Frie SPHENIX Detector: Detector Development and Future Opportunities

John Lajoie Iowa State University

for the sPHENIX Collaboration

Office of Science

The Big Picture at RHIC (and the EIC...)

The Big Picture at RHIC (and the EIC...)

How do collective, many-body phenomena arise from first-principles QCD?

SPHENIX Subdetectors

Calorimeter stack

Continuous readout TPC Si strip intermediate tracker 3-layer MAPS-based µ vertex Tungsten/SciFi EMCal Steel/plastic scintillator HCAL SiPM readout

15kHz readout in Au+Au to match expected collision rate in |z| < 10cm

sPHENIX Solenoid

February 2015 leaving SLAC

Former BaBar magnet provides a platform for high resolution tracking

- 1.5 T
- 2.8 m bore
- 3.8 m long

sPHENIX Hadronic Calorimeter

- HCAL steel and scintillating tiles with wavelength shifting fiber
 - Outer HCal (outside the solenoid)
 - Δη x Δφ ≈ 0.1 x 0.1
 - 1,536 readout channels
- SiPM Readout

HCAL performance requirements driven by jet physics in HI collisions

- •Uniform fiducial acceptance -1< η <1 and 0< φ <2 π
 - Extended coverage -1.1< η <1.1 to account for jet cone
- •Absorb >95% of energy from a 30 GeV jet
 - Requires ~4.9 nuclear interaction length depth
- •Hadronic energy resolution of *combined* calorimetry:
 - UPP: $\frac{\sigma}{E} < \frac{150\%}{\sqrt{E}}$
 - Gaussian response (limited tails)
- •HCAL created by instrumenting barrel magnetic flux return

EMCAL

Outer HCAL ≈3.5λ₁

EMCAL $\approx 18 X_0 \approx 0.7 \lambda_1$

Magnet $\approx 1.4X_0$

Frame $\approx 0.25\lambda_{\rm H}$

Outer HCAL

Inner HCAL

(Frame)

HCAL Details

"Inner HCAL" Frame and Supports

Outer HCAL Sectors Assembly:

10/29/2018

angle

J. Lajoie - sPHENIX Russia Workshop

Scintillating Tile Advanced R&D

- All aspects of the scintillating tile design are highly advanced
- Currently working on Advanced R&D contract (OPC funds):
 - 5th prototyping round (pre-production)
 - ~20% of production total (1560 tiles)
 - Includes tiles, clips, light blockers, SiPM mount, fiber bundles
 - Exercise vendor production capabilities
- Advanced R&D plan involves instrumenting six HCAL sectors with pre-production tiles and electronics

The Inner HCAL

DELIVERABLE:

32 sectors - 1.16m inner radius, 1.37m outer radius 8 rows of 7mm scintillator tiles (24 tiles per row) 32° tilt angle, flat stainless steel plates ~10.2mm - ~14.7mm

24 SCINTILATOR TILES PER GAP

SPH

Improvement with iHCAL

No resolution improvement after gamma+jet calibration with uninstrumented Al frame.

By instrumenting the Al frame we can recover most of the resolution with the SS310 iHCAL after gamma+jet calibration

EMCAL Subsystem

EMCal Technical Overview

EMCAL Design Specs:

- Coverage: ± 0.85 in η (± 1.0 in η with Chinese support), 2π in ϕ
- Segmentation: $\Delta \eta \propto \Delta \phi \approx 0.025 \times 0.025$
- Readout channels (towers): 72x256 = 18432
- Energy Resolution: $\sigma_{\rm E}/{\rm E} < 16\%/{\rm VE} \oplus 5\%$
- Provide an e/h separation > 100:1
- Approximately projective in η and ϕ
- Compact, works inside 1.4T magnetic field and reduces cost of HCAL Design technologies
- W/SciFi SPACAL Matrix of W powder and epoxy with embedded scintillating fibers
- SiPM readout

Total number of SiPMs: 73,728

EMCAL Absorber Blocks

Design driver:

Must be compact to fit inside Babar magnet & minimize cost of HCAL

\Rightarrow W/SciFi SPACAL

Absorber

- Matrix of tungsten powder and epoxy with embedded scintillating fibers
- Density ~ 9-10 g/cm³
- $X_0 \sim 7 \text{ mm}$ (18 X_0 total), $R_M \sim 2.3 \text{ cm}$

Scintillating fibers

- Diameter: 0.47 mm, Spacing: 1 mm
- Sampling Fraction ~ 2 %

Fibers are held in position with metal meshes spaced along the module

J. Lajoie - sPHENIX Russia Workshop

Modules are formed by pouring tungsten powder into a mold containing an array of scintillating fibers and infusing with epoxy

13

Calorimetry Test Beams

Test beams (2014/16/17/18):

Full scale mechanical prototypes manufactured

In all cases, the combined system meets the sPHENIX spec!

https://arxiv.org/abs/1704.01461 (submitted to IEEE TNS) 10/29/2018

J. Lajoie - sPHENIX Russia Workshop

Calorimetry Test Beams

Test beams (2014/16/17/18):

https://arxiv.org/abs/1704.01461 (submitted to IEEE TNS) 10/29/2018 Four round with Unipla tile design

Full scale mechanical prototypes manufactured

Outer HCAL/Flux Return Assembly

sPHENIX Tracking

1. Time Projection Chamber (TPC)

- 40 layer readout (30 < R < 78 cm)
- Main tracking detector

2. INtermediate silicon sTrip Tracker (INTT)

- 4 layers (6 < R < 12 cm)
- Fast timing -> disambiguate pileup

3. MAPS-based vertex detector (MVTX)

- 3 layers (2.3 < R < 3.9 cm)
- Precision tracking and vertexing

The sPHENIX TPC

- A next-generation TPC operated in continuous readout mode using GEM Avalanche for low Ion Back Flow (IBF).
- Front End Electronics (FEE) uses SAMPA chip (developed by ALICE).
- Data Aggregation Module (DAM) uses the FELIX board (developed by ATLAS)

TPC Technical Overview

MVTX enables world-class HF science program

A Monolithic Active Pixel Sensor Detector for the sPHENIX Experiment

MVTX spatial resolution

MVTX based on copy of ALICE staves with support structure modified for sPHENIX

Laver (

Rmax 26,70 Rmid 23,40

Rmin 22.40

Realizing sPHENIX

INTT telescope beam test in Spring 2018

Detector will be delivered by Riken

Full field magnet test at 1.4T at **BNL** on 2/13/2018 **MVTX** full chain test and beam test in Spring 2018 Final EMCal prototype Expecting stave procurement in late 2018

Realizing sPHENIX

Flux return/oHCAL absorber Production sectors started arriving September '18

Beam test of **TPC** prototype in June 2018 Ready for producing of fullsize field cage "prototype"

EMCAL materials purchase underway; "Sector 0" production starting 2018

Realizing and Running sPHENIX

sphenix @ EIC

	This PDF is available at	http://nap.edu/25171	SHARE 🚺 🖸 🙆 🖹
	anna an anna anna anna 1 Meanna an Anna anna	An Assessment of U.SBased I	Electron-Ion Collider Science
		DETAILS	
		114 pages 7 x 10 PAPERBACK ISBN 978-0-309-47856-4 DOI 10.17225/25	171
		CONTRIBUTORS	
	GET THE BOOK	Committee on U.SBased Electron-Ion Coli Physics and Astronomy; Division on Engine Academies of Sciences, Engine eting, and M	der Science Assessment; Board on ring and Physical Sciences; National edicine
Timelv: U	S National A	cademies of Scie	nce
- / -	nd construc	tion of EIC	
recomme			
recomme	Visit the National Acad	lemies Press at NAP.edu and login or register	to get
recomme	Visit the National Acad – Access to free PDF d – 10% off the price of p – Email or social media – Special offers and dis	temies Press at NAP.edu and login or register low-rioads of thousands of scientific reports rint titles a notifications of new titles related to your interest scounts	s get Go
recomme	Visit the National Acad – Access to free P DF d – 10% off the price of p – Email or social me dia – Special offers and dis Distribution, posting, or copyl (Request Permission) University	Iemies Press at NAP,edu and login or register lownloads of thousands of scientific reports wint titles a notifications of new titles related to your interest scounts	to get

Study group (incl. non-sPHENIX members) working on EIC detector design based on sPHENIX

Deliver Design Update by October '18

7

Strong interest in Cold QCD with sPHENIX

June '17: Modest forward upgrade, following invitation by ALD to STAR and sPHENIX.

Exciting p+p and p+A program, but also strengthening of core sPHENIX program through high-rate, high resolution, large acceptance calorimetry and tracking

Oct '17: Medium-energy physics with sPHENIX Barrel

Demonstrates wide range of physics opportunities with MIE detector

Forward sPHENIX

- sPHENIX
 - HCal/Flux return
 - Solenoid
 - Central EMCal
 - Silicon strip tracking
 - TPC
 - MAPS

Forward sPHENIX

- EIC-sPHENIX detector
 - HCal/Flux return
 - Solenoid
 - Extended Central EMCal
 - Central hadron PID
 - TPC
 - MAPS
 - Forward and backward tracking
 - Forward and backward hadron PID
 - Backward crystal EMCal
 - Forward EMCal
 - Forward HCal

Forward sPHENIX

5

preamp

Forward sPHENIX Technologies

Forward HCal

- Technology choices
 - UCLA HCal for STAR FCS (O. Tsai)
 - E864 SPACAL (J. Lajoie)
 -
- UCLA Hadron calorimeter for STAR FCS
 - 10cm x 10cm x 81cm tower
 - 4 interaction length
 - 64 layers of 10mm Pb (or Fe) absorber + 2.5mm scintillator
 - WLS plate for light collection
 - SiPM for readout

30

Gas

Outlook

- sPHENIX will probe microscopic structure of strongly coupled QGP
- New state of the art detector at RHIC, complementing capabilities at the LHC:
 - Jet suppression and substructure
 - Upsilon spectroscopy
 - Open heavy flavor over full kinematic range
- International collaboration, growing to include EIC and forward interests
- Work on sPHENIX is in full swing!
- Exciting physics program at RHIC in 2020's, and possibly beyond at EIC

BACKUP

Performance Simulation: Track and Jet resolution ^{■PHE}

Calorimeter-related performance studied using GEANT simulations verified with test beam data

Jets in sPHENIX vs. LHC

Jets in sPHENIX vs. LHC

Jets in sPHENIX vs. LHC

Upsilons at sPHENIX vs. LHC

Sequential suppression of Y(nS) states reveals QGP Debye screening length As at LHC, Y(3s) will be challenging to see in Au+Au at RHIC

Heavy flavor at sPHENIX vs. LHC

Heavy flavor at sPHENIX vs. LHC

Heavy flavor at sPHENIX vs. LHC

TPC Status & Highlights

Strongly-Coupled Quark-Gluon Plasma

Established **viscous hydrodynamics** as effective theory of longwavelength dynamics of QGP

Direct connection of final state correlations to structure and fine-structure of initial state

Extracted QGP properties quantitatively, most prominently transport coefficient $\eta/s \sim 1/(4\pi)$: most perfect liquid

Connections to strong coupled matter in many fields of physics (string theory to cold atoms)

sPHENIX Science Mission

How does QGP work?

What is its microscopic structure?

There are two central goals of measurements planned at RHIC, as it completes its scientific mission, and at the LHC (1) Probe the inner workings of QGP by resolving its properties at shorter and shorter length scales. The complementarity of the two facilities is essential to this goal, as is a state-of-the-art jet detector at RHIC, called sPHENIX. (2) Map the phase diagram of QCD with experiments planned at RHIC.

10/29/2018

NP LRP: "Probe the inner workings of QGP"

Three key approaches to study QGP structure at multiple scales:

Complementarity: Why RHIC and LHC? ^{■PHE}

M. Habich, J. Nagle, and P. Romatschke, EPJC, 75:15 (2015)

Structure of QGP expected to depend on T Initial QGP conditions and QGP evolution are different at RHIC vs LHC.

RHIC QGP spends more time near T_c

Complementarity: Why RHIC and LHC? ^{■PHE}

M. Habich, J. Nagle, and P. Romatschke, EPJC, 75:15 (2015)

50 Jets evolve in QGP at the LHC microscope resolving power [1/fm] Jets evolve in Oce kinematic reach 0-20% Au+A 10 medium coupling Y(1s)5 22 Y(1s,2s,3s) 10 weeks p+p 01. = 99 MeV Y(2s)000 Y(3s) 0000 $3T_c$ Tc $2T_c$ $1000T_{c}$ perfect liquid temperature

Structure of QGP expected to depend on T Initial QGP conditions and QGP evolution are

different at RHIC vs LHC.

RHIC QGP spends more time near T_c

→ Use **combined RHIC and LHC data** to extract T dependence

sPHENIX collaboration: 70+ institutions

Augustana University Banaras Hindu University Baruch College, CUNY Brookhaven National Laboratory China Institute for Atomic Energy CEA Saclay Central China Normal University **Chonbuk National University** Columbia University Eötvös University Florida State University Fudan University Georgia State University Howard University Hungarian sPHENIX Consortium Insititut de physique nucléaire d'Orsay Institute for High Energy Physics, Protvino Institute of Nuclear Research, Russian Academy of Sciences. Moscow Institute of Physics, University of Tsukuba Institute of Modern Physics, China Iowa State University Japan Atomic Energy Agency Joint Czech Group Korea University Lawrence Berkeley National Laboratory Lawrence Livermore National Laboratory Lehigh University Los Alamos National Laboratory Massachusetts Institute of Technology Muhlenberg College Nara Women's University National Research Centre "Kurchatov Institute" National Research Nuclear University "MEPhl" New Mexico State University

Oak Ridge National Laboratory Ohio University Peking University Petersburg Nuclear Physics Institute Purdue University **Rice University** RIKEN **RIKEN BNL Research Center** Rikkyo University **Rutgers University** Saint-Petersburg Polytechnic University Shanghai Institute for Applied Physics Stony Brook University Sun Yat Sen University Temple University Tokvo Institute of Technology Tsinghua University Universidad Técnica Federico Santa María University of California, Berkeley University of California, Los Angeles University of California, Riverside University of Colorado, Boulder University of Debrecen University of Houston University of Illinois, Urbana-Champaign University of Jammu University of Maryland University of Michigan University of New Mexico University of Tennessee, Knoxville University of Texas, Austin University of Tokyo University of Science and Technology, China Vanderbilt University Wayne State University Weizmann Institute

Yale University

Yonsei University

BNL, June '18

BNL, June '17

BNL, June '16

J. Lajoie - sPHENIX Russia Workshop

Santa Fe, Dec '17

GSU (Atlanta), Dec '16

Rutgers, Dec'15

10/29/2018

Growth of collaboration since CD-0

2017

Broad expertise in relevant physics, silicon, TPCs, calorimetry

2018

2016

Complementarity of RHIC and LHC

Multi-year run plan for sPHENIX

Year	Species	Energy [GeV]	Phys. Wks	Rec. Lum.	Samp. Lum.	Samp. Lum. All-Z
Year-1	Au+Au	200	16.0	7 nb^{-1}	$8.7 \ { m nb^{-1}}$	34 nb^{-1}
Year-2	p+p	200	11.5		48 pb^{-1}	267 pb^{-1}
Year-2	p+Au	200	11.5		$0.33 \ {\rm pb^{-1}}$	$1.46 { m ~pb^{-1}}$
Year-3	Au+Au	200	23.5	14 nb^{-1}	26 nb^{-1}	88 nb^{-1}
Year-4	p+p	200	23.5		$149 \mathrm{~pb}^{-1}$	$783~{ m pb}^{-1}$
Year-5	Au+Au	200	23.5	14 nb^{-1}	48 nb^{-1}	92 nb^{-1}

- Consistent with DOE CD-0 "mission need" document
- Incorporates BNL C-AD guidance on luminosity evolution
- Incorporates commissioning time in first year

Minimum bias Au+Au at 15 kHz for |z| < 10 cm:

47 billion (Year-1) + 96 billion (Year-2) + 96 billion (Year-3) = Total 239 billion events

For topics with Level-1 selective trigger (e.g. high p_T photons), one can sample within |z| < 10 cm a total of 550 billion events.

Tracking efficiency and resolution

Cold QCD with sPHENIX barrel

Charge from ALD, delivered 10/2017 jet ALL ¥ 0.1-ALL sPHENIX proj. 0.06 s=200 GeV p+p → jet+X √s=200 GeV ml<1.1 PHENIX-note sPH-cQCD-2017-002 ml<1.1 L=700 pb⁻¹ P=0.6 L=700 pb⁻¹ P=0.6 Theory curve: DSSV14 Medium-Energy Nuclear Physics Measurements with 0.04 Theory curve: DSSV14 the sPHENIX Barrel 0.05 0.02 10 20 30 40 10 p₊ (GeV/c) sPHENIX G4 simulation Pythia 8, 35 GeV y+jet event × **sPHENIX** Simulation s=200 GeV The sPHENIX Collaboration 0.8 October 10, 2017 p+p→jet+jet+X 0.7 0.6

Projected capabilities for observables in longitudinally, transversely polarized collisions, nPDFs

X,

Nuclear PDF's

(used primarily to fix normalization)

Central ($|\eta| < 1$) + Forward dijets (1.6< η <3.6)

Can we use multiple datasets (with similar systematics) to overcome the normalization limitation?

Forward DY (after normalization fixed)

46

10/29/2018

Nuclear PDF's

Central ($|\eta| < 1$) + Forward dijets (1.6< η <3.6)

Can we use multiple datasets (with similar systematics) to overcome the normalization limitation?

Forward DY (after normalization fixed)

Fragmentation in a Nuclear Environment

Fragmentation in a Nuclear Environment

10/29/2018

 $x_F = p_z/p_{beam}$

J. Lajoie - sPHENIX Russia Workshop

Soft-drop grooming combined with a Cambridge-Aachen type decomposition of a jet found with an anti- k_T algorithm – provides detailed information about the first parton splitting!

An excellent way to study cold QCD effects in fragmentation in detail!