

Nuclear Matrix Elements for Neutrinoless Double Beta Decay from Lattice QCD

David Murphy and Will Detmold for the NPLQCD Collaboration January 30, 2019

BNL High Energy Theory Seminar

Background

$2\nu\beta\beta$ from Lattice QCD [arXiv:1702.02929 (2017)]

 $0\nu\beta\beta$ from Lattice QCD [arXiv:1811.05554 (2018)]

Background

$2\nu\beta\beta$ from Lattice QCD [arXiv:1702.02929 (2017)]

$0\nu\beta\beta$ from Lattice QCD [arXiv:1811.05554 (2018)]

Neutrinos and Neutrino Oscillations

- Oscillation experiments have taught us a lot about neutrinos
- PMNS matrix $U_{lpha i}$ relates flavor $|
 u_{lpha}
 angle$ and mass $|
 u_{j}
 angle$ eigenstates

$$|
u_{lpha}
angle = \sum_{j} U_{lpha j} |
u_{j}
angle$$

Oscillations:

$$|\nu_i(L)\rangle = e^{\frac{-im_i^2 L}{2\mathcal{E}}} |\nu_i(0)\rangle, \qquad P_{\alpha \to \beta} = \left|\sum_j U_{\alpha j}^* U_{\beta j} e^{-\frac{im_j^2 L}{2\mathcal{E}}}\right|^2$$

Neutrinos and Neutrino Oscillations

Δm_{12}^2 [eV ²]	$7.5(2) imes 10^{-5}$	2.7%
Δm_{13}^2 [eV ²] (NH)	$2.50(3) imes 10^{-3}$	1.2%
Δm^2_{13} [eV ²] (IH)	$2.42(^{+3}_{-4}) imes 10^{-3}$	1.4%
$\sin^2 \theta_{12}$	$3.2(2) imes 10^{-1}$	5.5%
$\sin^2 \theta_{13}$ (NH)	$2.2(^{+8}_{-7}) imes 10^{-2}$	2 50/
$\sin^2 \theta_{13}$ (IH)	$2.2(^{+7}_{-8}) imes 10^{-2}$	5.5%
$\sin^2 \theta_{23}$ (NH)	$5 5(+2) \times 10^{-1}$	4.7%
$\sin^2 \theta_{23}$ (IH)	$5.5(_{-3}) \times 10$	4.4%
δ/π (NH)	1.2(2)	10%
δ/π (IH)	$1.6(^{+1}_{-2})$	9%

$\sin^2 \theta_{12}$	$5.09(4) \times 10^{-2}$	0.8%
$\sin^2 \theta_{13}$	$1.2(1) \times 10^{-5}$	8.3%
$\sin^2 \theta_{23}$	$1.72(9) \times 10^{-3}$	5.2%
δ/π	0.38(3)	7.9%

Table 2: CKM [PDG]

Table 1: PMNS [arXiv:1708.01186]

- Evidence of rich and interesting physics in neutrino sector...
 - Larger mixing angles
 - Potential *CP* violation ($\propto \sin \delta$)
- ...but interesting questions remain:
 - Absolute neutrino masses / mixing angles?
 - Are neutrinos Dirac or Majorana?
 - Is lepton number conserved in nature? (baryogenesis)
- Need other sources of information!

2 uetaeta (neutrinoful):

- ${}^{A}_{Z}X \rightarrow^{A}_{Z+2}X + e^{-} + e^{-} + \overline{\nu}_{e} + \overline{\nu}_{e}$
- $T_{1/2}^{2
 u} \sim 10^{21}$ yrs rarest observed Standard Model process

0 uetaeta (neutrinoless):

- Also allowed if neutrino is Majorana: ${}^{A}_{Z}X \rightarrow^{A}_{Z+2}X + e^{-} + e^{-}$
- Only viable method for probing Majorana vs. Dirac!

Challenging to observe: requires systems with no β decay background

0 uetaeta in the Standard Model EFT and Chiral EFT

SM EFT:
$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + \mathcal{L}^{(5)} + \mathcal{L}^{(6)} + \dots$$
, $\mathcal{L}^{(d)} = \sum_{i=1}^{n_d} rac{C_i^{(d)}}{\Lambda^{d-4}} Q_i^{(d)}$

- Unique dim. 5 operator: $\mathcal{L}^{(5)} \sim \frac{1}{\Lambda} H H \ell \ell \sim \frac{v^2}{\Lambda} \nu_L^T C \nu_L$ (!)
- New SD operators at dimensions 7 ($\sim \frac{1}{\Lambda^3} \ell \ell q q$), 9 ($\sim \frac{1}{\Lambda^5} \ell \ell q q q q$), ...

Chiral EFT: Matching to (low-energy EFT of hadrons) is understood:

- Left: short distance [arXiv:hep-ph/0303205]
- Right: long distance, light Majorana exchange [arXiv:1710.01729]

Generically need lattice QCD input to determine SM rates

Neutrinoless Double Beta Decay

$$\frac{1}{\mathcal{T}_{1/2}^{0\nu}} = \left|\frac{m_{\beta\beta}}{m_e}\right|^2 G^{0\nu} \left|M^{0\nu}\right|^2$$

- $T_{1/2}^{0\nu}$: $0\nu\beta\beta$ half-life (expt.)
- $m_{\beta\beta} = \left| \sum_{i} m_{i} U_{ei}^{2} \right|$: effective Majorana neutrino mass
- $G^{0\nu}$: phase space factor (theory)
- $M^{0\nu}$: nuclear matrix element (theory) \leftarrow dominant uncertainty

Table 1

Some $\beta\beta(0\nu)$ -decay isotopes of experimental interest that are discussed in this paper, shown with most recent half-life limits. Natural abundances and Q-values taken from [28].

Isotope	etaeta(0 u) Half-life limit (years)	Natural Abundance [%]	Q-value (MeV)
⁴⁸ Ca	> 1.4×10^{22} [31]	0.187	4.2737
⁷⁶ Ge	> 3.0×10^{25} [32]	7.8	2.0391
⁸² Se	> 1.0×10^{23} [33]	9.2	2.9551
¹⁰⁰ Mo	> 1.1×10^{24} [34]	9.6	3.0350
¹³⁰ Te	> 4.0×10^{24} [35]	34.5	2.5303
¹³⁶ Xe	> 1.1×10^{25} [36]	8.9	2.4578
¹⁵⁰ Nd	> 1.1×10^{25} [36]	5.6	3.3673

[Henning, Rev. Phys. 1, 29-35 (2016)]

Constraints on $m_{\beta\beta}$ from $T_{1/2}^{0\nu}$ Limits

- $\sim 2-3\times$ spread in different model calculations of same NME
- Interpreting $T_{1/2}^{0\nu}$ as constraint on neutrino properties / models of $0\nu\beta\beta$ will require improving this situation...
- Realistically, lattice QCD could:
 - 1. Compute inputs to EFT ($\pi\pi
 ightarrow$ *ee*, $n\pi
 ightarrow$ *pee*, nn
 ightarrow *ppee* vertices)
 - 2. Directly test nuclear models for small nuclei

Background

$2\nu\beta\beta$ from Lattice QCD [arXiv:1702.02929 (2017)]

 $0\nu\beta\beta$ from Lattice QCD [arXiv:1811.05554 (2018)]

Setup

- Lattice calculation:
 - ▶ $nn \rightarrow pp$ matrix element on $32^3 \times 48$ Wilson-clover ensemble
 - \blacktriangleright $m_u = m_d = m_s^{
 m phys}$, giving $m_\pi pprox$ 800 MeV, $m_N pprox$ 1600 MeV
- $2\nu\beta\beta$ decay mechanism is well-understood: $(T_{1/2}^{2\nu})^{-1} = G^{2\nu} |M_{GT}^{2\nu}|^2$, with

$$\frac{1}{6}M_{GT}^{2\nu} = \sum_{n=0}^{\infty} \frac{\langle f | A_3 | n \rangle \langle n | A_3 | i \rangle}{E_n - (E_i + E_f)/2} = \beta_A^{(2)} - \frac{|\langle pp | A_3 | d \rangle|^2}{E_{nn} - E_d},$$

- $\beta_A^{(2)}$: isotensor axial polarizability
- Trick: compute compound propagators in background axial field $\propto \lambda$

$$S_{\lambda}(x,y) = S(x,y) + \lambda \int d^4 z \, S(x,z) A_3(z) S(z,y) + \mathcal{O}(\lambda^2)$$

O(λⁿ) compound two-point function has n axial current insertions:

Deuteron and Dinucleon Masses at $m_{\pi} \approx 800$ MeV

|pp
angle,~|d
angle=|pn
angle, and |nn
angle are bound states \Rightarrow FV corrections $\sim e^{-ML}$

$\langle \rho p | A_3 | d \rangle$, $\beta_A^{(2)}$, and $M_{GT}^{2 u}$

- Top: $|\langle pp|A_3|d\rangle|^2$
- Bottom left: β⁽²⁾_A
 (¹S₀ isotensor axial polarizability)
- Bottom right: M^{2v}_{GT}

Matching to Pionless EFT

- Match to pionless EFT in background axial field
- Basic vertices (left: g_A , middle: $\mathbb{L}_{1,A}$, right: $\mathbb{H}_{2,S}$):

$$N \longrightarrow N \qquad {}^{*}S_{0} \longrightarrow {}^{*}S_{1} \qquad {}^{*}S_{0} \longrightarrow {}^{*}S_{1}$$

•
$$C_{nn \rightarrow pp}$$
 at $\mathcal{O}(\lambda^2)$:

- Result: $\mathbb{H}_{2,S} = 4.7(1.3)(1.8)$ fm
- Future calculations in EFT framework could relate to ME of larger nuclei

Summary of Results

- Successful first calculation with unphysical quark masses...
- Key results $(\Delta \equiv E_{nn} E_d)$:

$$\begin{split} \frac{\Delta}{g_A^2} \frac{M_{GT}^{2\nu}}{6} &= -1.04(4)(4) \\ \frac{\Delta}{g_A^2} \frac{|\langle pp|A_3|d\rangle|^2}{\Delta} &= 1.00(3)(1) \\ \mathbb{H}_{2,5} &= 4.7(1.3)(1.8) \text{ fm} \end{split}$$

- Moving toward physical point introduces new challenges:
 - $\blacktriangleright~|nn\rangle$ and $|pp\rangle$ unbound \Rightarrow power law finite volume effects
 - Other intermediate states may become important
 - ▶ At some point light pions must be included in EFT
- ...however, compound propagators do not easily generalize to $0\nu\beta\beta$
 - Current insertions are connected by internal Majorana neutrino propagator
 - New methods needed!

Background

 $2\nu\beta\beta$ from Lattice QCD [arXiv:1702.02929 (2017)]

 $0\nu\beta\beta$ from Lattice QCD [arXiv:1811.05554 (2018)]

SM Long-Distance, Light Majorana Exchange Mechanism

- For lattice scales $a^{-1} \ll m_W$ suffices to work in Fermi effective theory

$$H_W = 2\sqrt{2}G_F V_{ud} \left(\overline{u}_L \gamma_\mu d_L\right) \left(\overline{e}_L \gamma_\mu \nu_{eL}\right)$$

- Treat H_W as perturbation to $H_{\rm QCD}$: 0
 uetaeta induced at second order
- Matrix element decomposes into leptonic and hadronic pieces

$$\int d^{4}x \, d^{4}y \, \langle fee \big| T\{H_{W}(x)H_{W}(y)\} \big| i \rangle = 4m_{\beta\beta} G_{F}^{2} V_{ud}^{2} \int d^{4}x \, d^{4}y \mathbf{L}_{\alpha\beta}(\mathbf{x}, \mathbf{y}) \mathbf{H}^{\alpha\beta}(\mathbf{x}, \mathbf{y})$$
$$\mathbf{L}_{\alpha\beta}(\mathbf{x}, \mathbf{y}) \equiv \overline{e}_{L}(p_{1})\gamma_{\alpha}\gamma_{\beta}e_{L}^{C}(p_{2})S_{\nu}(\mathbf{x}, \mathbf{y})e^{-ip_{1}\cdot\mathbf{x}}e^{-ip_{2}\cdot\mathbf{y}}$$
$$\mathbf{H}_{\alpha\beta}(\mathbf{x}, \mathbf{y}) \equiv \langle f | T\{\overline{u}_{L}(\mathbf{x})\gamma_{\alpha}d_{L}(\mathbf{x})\overline{u}_{L}(\mathbf{y})\gamma_{\beta}d_{L}(\mathbf{y})\} | i \rangle$$

- Develop lattice methods by first computing $\pi^-
 ightarrow \pi^+ e^- e^-$ amplitude
 - Simple Wick contractions
 - ► Clean lattice signals: for nuclear systems $SNR(t) \sim \exp(-A(m_n \frac{3}{2}m_\pi)t)$
- Related calculations:
 - 1. Long-distance $\pi^-\pi^- \rightarrow e^-e^-$ by Feng et al. [arXiv:1809.10511]
 - 2. Short-distance $\pi^- \rightarrow \pi^+ e^- e^-$ by Nicholson et al. [arXiv:1805.02634]

Wick Contractions for $\pi^- \rightarrow \pi^+ e^- e^-$ Transition

Long-Distance $0\nu\beta\beta$ Pilot Calculation: Formalism

- Pilot calculation on $16^3 \times 32 \times 16$ DWF ensemble [arXiv:hep-lat/0701013]
 - $m_{\pi} = 400$ MeV, $a^{-1} = 1.6$ GeV, L = 2 fm
 - ▶ (Free) overlap fermion propagator for neutrino
 - Coulomb gauge-fixed wall source propagators for quarks
 - Asymmetric treatment of weak current insertions
- Similar to ΔM_K [arXiv:1406.0916], rare Kaon decays [arXiv:1806.11520]

 $\mathcal{M}^{0\nu}(T) = |Z_{\pi}|^2 e^{-m_{\pi}(T+2\Delta)} \sum_{n} \frac{\langle \pi ee | \mathcal{H}_{W} | n \rangle \langle n | \mathcal{H}_{W} | \pi \rangle}{E_{n} - m_{\pi}} \left[T + \frac{e^{-(E_{n} - m_{\pi})T} - 1}{E_{n} - m_{\pi}} \right]$

- Choose ∆ to suppress excited states
- To see $\mathcal{M}^{0
 u} \sim T$, must remove:
 - Source/sink dependence

$$\blacktriangleright |e\overline{\nu}_e\rangle \propto e^{(m_\pi - (m_{\beta\beta} + m_e))T}$$

$$\blacktriangleright |\pi^0 e \overline{\nu}_e \rangle \propto \frac{1}{2} T^2$$

• Strategy: remove $|e\overline{\nu}_e\rangle$ state, then extract ME from quadratic fit

Long-Distance $0\nu\beta\beta$ Pilot Calculation: Results

• $n = 0 \ (n \ge 2)$ correction is $\mathcal{O}(1\%) \ (\mathcal{O}(0.01\%))$

Improved Methods I: Continuum Neutrino Propagator

Replace lattice S_{ν} with continuum S_{ν} to reduce FV effects ($am_{\nu} = 0.1$):

1. Lattice with $T = \infty$: $S(x) = \frac{1}{V} \sum_{\hat{q}} \left[\int_{-\pi}^{\pi} \frac{d\hat{q}_3}{2\pi} \frac{1}{\hat{q}_2^2 + \hat{q}^2 + m^2} e^{i\hat{q}_3 \cdot t} \right] e^{i\hat{\vec{q}} \cdot \vec{x}}$

2. Continuum: $S(x) = \int \frac{d^4q}{(2\pi)^4} \frac{1}{q^2 + m^2} e^{iq \cdot x}$

3. UV-regulated continuum: $S_{\Lambda}(x) = \int \frac{d^4q}{(2\pi)^4} \frac{1}{q^2 + m^2} e^{iq \cdot x} e^{-q^2/\Lambda^2}$

Improved Methods II: Exact Double Integration

- Integrate currents in $\mathcal{O}(V \log V)$ via 1D FFTs [Microw. Opt. Technol. Lett. 31, 28 (2001)] :
 - Construct spin-color matrix valued "blocks" describing quark/neutrino propagation through one (integrated) current insertion

$$egin{aligned} B_lpha\left(x;t_1,t_2
ight)&=\int d^3y\,L_{lphaeta}(x-y)\left[S^\dagger_u\left(t_1
ightarrow y
ight)\gamma_eta\left(1-\gamma_5
ight)S_d\left(t_2
ightarrow y
ight)
ight]\ &=\mathscr{F}^{-1}\left[\mathscr{F}\left(L_{lphaeta}
ight)\cdot\mathscr{F}\left(S^\dagger_u\gamma_eta\left(1-\gamma_5
ight)S_d
ight)
ight] \end{aligned}$$

2. Integrate $\int d^3x B_{\alpha}(x) \left[S^{\dagger}_u(t_+ \to x) \gamma_{\alpha} \left(1 - \gamma_5 \right) S_d(t_- \to x) \right]$

- Readily generalizes to more complicated amplitudes such as $\textit{nn} \rightarrow \textit{ppee}$

We have recently started a production calculation

Ensemble	<i>a</i> (fm)	L	Т	am _s	am _{ud}	m_{π} (MeV)	$N_{ m meas}$
241	0.11	24 6	64	54 0.04	0.005	339.6	54
	0.11	24	04		0.01	432.2	53
321 0		0.08 32 6		54 0.03	0.004	302.0	48
	0.08		64		0.006	359.7	43
				0.008	410.8	33	

including SD [arXiv:1606.04549] and LD contributions to $\pi^- \to \pi^+ e^- e^-$

$$\begin{aligned} \mathscr{O}_{1} &= \left(\overline{q}_{L}\tau^{+}\gamma^{\mu}q_{L}\right)\left[\overline{q}_{R}\tau^{+}\gamma_{\mu}q_{R}\right] \\ \mathscr{O}_{2} &= \left(\overline{q}_{R}\tau^{+}q_{L}\right)\left[\overline{q}_{R}\tau^{+}q_{L}\right] + \left(\overline{q}_{L}\tau^{+}q_{R}\right)\left[\overline{q}_{L}\tau^{+}q_{R}\right] \\ \mathscr{O}_{3} &= \left(\overline{q}_{L}\tau^{+}\gamma^{\mu}q_{L}\right)\left[\overline{q}_{L}\tau^{+}\gamma_{\mu}q_{L}\right] + \left(\overline{q}_{R}\tau^{+}\gamma^{\mu}q_{R}\right)\left[\overline{q}_{R}\tau^{+}\gamma_{\mu}q_{R}\right] \\ \mathscr{O}_{1}' &= \left(\overline{q}_{L}\tau^{+}\gamma^{\mu}q_{L}\right)\left[\overline{q}_{R}\tau^{+}\gamma_{\mu}q_{R}\right) \\ \mathscr{O}_{2}' &= \left(\overline{q}_{R}\tau^{+}q_{L}\right)\left[\overline{q}_{R}\tau^{+}q_{L}\right) + \left(\overline{q}_{L}\tau^{+}q_{R}\right)\left[\overline{q}_{L}\tau^{+}q_{R}\right) \end{aligned}$$

SD Preliminary Lattice Results (321, $m_{\pi} \approx 300$ MeV)

$$R_i(t) = rac{C_{\pi \mathscr{O}_i \pi}(0,t,2t)}{C_{\pi}(2t)} \stackrel{t \gg 1}{\simeq} rac{\langle \pi | \, \mathscr{O}_i \, | \pi
angle}{2m_{\pi}}$$

SD Preliminary Physical Point Extrapolation

Fit ansatz: (continuum NLO $\chi {\rm PT}$) + (NLO $\chi {\rm PTFV}$) + ($c_a a^2$)

LD Preliminary Lattice Results

Next Step: Few-Body Nucleon Systems

- $n\pi
 ightarrow pee$ excluded by parity in most experimental searches $(0^+
 ightarrow 0^+)$
 - Challenging on lattice due to disconnected diagrams
- Working now to implement nn → ppee
 - $\blacktriangleright~\sim$ 600 Wick contractions, expect signal-to-noise problem
 - Baryon block algorithms can reduce contraction costs from exponential to polynomial in number of quarks [arXiv:1207.1452]

Figure 1: $n\pi \rightarrow pee$

Figure 2: $nn \rightarrow ppee$

р

р

Conclusions

- We have previously computed the $2\nu\beta\beta$ decay amplitude for the process $nn \to ppee\overline{\nu}_e\overline{\nu}_e$
- We have also recently explored techniques for computing long-distance contributions to $0\nu\beta\beta$ decays
- In some cases, we have improved on these techniques:
 - 1. UV-regulated continuum neutrino propagator
 - 2. Explicit integration over locations of both current insertions via FFTs
- We are currently analyzing data from a complete calculation of the LD (light Majorana exchange) and SD contributions to $\pi^- \rightarrow \pi^+ e^- e^-$ on a series of DWF ensembles
 - ► Continuum / chiral / infinite volume limit
 - To-do (LD): Matching to $\chi \mathsf{PT} \to \mathsf{extract} \ g_{\nu}^{\pi\pi}$
 - ▶ To-do (SD): Renormalization of \mathcal{O}_i MEs in $\overline{\mathrm{MS}}$
- Working to prepare for calculation of $nn \rightarrow ppee$ amplitudes on $m_{\pi} \approx 800$ MeV Wilson-clover ensemble targeting $\sim 5\%$ uncertainty

Thank you!

Backup slides

Lattice QCD in One Slide

Basic idea: compute discretized (Euclidean) PI using a computer

$$\langle \mathscr{O} \rangle = \frac{1}{\mathcal{Z}} \int \mathscr{D} U \mathscr{D} \psi \mathscr{D} \overline{\psi} \mathscr{O} (U, \overline{\psi}, \psi) e^{-S_{\mathcal{G}}[U] - \overline{\psi} \not{\mathbb{D}}(U) \psi}$$

A typical lattice calculation proceeds in two steps:

- 1. Sample gauge field $\{U_i\}_{i=1}^N$ according to $P(U) \propto e^{-S(U)}$
- 2. Compute $\langle \mathscr{O} \rangle = \frac{1}{N} \sum_{i=1}^{N} \mathscr{O}(U_i) + \mathscr{O}(1/\sqrt{N})$

Use Wick's theorem to relate correlation functions to lattice propagators

$$\left\langle \overline{d}\gamma_{5}u(y)\overline{u}\gamma_{5}d(x)\right\rangle = \operatorname{Tr}\left[\gamma_{5}S_{u}\left(x \rightarrow y\right)\gamma_{5}S_{d}\left(y \rightarrow x\right)
ight],$$

which are obtained by numerically solving the Dirac equation $D\!\!\!/\psi=\phi$

 ψ_{x} on sites, $U_{\mathsf{x},\mu}$ on links

- Solving Dirac equation is expensive (large, sparse matrix inversion)
- Freedom to tune ${\mathscr O}$ and source ϕ
- Cost (naively) grows exponentially in number of quarks

- = $2\nu\beta\beta$ and $0\nu\beta\beta$ are both second-order weak processes
 - Compute $\mathcal{M} = \int d^4x \, d^4y \, \langle f | T\{j_\mu(x)j_\mu(y)\} \, |i\rangle$ non-perturbatively
 - Extract $M = \sum_{n} \frac{\langle f | j_{\mu} | n \rangle \langle n | j_{\mu} | i \rangle}{E_n (E_i + E_f)/2}$ by fitting to lattice data
- Similar to $\Delta M_{\rm K}$ [arXiv:1406.0916] and rare Kaon decay [arXiv:1806.11520] calculations
- Can show integrated lattice correlation function behaves like

$$C_{i \to f}(t) = \sum_{\vec{x}, \vec{y}, \vec{z}} \sum_{t_1=0}^{t} \sum_{t_2=0}^{t} \langle 0 | \mathscr{O}_f(\vec{z}, t) T\{j_\mu(\vec{y}, t_2)j_\mu(\vec{x}, t_1)\} \mathscr{O}_i^{\dagger}(0) | 0 \rangle$$

$$\simeq \frac{2}{a^2} Z_i^{\dagger} Z_f e^{-E_f t} \sum_n \frac{\langle f | j_\mu | n \rangle \langle n | j_\mu | i \rangle}{E_n - E_i} \left(\frac{e^{-(E_n - E_f)t} - 1}{E_n - E_f} + \frac{e^{(E_f - E_i)t} - 1}{E_f - E_i} \right)$$

• Form ratios which cancel *t*-dependence $R_{i \rightarrow f}(t) \stackrel{t \rightarrow \infty}{\simeq} M$