resolving its properties at shorter and shorter length scales. The complementarity of the two facilities is essential to this goal, as is a state-of-the-art jet detector at RHIC, called sPHENIX. (2) Map the phase diagram of QCD with experiments planned at RHIC.

1st sPHENIX Russia Workfest

Core sPHENIX science program

Gunther Roland

1st sPHENIX Russia Workfest

Key approaches to study QGP structure at multiple scales with sPHENIX

Experimental approach

Full characterization of final state

Different QGP initial conditions and evolution at RHIC and LHC

Same hard process.

Full characterization of final state

Ability to tag initial state and to fully characterize final state drives sPHENIX detector design

Same hard process

sPHENIX and complementarity in the Long Range Plan

1st sPHENIX Russia Workfest

Gunther Roland

There are two central goals of measurements planned at RHIC, as it completes its scientific mission, and at the LHC: (1) Probe the inner workings of QGP by resolving its properties at shorter and shorter length scales. The complementarity of the two facilities is essential to this goal, as is a state-of-the-art jet detector at RHIC, called sPHENIX. (2) Map the phase diagram of QCD with experiments planned at RHIC.

Complementarity: Why RHIC and LHC?

depend on temperature

Gunther Roland

M. Habich, J. Nagle, and P. Romatschke, EPJC, 75:15 (2015)

Initial QGP conditions and QGP evolution are different at RHIC vs LHC

RHIC QGP spends more time near T_c

Use combined RHIC and LHC data to extract T dependence

Direct photons and photon triggered jets

2.5

Gunther Roland

Dai, Vitev, Zhang, PRL 110 (2013) 14, 142001

From PHENIX...

sPHENIX detector systems

Qualitative improvement on 20 years of studies at RHIC through higher statistics (x10+), full calorimetry and higher precision tracking

Gunther Roland

1st sPHENIX Russia Workfest https://indico.bnl.gov/event/4640/attachments/18495/23200/sphenix-conceptual-design.pdf

MVTX enables world-class HF science program

Gunther Koland

- MVTX based on copy of ALICE staves with support structure modified for sPHENIX – integrate with silicon strip (INTT) and all fit inside TPC inner field cage.
- LANL LDRD addressing key questions –demonstrating successful read-out chain test and stave performance in FNAL test beam

When will sPHENIX take data?

https://indico.bnl.gov/event/4788/attachments/19066/24594/sph-trg-000_06142018.pdf

Gunther Roland

1st sPHENIX Russia Workfest

Multi-year run plan for sPHENIX

Year	Species	Energy [GeV]	Phys. Wks	Rec. Lum.	Samp. Lum.	Samp. Lum. All-Z
Year-1	Au+Au	200	16.0	$7 \ { m nb^{-1}}$	$8.7 \ {\rm nb^{-1}}$	34 nb^{-1}
Year-2	p+p	200	11.5		48 pb^{-1}	$267 \ {\rm pb^{-1}}$
Year-2	p+Au	200	11.5		$0.33 ~{ m pb}^{-1}$	$1.46 \ { m pb}^{-1}$
Year-3	Au+Au	200	23.5	14 nb^{-1}	26 nb^{-1}	88 nb^{-1}
Year-4	p+p	200	23.5		$149 \ \mathrm{pb}^{-1}$	$783~{ m pb}^{-1}$
Year-5	Au+Au	200	23.5	14 nb^{-1}	48 nb^{-1}	92 nb^{-1}

- Consistent with DOE CD-0 "mission need" document Incorporates BNL C-AD guidance on luminosity evolution Incorporates commissioning time in first year

Minimum bias Au+Au at 15 kHz for |z| < 10 cm:

47 billion (Year-1) + 96 billion (Year-2) + 96 billion (Year-3) = Total 239 billion events

Gunther RolarFor topics with Level-1 selective trigger (e.g. higst profile NUX s Russia: All order fester within Izl < 10 cm a total of 550 billion events.

sPHENIX today

Gunther Roland

1st sPHENIX Russia Workfest

sPHENIX today

Flux return/oHCAL absorber First production sectors arrived two weeks ago

INTT telescope beam test in Spring 2018 Detector will be delivered by Riken

Gunther Roland

Full field magnet test at 1.4T at BNL on 2/13/2018

Approval of **EMCAL** materials purchase received in August '18 **"Sector 0" production starting** 2018

Beam test of **TPC** prototype in June 2018 Ready for producing of full-size field cage "prototype"

1st sPHENIX Russia Workfest

Slots for scintillating tiles, read-out using SiPMs

First production module delivered to BNL one month ago Second module arrives on Friday After that, they'll arrive at a rate of about one per week

6.4 meters long, $|\eta| < 1.1$ 32 modules form flux return instrumented to be outer HCal

Tungsten SciFi EMCal moving from R&D to pre-production

technology pioneered by UCLA group now 2D projective, to be read out by SiPMs same electronics (up to form factor) as HCal production techniques advanced by UIUC group discussions with Chinese institutions about

Gunther Roland

1st sPHENIX Russia Workfest

Performance simulation: Track and jet resolution

High momentum resolution Tracking efficiency > 90% in high pileup Au+Au environment

Gunther Roland

1st sPHENIX Russia Workfest

Calorimeter-related performance studied using GEANT simulations verified with **test beam data**

arXiv:1704.01461

Microvertex tracker performance

MVTX based on copy of ALICE Inner Barrel staves

1st sPHENIX Russia Workfest

https://indico.bnl.gov/event/4072/attachments/11335/13816/sPH-HF-2018-001-final.pdf

Physics projection: Upsilons at sPHENIX cf. LHC

Gunther Roland

CMS projection for Run III+IV

Differential suppression of Y(nS) states depends on QGP Debye screening length

sPHENIX projection

Physics projections: Jets in sPHENIX cf. LHC

Heavy flavor at sPHENIX cf. LHC

Elliptic flow measures c and b quark thermalization in medium

CMS projections for Run III+IV

The sPHENIX collaboration – formed December 2015

More than 70 institutions currently, significant growth since formation

Augustana University Banaras Hindu University Baruch College, CUNY Brookhaven National Laboratory China Institute for Atomic Energy CEA Saclay Central China Normal University Chonbuk National University Columbia University Eötvös University Florida State University Fudan University Georgia State University Howard University Hungarian sPHENIX Consortium Insititut de physique nucléaire d'Orsay Institute for High Energy Physics, Protvino Institute of Nuclear Research, Russian Academy of Sciences, Moscow Institute of Physics, University of Tsukuba Institute of Modern Physics, China Iowa State University Japan Atomic Energy Agency Charles University (CUNI), Prague Czech Technical University in Prague (CTU) Korea University Lawrence Berkeley National Laboratory Lawrence Livermore National Laboratory

Gunther Roland

Lehigh University Los Alamos National Laboratory Massachusetts Institute of Technology Muhlenberg College Nara Women's University National Research Centre "Kurchatov Institute" National Research Nuclear University "MEPhI" New Mexico State UniversityOak Ridge National Laboratory Ohio University Peking University Petersburg Nuclear Physics Institute Purdue University **Rice University** RIKEN **RIKEN BNL Research Center** Rikkyo University Rutgers University Saint-Petersburg Polytechnic University Shanghai Institute for Applied Physics Stony Brook University Sun Yat Sen University Temple University Tokyo Institute of Technology Tsinghua University Universidad Técnica Federico Santa María

University of California, Berkeley

University of Debrecen University of Houston University of Jammu University of Maryland University of Michigan University of Tokyo Vanderbilt University Weizmann Institute Yale University Yonsei University

- University of California, Los Angeles
- University of California, Riverside
- University of Colorado, Boulder
- University of Illinois, Urbana-Champaign
- University of New Mexico
- University of Tennessee, Knoxville
- University of Texas, Austin
- University of Science and Technology, China
- Wayne State University

2016 2017

響
や

1st sPHENIX Russia Workfest

sphenix @ EIC

Timely: US National Academies of Science recommend construction of EIC

The Netional Academics of REGINEERING THE NATIONAL ACADEMIES PRESS

This PDF is available at http://nap.edu/25171

to have been been and Annual State

An Assessment of U.S.-Based Electron-Ion Collider Science

SHARE 👔 👩 🛅 🔤

DETAILS

114 pages | 7 x 10 | PAPERBACK ISBN 978-0-309-47856-4 | DOI 10.17226/25171

CONTRIBUTORS

Committee on U.S.-Based Electron-Ion Collider Science Assessment; Board on Physics and Astronomy; Division on Engineering and Physical Sciences; National Academies of Sciences, Engineering, and Medicine

FIND RELATED TITLES

Copyright @National Academy of Sciences. All rights reserved.

Gunther Roland

Study group (incl. non-sPHENIX members) working on EIC detector design based on sPHENIX/Babar magnet -Design Study Report in final review

1st sPHENIX Russia Workfest

Outlook

- sPHENIX will probe microscopic structure of strongly coupled QGP
- - Upsilon spectroscopy •
 - Jet suppression and substructure
 - Open heavy flavor over full kinematic range •
- Growing international collaboration •
- Work on sPHENIX is in full swing
- Exciting physics program at RHIC starting in 2023

Gunther Roland

1st sPHENIX Russia Workfest

New state of the art detector at RHIC, complementing capabilities of LHC

sPHENIX $\sqrt{s_{NN}}$ = 200 GeV tentative run plan

Commissioning

Single jet, di-jet, photon-tagged jet, b-tagged jet spectra

D-jet asymmetry

IUpsilon spectra

Reference data for modification of jets, di-jets, b-tagged jets

Reference data for cold nuclear matter effects

Direct photon measurement

Study of flavor dependence of jet observables

Modification of jet fragmentation functions, jet splitting functions, other complex jet observables

High statistics data for Upsilon modifications High statistics data for jet ALL

High statistics data for b-tagged jets and photon-tagged jets

High statistics data for jet fragmentation functions, jet splitting functions, other complex jet observables

High statistics data for high p⊤ direct photons

High statistics data for Upsilon modifications, including Y(3S)

Collective flow of b-quarks (B hadron elliptic flow)

