# Low Energy RHIC electron Cooling (LEReC)

## High-power Fiber Laser System for LEReC

Zhi Zhao

DOE Review November 14-15, 2017



#### **A CENTURY OF SERVICE**





## Acknowledgements

- Laser group: Patrick Inacker, Brian Sheehy (retired), Zhi Zhao, & Michiko Minty
- Beam physics: Alexei Fedotov, Wolfram Fischer, Dmitry Kayran, Jorg Kewisch, Sergei Seletskiy, & Mike Blaskiewicz
- Electronic & RF support: Michael Costanzo, Lenny DeSanto, Kevin Mernick, Tony Curcio, Craig Dawson, Jim Kelly, & Kevin Smith
- Integration into MPS: Sergei Seletskiy, & Zeynep Altinbas
- Laser transport: Joseph Tuozzolo, Steven Bellavia, Dave Phillips, Bob Meier, Travis Shrey, Thomas Tallerico, Charles Spataro, Sorin Badea, Daniel Lehn, Mike Mapes, & John Skaritka



## Outline

- Laser parameter review
- Laser & control for beam operation
- Conclusion





### Laser Parameter Review





### Laser Pulse Pattern for LEReC



U.S. DEPARTMENT OF Office of Science



## Laser Energy & Power for LEReC



- Electron bunch charge: 130 pC 300 pC 120 pC
- Laser energy (QE=1%): 31 nJ 72 nJ 28 nJ
- **Repetition rate (MHz):** 9.1 × 30 = 273 9.1×18 = 164 704
- Green power on cathode: 8.5 W 12 W 20 W
- Green power from laser: 8.5x3 = 25.5 W 12x3=36 W 20\*3 = 60 W

A higher laser power capability, a factor of 2-3, would be needed to achieve stable and reliable operation for beam experiment!



## Laser Design Specifications

• Green average power: 60 W



Spatial profile: M<sup>2</sup><1.2</li>



"Flat-top" temporal profile



• Timing jitter: 1 ps rms



• Point instability: 40 µm rms



Stability & reliability

power/jitter/spatio-temporal/position

#### Time (24/7)





### Laser & Control for Beam Operation





### **Yb-doped Fiber Laser System**



#### Key challenges: physical limitations & system engineering





### Laser Specifications: Demonstrated

• Green average power: 180 W



• Power stability at 100 W



• Timing jitter: 240 fs rms



Point stability at 60 W



Spatial mode: M<sup>2</sup> < 1.1 at 100W</li>





## Layout of Laser Control for Beam Operation



#### Key control

- Pulse pickers
- Intensity control
- Spatiotemporal shaping

#### Key diagnostics

- Laser power and QE
- Laser spatial profile
- Point stability on cathode





## Laser vs RF Phase Locking



- Both laser and RF cavities are locked to the same low-phase-noise RF signal generator.
- A feedback on RF phase is built to correct the phase slip between laser and RF cavities.



## Final Laser System for Beam Operation



Final design: pulse pickers, control, diagnostics, & protection





## Laser Specifications for Beam Operation

• Green average power: 72 W



Spatial mode: M<sup>2</sup> ~ 1 at 30 W



Power stability at 45 W



• Point stability at 30 W







## Ultrafast Pulse Picker

• Macro-bunch generator



- Mach—Zehnder intensity modulator
- Bias control for null locking with high extinction ratio: 42 dB
- RF on/off for activating pulse picker





# High-power Pockels Cell for Bunch Pickup

• Bunch pickup for beam diagnostic



5. MPS in the pulsed mode



## EOM for Intensity Control



- Stabilizing beam current •
- 1.7  $\mu$ s rise time for fast MPS •



•



## Green Power Stability with Feedback

•



Relative intensity noise (RIN): noise power/carrier power,  $< P_n^2 > / P_0^2$ 

Power in the frequency domain

• Long-term test will be done in the future.

Power in the time domain



# Crystal Stack for Longitudinal Beam Shaping



- Duration: 80 ps
- Rise & fall time: 2 ps
- Ripple modulation: 40%

Office of

Science

U.S. DEPARTMENT OF



• Work is underway to conduct the measurement.

November 2017

NATIONAL LABORATORY

### Free-space Laser Transport: Beam Optics

• Laser beam transport



Laser beam optics: simulation (M<sup>2</sup> = 1.1)







## Laser Transport: Design & Engineering



#### Highest engineering standards:

- Vibration reduction in the laser room & tables;
- Vacuum pipes for the laser transport;
- Preventing any air flows by sealing laser boxes;
- Laser decoupling from vacuum pipes
- Rigid mechanical mount and stands;
- Mirrors (R>99.97%), lens and view window (R<0.25%).

## Active beam stabilization



#### Target:

- 1. Correcting range: <2 mm
- 2. Vibration freq.: <100 Hz
- 3. Operation mode: cw & pulsed
- 4. Point instability: <40 μm





## Laser Spatial Shaping & Diagnostics



#### Laser control & diagnostics:

- Spatial mode shaping and 1:1 imaging
- Motion control for beam optimizing & QE
- Laser power & spatial mode monitoring



## Conclusion

- High-power fiber laser design specifications: demonstrated Laser power (72W green), power stability ( $\sigma$ =0.006%), RMS time jitter (241 fs), excellent spatial mode (M^2<1.1), and laser point stability ( $\sigma$ <10  $\mu$ m)
- Laser control & transport: Pulse pickers, intensity feedback, spatiotemporal shaping, laser transport, & diagnostics
- Remaining laser topics:

Efficiency in the crystal shaping, cross-correlation measurement, & beam position feedback, long-term stability and reliability

- Laser operation: 12h shift in pulsed & CW mode during run 17
- Laser ready for 24/7 beam operation in run 18



## Laser System in the Lab





Office of Science







# Low Energy RHIC electron Cooling (LEReC)

### **LEReC Laser Transport Status**

**Patrick Inacker** 

DOE Review November 14-15, 2017



#### **A CENTURY OF SERVICE**





#### **Laser Transport Overview**



#### Laser Transport Highlights: 2 Vacuum Tubes 3 Laser Tables

Transport Length (Trailer-Cathode) ~35m Target Pointing Stability ~40µm RMS

Installed and successfully commisioned during run17





#### **Comissioning Experience during run17**

- Remote Alignment
- Live Power Measurements
- Laser Beam Pointing Stability 2017
- Temporal Shaping challanges for cw operation
- High Power cw transport
- Remote Control and Diagnostics





#### **Remote Alignment Upgrade**



Slow ground motion makes adjustments during operation neccessary

- Solution: Remote controlled Piezo Mirrors (Trailer Mirror successfully used in run17)

#### **Live Power Measurement**



Additional Low Power meter for more accurate power measurements during low power cw operation





#### Laser Transport Stability 24hr- Measurements

#### Trailer – Relay Table





#### 24hr Stability (1) Trailer – Relay Table



NATIONAL LABORATORY





#### 24hr Stability (2) Trailer – Relay Table







Office of Science



#### Laser Transport Stability 24hr- Measurements

Trailer – Gun Table







#### **24hr Stability (1)** Trailer – Gun Table

#### NOTE: Horizontal plane and Vertical plane swap from Relay to Gun table due to Beam guidence





BROOKHAVEN NATIONAL LABORATORY

#### 24hr Stability (2) **Trailer – Gun Table**

NOTE: Horizontal plane and Vertical plane swap from Relay to Gun table due to Beam guidence

 $\sigma_{2-24} = 25 \mu m$ **Beamposition Y Beamposition X** 100 200 150 80 100 60 Beam Position (µm) Beam Position (µm) 50 40 0 20 -50 0 -100 -20 -150 -40 -200 -250 -60 10 15 20 5 25 0 5 10 15 20 25 0 Time (hrs) Time (hrs)

 $\sigma_{2-24} = 114 \mu m$ 





#### **1hr Stability @ 4Hz (3)** Trailer – Gun Table

 $\sigma_{10-60} = 7.6 \mu m$ 



 $\sigma_{10-60} = 7.2 \mu m$ 



Conclusion: Slow Feedback neccessary



Office of Science



### **Temporal Shaping challanges for cw operation**



Thermal Lensing prevents high average powers to be transported the same way as low powers

- 2 Types of Solutions are being investigated
  - 1. Replacing the thickest crystals with interferometers
  - 2. Increasing the Beam Size inside the Crystals



#### **Temporal Shaping** Thermal Lensing investigation with Interferometer Setup







#### **Temporal Shaping** Thermal Lensing with Interferometer Setup







#### **Temporal Shaping** Thermal Lensing with Interferometer Setup

#### Beam at the Gun Table @ 8.4W cw







#### High Power cw Transport with Interferometer Setup

- 18W from Laser
- 15.5W after EOM
- 10.1W after Crystal shaping
- 8.4W Transported

Beam too large for transport

 < 90% transport efficiency

Thermal Lens still too strong.

#### Conclusion:

Additional Interferometers could reduce the thermal lense further to allow more power and a better beam profile.







#### **Remote Control and Diagnostics**

| Pockels Cell      |                                                              | Sensors and Cameras |                                    |
|-------------------|--------------------------------------------------------------|---------------------|------------------------------------|
|                   | - Analog Control through VME, Error Readback                 | Temp:               | Main Amplifier Coolant             |
| Intensity Control |                                                              |                     | Power Amplifier Coolant            |
|                   | <ul> <li>RS232 Control over the rotation of a HWP</li> </ul> |                     | Main Amplifier Surface             |
| Steering          |                                                              | Flow:               | Main Amplifier                     |
|                   | - Piezo Mirror in Trailer and on Relay Table                 |                     | Power Amplifier                    |
|                   | - Zoom Lens to adjust beam size on Gun Table                 |                     | Dump Loop                          |
|                   | - 2 Axis motion for steering on Cathode on Gun               | Power:              | LP on Gun Table (Live)             |
|                   | Table                                                        |                     | (3W Thermal Sensor)                |
|                   |                                                              |                     | LP on Gun Table (Flipper)          |
|                   |                                                              |                     | (50W Thermal Sensor)               |
|                   |                                                              | Diodes:             | IR 9.1MHz Macrobunch Signal        |
|                   |                                                              |                     | SHG Train Signal                   |
|                   |                                                              | Cameras:            | Relay Table                        |
|                   |                                                              |                     | Gun Table                          |
|                   |                                                              |                     | (Profile monitor, Virtual Cathode, |
|                   |                                                              |                     | Beam Stabilization)                |
| •                 |                                                              |                     | Exit Table                         |
| Current           | Planned for This Year                                        |                     |                                    |





#### Conclusion

- Laser Transport
  - Momentary Stability well below spec (10µm < 40µm)</li>
  - Experience from run17 motivates the need for slow feedback on the beam position for 24/7 Operation
    - Bandwidth << 1Hz</p>
- Temporal Shaping
  - Solution for High Power cw operation has to be found
    - 15-20W average power transport without beam degradation (8W achieved with 1 Interferometer)
- Overall
  - More Diagnostics need to be installed



