Quasi-PDF in **Lattice Perturbation Theory**

Xiaonu Xiong

Forschungszentrum Jülich JÜLICH

BNL lattice PDF workshop April 17th, 2019

Lattice Action

• Wilson fermion action (naïve fermion r=0)

$$egin{align} S_q = & a^4 \sum_x \left\{ -rac{1}{2a} \sum_\mu \left[\overline{\psi}(x) \left(m{r} - \gamma_\mu
ight) U_\mu(x) \psi(x + a \hat{\mu})
ight. \ & + \overline{\psi}(x + \mu) \left(m{r} + \gamma_\mu
ight) U_\mu^\dagger(x - a \hat{\mu}) \psi(x)
ight] \ & + rac{1}{a} (4m{r} + a m) \overline{\psi}(x) \psi(x)
ight\} \ \end{aligned}$$

Plaquette gauge field action

$$S_g = -rac{eta}{3} \sum_x \sum_{\mu >
u} ext{Re} \operatorname{Tr} \left[U_\mu(x) U_
u(x + a \hat{\mu}) U_\mu^\dagger(x + \hat{
u}) U_
u^\dagger(x)
ight]$$

Clover action

$$S_{
m C} = -\sum_{\mu<
u} c_{
m SW} g_s rac{a}{4} ar{\psi}\left(x
ight) \sigma_{\mu
u} \hat{F}_{\mu
u}(x) \psi(x)$$

EOM and dispersion relation for free quark

$$\begin{split} \left[i\sum_{\mu}\gamma_{\mu}\overbrace{2P_{\mu}}^{2}+r\sum_{\mu}\left(\frac{2}{a}-\overbrace{2P_{\mu}}^{2}\right)+2m\right]U(P)&=0\\ \widehat{k}_{\mu}&=\frac{2}{a}\sin\frac{ak_{\mu}}{2}\quad \widetilde{k}_{\mu}=\frac{2}{a}\cos\frac{ak_{\mu}}{2}\\ P_{4}&=\frac{1}{a}\sinh^{-1}\left(\frac{1}{\sqrt{2}}\left\{\frac{1}{(1-r^{2})^{2}}\left[2\left(r^{2}+1\right)\left(am+2r\right)\left(a^{2}r\widehat{P}_{3}^{2}+am\right)\right.\right.\\ &\left.-\frac{1}{2}a^{2}\left(r^{4}+2r^{2}-1\right)\widehat{2P}_{3}^{2}+4r^{2}-\left(a^{2}r^{2}\widehat{P}_{3}^{2}+2ram+2r^{2}\right)\right.\\ &\left.\times\sqrt{a^{4}\left(2r^{2}-1\right)\widehat{P}_{3}^{4}+4a^{2}\widehat{P}_{3}^{2}\left(amr+1\right)+4am(am+2r)+4}\}\right\}^{\frac{1}{2}})\\ P_{4}|_{r=0}&=\frac{1}{a}\sinh^{-1}\frac{\sqrt{4a^{2}m^{2}-a\widetilde{4P}_{3}+2}}{2}\\ \lim_{a\to0}P_{4}&=\sqrt{P_{3}^{2}+m^{2}} \end{split}$$

Feynman Rules

Propagators

quark:

$$S_F(k) = 2 \left[rac{-i \displaystyle\sum_{\mu} \gamma_{\mu} \widehat{2k}_{\mu} + r \displaystyle\sum_{\mu} \left(rac{2}{a} - \widetilde{2k}_{\mu}
ight) + 2m}{\widehat{2k}^2 + \left(r \displaystyle\sum_{\mu} \left(rac{2}{a} - \widetilde{2k}_{\mu}
ight) + 2m
ight)^2}
ight]$$

gluon:

$$D_{g,\mu
u}(k)=rac{1}{\hat{k}^2}\left[\delta_{\mu
u}-(1-ec{\xi})rac{a^2}{4}\hat{k}_{\mu}\hat{k}_{
u}
ight]$$
Feynman gauge: $\xi=1$

• $\mathcal{O}(\alpha_s^1)$ Vertices

q-g-q vertex (naïve fermion r=0)

$$V_{lpha}^{a}\left(p_{2},p_{1},k
ight)=-ig_{s}T^{a}rac{a}{2}\left(\widetilde{p_{2}+p_{1}}
ight)_{lpha}\gamma_{lpha}-g_{s}T^{a}rrac{a}{2}\left(\widetilde{p_{2}+p_{1}}
ight)_{lpha}\gamma_{lpha}-g_{s}T^{a}rrac{a}{2}\left(\widetilde{p_{2}+p_{1}}
ight)_{lpha}\gamma_{lpha}$$

R. Horsley, H. Perlt, P. E. L. Rakow, G. Schierholz, A. Schiller, PRD 78, 054504 (2008)

g—gauge link (in 3-direction) vertices

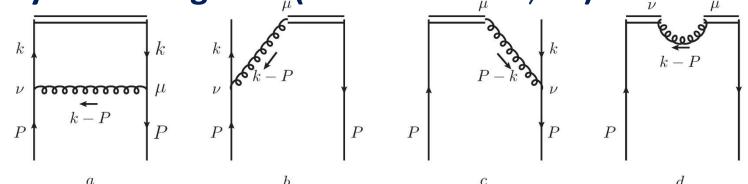
$$O_{1,\mu}^{A}\left(q
ight)=rac{g_{s}aT^{A}\gamma_{3}\delta_{\mu3}}{\hat{q}_{3}} \ O_{2,\mu
u}^{AB}\left(q
ight)=-g_{s}^{2}a^{2}\left\{ T^{A},T^{B}
ight\} \gamma_{3}rac{\delta_{\mu3}\delta_{
u3}}{\hat{q}_{3}^{2}} \ O_{3,\mu
u}^{AB}\left(q
ight)=-g_{s}^{2}a^{2}\left\{ T^{A},T^{B}
ight\} \gamma_{3}rac{\delta_{\mu3}\delta_{
u3}}{\hat{q}_{3}^{2}} \ O_{3,\mu
u}^{AB}\left(q
ight)=0$$

$$\begin{cases} 1 & \text{if } Q = \int_{3,\mu\nu}^{AB} (q) = -g_s^2 a^2 \left\{ T^A, T^B \right\} \gamma_3 \delta_{\mu 3} \delta_{\nu 3} \mathcal{F} \left[e^{-ip_3 z} \left(\frac{z}{i\hat{q}_3} e^{\frac{z}{|z|} i \frac{aq_3}{2}} - \frac{a|z|}{2} \right) \right] \\ & \propto \delta'(x-1) \quad \text{only contribute at } x = 1 \text{, omitted!} \end{cases}$$

T. Ishikawa, Y.-Q. Ma, b, c, d J.-W. Qiu, S. Yoshida, arXiv:1609.02018v1

One-Loop Diagrams

• Feynman diagrams (non-zero at $x \neq 1$)



$$egin{aligned} ilde{q}_a(x) &= \int_{-rac{\pi}{a}}^{rac{\pi}{a}} rac{d^4k}{(2\pi)^4} \sum_{\mu
u} rac{ar{U}(P)V_\mu(P,k,P-k)S_F(k)\gamma_3S_F(k)V_
u(k,P,k-P)U(P)}{ar{U}(P)\gamma_3U(P)} \ & imes D_{g,\mu
u}(P-k)\delta\left(x-rac{k^3}{P^3}
ight) \end{aligned}$$

$$egin{aligned} ilde{q}_b(x) &= \int_{-rac{\pi}{a}}^{rac{\pi}{a}} rac{d^4k}{(2\pi)^4} {\sum_{\mu
u}} rac{\overline{U}(P)O_{1,\mu}(P,k,P-k)S_F(k)V_
u(k,P,k-P)U(P)}{\overline{U}(P)\gamma_3U(P)} \ & imes D_{g,\mu
u}(P-k)\delta\left(x-rac{k^3}{P^3}
ight) \end{aligned}$$

$$ilde{q}_d(x) = \int_{-rac{\pi}{a}}^{rac{\pi}{a}} rac{d^4k}{(2\pi)^4} \sum_{\mu
u} rac{\overline{U}(P)O_{2,\mu
u}(P,P,k-P)U(P)}{\overline{U}(P)\gamma_3U(P)} D_{g,\mu
u}(P-k)\delta\left(x-rac{k^3}{P^3}
ight)$$

Loop Integration

$$\int_{-\frac{\pi}{a}}^{\frac{\pi}{a}} \frac{d^4k}{(2\pi)^4} \rightarrow \int_{-\frac{\pi}{a}}^{\frac{\pi}{a}} \frac{d^2k_\perp}{(2\pi)^2} \int_{-\frac{\pi}{a}}^{\frac{\pi}{a}} \frac{dk_4}{2\pi} \left[\int_{-\frac{\pi}{a}}^{\frac{\pi}{a}} \frac{dk_3}{2\pi} \right]$$

$$ullet \int_{-rac{\pi}{a}}^{rac{\pi}{a}}dk_4f\left(k_4
ight) = rac{-i}{a}\oint_{|z|=a^{-2}}rac{dz}{z}f\left(rac{-i}{a}\ln\left(a^2z
ight)
ight)$$

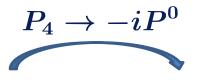
Poles of propagators

$$S_F(k) = rac{\cdots}{-a^{-2}z^{-2}\left(a^2z^2-\Gamma_+
ight)\left(a^2z^2-\Gamma_-
ight)} {\Gamma_\pm = rac{\kappa \pm \sqrt{\kappa^2-rac{4}{a^4}}}{2}},
onumber \ D_{g,\mu
u}(k) = rac{\cdots}{-e^{-iaP_4}z^{-1}\left(z-\Pi_+
ight)\left(z-\Pi_-
ight)} rac{\Pi_\pm = e^{iaP_4}}{\kappa} rac{\eta \pm \sqrt{\eta^2-rac{4}{a^4}}}{2}} {\kappa, \, \eta ext{ are positive definite functions of } a, P_3, m, k_\perp, x}$$

Position of z-poles

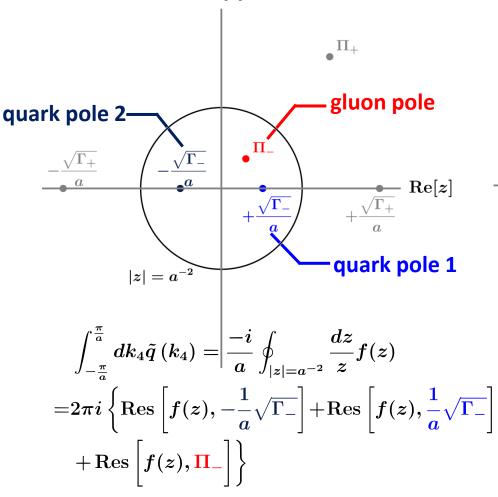
Before Wick rotation

$$\Pi_{\pm}=e^{iaP_4}rac{\eta\pm\sqrt{\eta^2-rac{4}{a^4}}}{{
m Im}[z]}$$



After Wick rotation

$$\Pi_{\pm}=e^{aP^0}rac{\eta\pm\sqrt{\eta^2-rac{4}{a^4}}}{\mathrm{Im}[z]}$$



 \bullet inside/outside depends on k_\perp, x numerical integration on k_\perp needs to be divided into regions according to the position

 $|z|=a^{-2}$

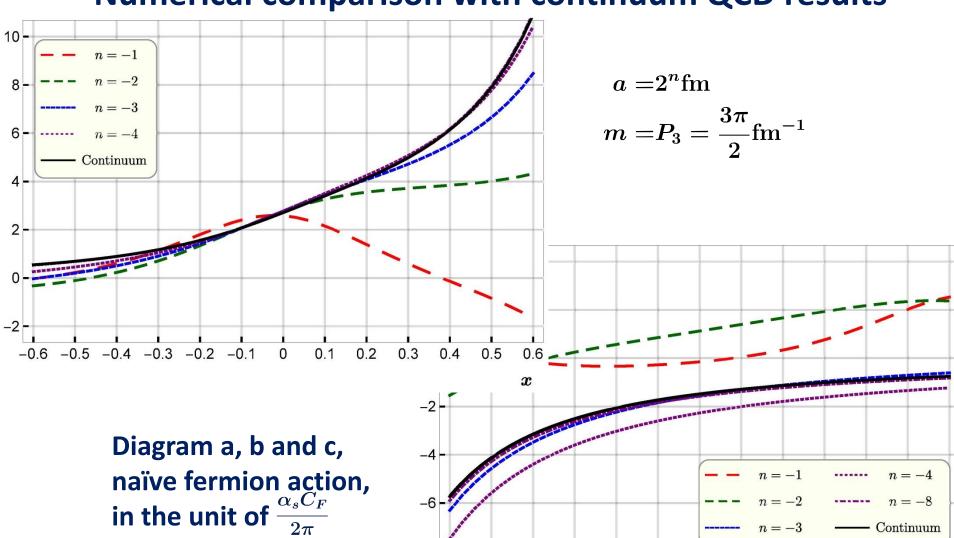
Poles (k-space) in continuum limit

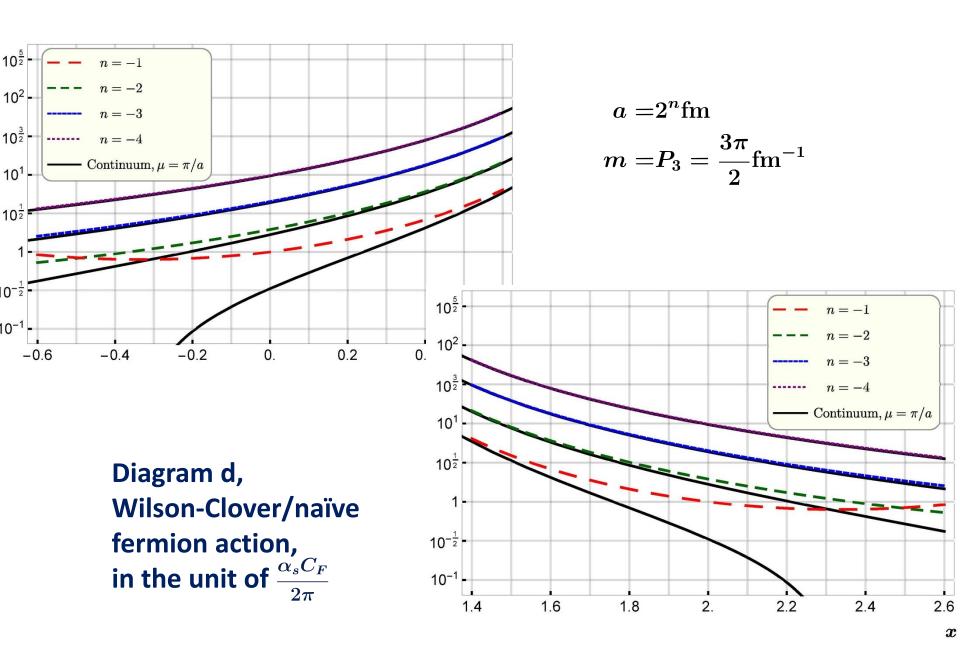
$$k_4^g=-rac{i}{a}\log{(a^2\Pi_-)} \qquad
ightarrow k_g^0=P^0-\sqrt{k_\perp^2+(k_3-P_3)^2-i\epsilon} \ k_4^{q,+}=-rac{i}{a}\log{(a\sqrt{\Gamma_-})} \qquad
ightarrow k_{q,+}^0=-\sqrt{k_\perp^2+k_3^2+m^2-i\epsilon} \ \left[k_4^{q,-}=-rac{i}{a}\log{(-a\sqrt{\Gamma_-})}
ightarrow k_{q,-}^0=rac{i\pi}{a}-\sqrt{k_\perp^2+k_3^2+m^2-i\epsilon}
ight] \ ext{unphysical pole, decouples}$$

unphysical pole, decouples in continuum limit

- k_{\perp} integrand in $a{
 ightarrow}0$ reproduces continuum result
- The same residue integration technic could be applied to Wilson-Clover fermion case, but much much more complicated...

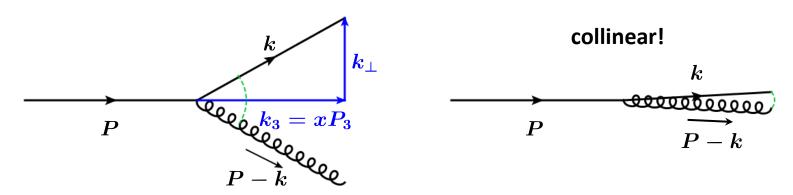
Numerical comparison with continuum QCD results





Extract collinear behavior of quasi-PDF

expand numerator to $rac{\mathcal{O}\left(k_{\perp}^{0}
ight)}{\mathcal{O}\left(k_{\perp}^{2}
ight)}$ around $k_{\perp}pprox0_{\perp}$



1. Continuum QCD case

$$\lim_{k_{\perp} o 0} ilde{q}_b\left(x, k_{\perp}
ight) = \left\{egin{array}{c} rac{1}{1-x} rac{1}{k_{\perp}^2 + (1-x)^2 m^2} & 0 < x < 1 \\ \cdots & ext{otherwise} \end{array}
ight.$$
 collinear regulator
$$\int_0^\mu d^2 k_{\perp} \lim_{k_{\perp} o 0} ilde{q}_b^{ ext{nv}}\left(x, k_{\perp}
ight) = \left\{egin{array}{c} -rac{x}{1-x} \ln m^2 & 0 < x < 1 \\ \cdots & ext{otherwise} \end{array}
ight.$$

$$\int_{-rac{\pi}{a}}^{rac{\pi}{a}}\!dk_4 ilde{q}_b^{
m nv}(x,\!k_4,\!k_\perp) = {
m Res}\left[f(z),\Pi_-
ight] + {
m Res}\left[f(z),+rac{1}{a}\sqrt{\Gamma_-}
ight] + {
m Res}\left[f(z),-rac{1}{a}\sqrt{\Gamma_-}
ight] \ \lim_{k_\perp o 0} ilde{q}_b^{
m nv}\left(x,k_\perp
ight) = \left(rac{\mathcal{N}_{b,1}^{(0)}}{\mathcal{D}_{b,1}^{(0)}+\mathcal{D}_{b,1}^{(1)}k_\perp^2}
ight) + \left(rac{\mathcal{N}_{b,2}^{(0)}}{\mathcal{D}_{b,2}^{(0)}+\mathcal{D}_{b,2}^{(1)}k_\perp^2}
ight) + \left(rac{\mathcal{N}_{b,3}^{(0)}}{\mathcal{D}_{b,2}^{(0)}+\mathcal{D}_{b,2}^{(1)}k_\perp^2}
ight)$$

$$\int_{-\frac{\pi}{a}}^{\frac{\pi}{a}} dk_{4} \tilde{q}_{b}^{\text{nv}}(x, k_{4}, k_{\perp}) = \operatorname{Res}\left[f(z), \Pi_{-}\right] + \operatorname{Res}\left[f(z), +\frac{1}{a}\sqrt{\Gamma_{-}}\right] + \operatorname{Res}\left[f(z), -\frac{1}{a}\sqrt{\Gamma_{-}}\right]$$

$$\lim_{k_{\perp} \to 0} \tilde{q}_{b}^{\text{nv}}(x, k_{\perp}) = \left(\frac{\mathcal{N}_{b,1}^{(0)}}{\mathcal{D}_{b,1}^{(0)} + \mathcal{D}_{b,1}^{(1)} k_{\perp}^{2}}\right) + \left(\frac{\mathcal{N}_{b,2}^{(0)}}{\mathcal{D}_{b,2}^{(0)} + \mathcal{D}_{b,2}^{(1)} k_{\perp}^{2}}\right) + \left(\frac{\mathcal{N}_{b,3}^{(0)}}{\mathcal{D}_{b,2}^{(0)} + \mathcal{D}_{b,2}^{(1)} k_{\perp}^{2}}\right) + \left(\frac{\mathcal{N}_{b,3}^{(0)}}{\mathcal{D}_{b,2}^{(0)} + \mathcal{D}_{b,2}^{(1)} k_{\perp}^{2}}\right) + \left(\frac{\mathcal{N}_{b,2}^{(0)}}{\mathcal{D}_{b,2}^{(0)} + \mathcal{D}_{b,2}^{(1)} k_{\perp}^{2}}\right) + \left(\frac{\mathcal{N}_{b,2}^{(0)}}{\mathcal{D}_{b,2}^{(0)} + \mathcal{D}_{b,2}^{(1)} k_{\perp}^{2}}\right) + \left(\frac{\mathcal{N}_{b,2}^{(0)}}{\mathcal{D}_{b,2}^{(0)} + \mathcal{D}_{b,2}^{(0)} k_{\perp}^{2}}\right) + \cdots$$

$$\begin{split} \int_{-\frac{\pi}{a}}^{\frac{\pi}{a}} \!\! dk_4 \tilde{q}_b^{\text{nv}}(x, k_4, k_\perp) &= \text{Res} \left[f(z), \Pi_- \right] + \text{Res} \left[f(z), +\frac{1}{a} \sqrt{\Gamma_-} \right] + \text{Res} \left[f(z), -\frac{1}{a} \sqrt{\Gamma_-} \right] \\ &= \lim_{k_\perp \to 0} \tilde{q}_b^{\text{nv}} \left(x, k_\perp \right) = \left(\frac{\mathcal{N}_{b,1}^{(0)}}{\mathcal{D}_{b,1}^{(0)} + \mathcal{D}_{b,1}^{(1)} k_\perp^2} \right) + \left(\frac{\mathcal{N}_{b,2}^{(0)}}{\mathcal{D}_{b,2}^{(0)} + \mathcal{D}_{b,2}^{(1)} k_\perp^2} \right) + \left(\frac{\mathcal{N}_{b,3}^{(0)}}{\mathcal{D}_{b,2}^{(0)} + \mathcal{D}_{b,2}^{(1)} k_\perp^2} \right) + \left(\frac{\mathcal{N}_{b,3}^{(0)}}{\mathcal{D}_{b,3}^{(0)} + \mathcal{D}_{b,3}^{(1)} k_\perp^2} \right) \\ &= \lim_{k_\perp \to 0} \tilde{q}_b^{\text{nv}} \left(x, k_\perp \right) = \left(\frac{\mathcal{N}_{b,1}^{(0)}}{\mathcal{D}_{b,1}^{(1)}} \ln \frac{\mu^2 \mathcal{D}_{b,1}^{(1)}}{\mathcal{D}_{b,1}^{(0)}} \right) + \left(\frac{\mathcal{N}_{b,2}^{(0)}}{\mathcal{D}_{b,2}^{(0)}} \ln \frac{\mu^2 \mathcal{D}_{b,2}^{(1)}}{\mathcal{D}_{b,2}^{(0)}} \right) + \cdots \end{split}$$

$$a o 0 hen m o 0$$
 $hen m o 0$ $hen m o 0$ $hen m o 0$

$$+ \left[\theta(1-x)\frac{-2x}{1-x}\ln m^2 + \cdots\right]$$

$$\int_{-\frac{\pi}{a}}^{\frac{\pi}{a}} dk_4 \tilde{q}_b^{\text{nv}}(x, k_4, k_{\perp}) = \text{Res} \left[f(z), \Pi_{-} \right] + \text{Res} \left[f(z), +\frac{1}{a} \sqrt{\Gamma_{-}} \right] + \text{Res} \left[f(z), -\frac{1}{a} \sqrt{\Gamma_{-}} \right] \\ \lim_{k_{\perp} \to 0} \tilde{q}_b^{\text{nv}}(x, k_{\perp}) = \left(\frac{\mathcal{N}_{b,1}^{(0)}}{\mathcal{D}_{b,1}^{(0)} + \mathcal{D}_{b,1}^{(1)} k_{\perp}^2} \right) + \left(\frac{\mathcal{N}_{b,2}^{(0)}}{\mathcal{D}_{b,2}^{(0)} + \mathcal{D}_{b,2}^{(1)} k_{\perp}^2} \right) + \left(\frac{\mathcal{N}_{b,3}^{(0)}}{\mathcal{D}_{b,2}^{(0)} - \mathcal{D}_{b,3}^{(1)} l_{\perp}^2} \right) \\ \lim_{k_{\perp} \to 0} \tilde{q}_b^{\text{nv}}(x, k_{\perp}) = \left(\pi \frac{\mathcal{N}_{b,1}^{(0)}}{\mathcal{D}_{b,1}^{(1)}} \ln \frac{\mu^2 \mathcal{D}_{b,1}^{(1)}}{\mathcal{D}_{b,1}^{(0)}} \right) + \left(\pi \frac{\mathcal{N}_{b,2}^{(0)}}{\mathcal{D}_{b,2}^{(1)}} \ln \frac{\mu^2 \mathcal{D}_{b,2}^{(1)}}{\mathcal{D}_{b,2}^{(0)}} \right) + \cdots$$

$$a \to 0 \text{ then } m \to 0 \qquad m \to 0 \text{ then } a \to 0$$

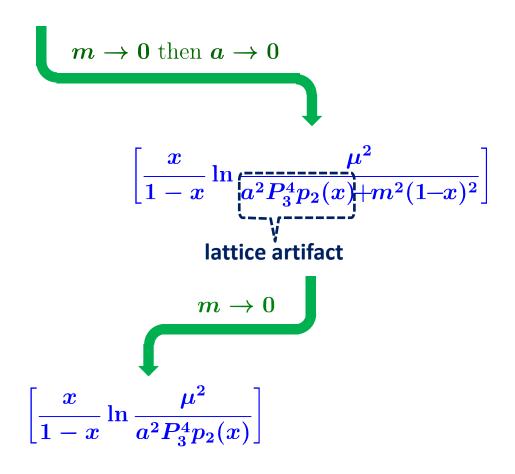
$$\left[\theta(x) \frac{x}{1-x} \ln \frac{\mu^2}{a^2 P_3^4 p_1(x) + m^2(1-x)^2} \right] \\ + \left[\theta(1-x) \frac{x}{1-x} \ln \frac{\mu^2}{a^2 P_3^4 p_2(x) + m^2(1-x)^2} \right] \\ = \left[\theta(x) \theta(1-x) \frac{-x}{1-x} \ln m^2 + \cdots \right]$$

$$= \left[\theta(x) \frac{\theta(1-x) \frac{x}{1-x} \ln m^2 + \cdots}{1-x} \ln m^2 + \cdots \right]$$

$$= \frac{p_1(x)}{p_2(x)} p_2(x) \text{ are polynomial function of } x$$

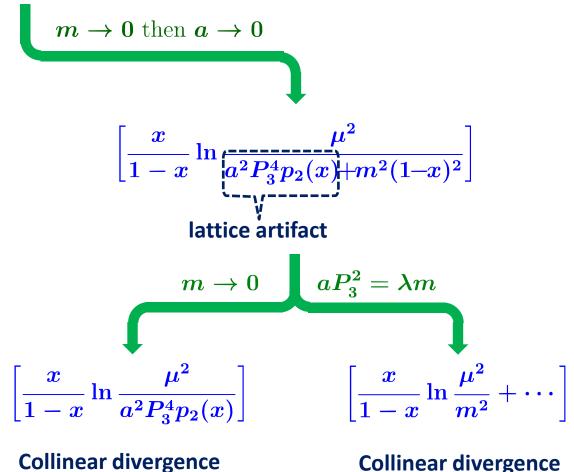
p1(x), $p_2(x)$ are polynomial function of x

Influence of lattice artifact



Collinear divergence has been regulated by lattice artifact

Influence of lattice artifact

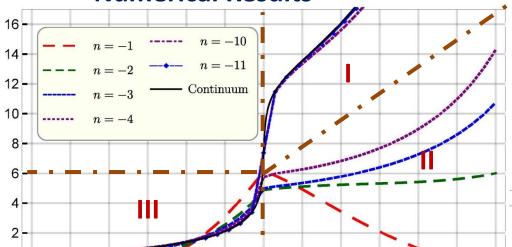


Collinear divergence has been regulated by lattice artifact

Collinear divergence has been reproduced

Numerical Results

-0.5 -0.4 -0.3 -0.2 -0.1



$$r=0,\; P_3=rac{3\pi}{2}{
m fm}^{-1} \ a=2^n{
m fm},\; m=5 imes10^{-3}\pi{
m fm}^{-1}$$

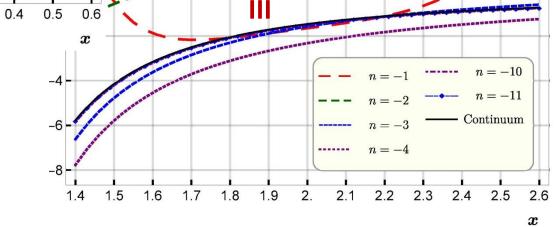
Diagram a, b and c, naïve fermion action, in the unit of $\frac{\alpha_s C_F}{2\pi}$

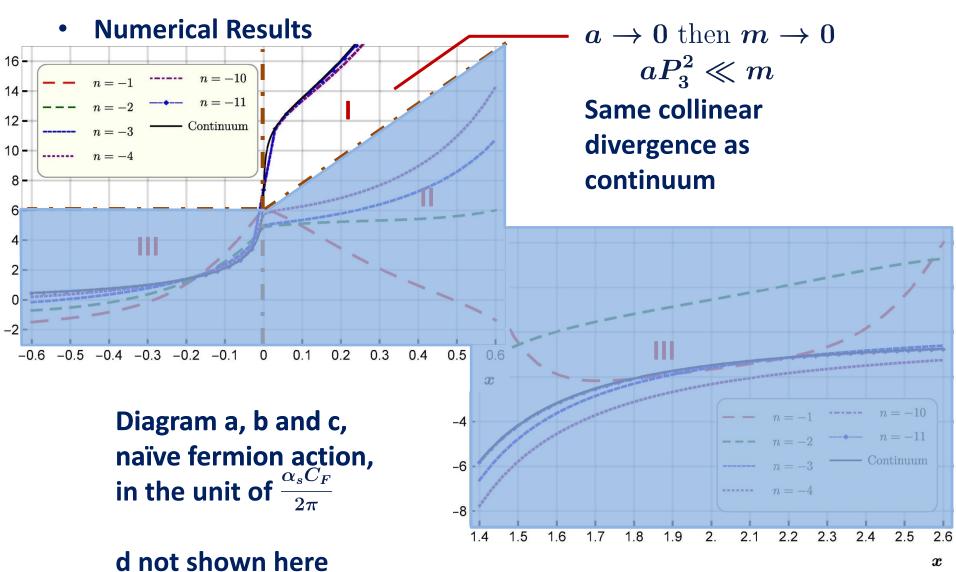
0.2

0.1

0.3

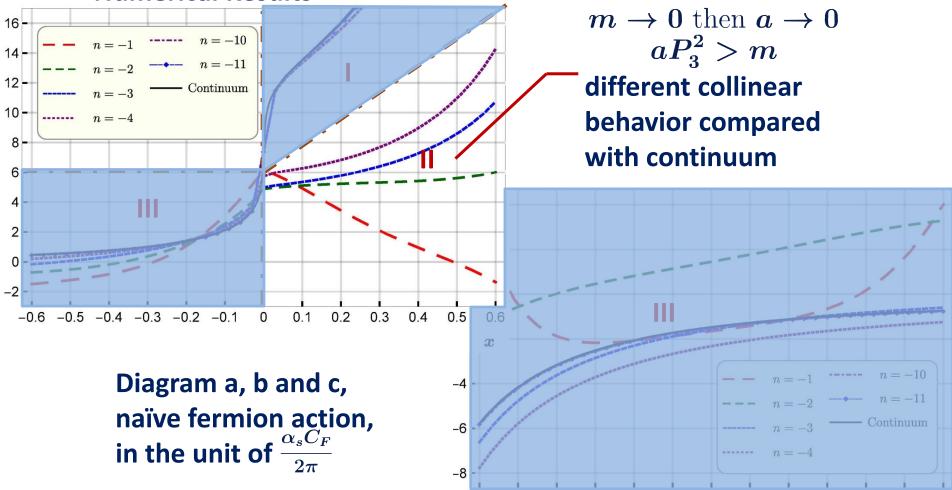
d not shown here (does not contain collinear divergence)





d not shown here (does not contain collinear divergence)

Numerical Results



1.5

1.6

1.7

1.8

1.9

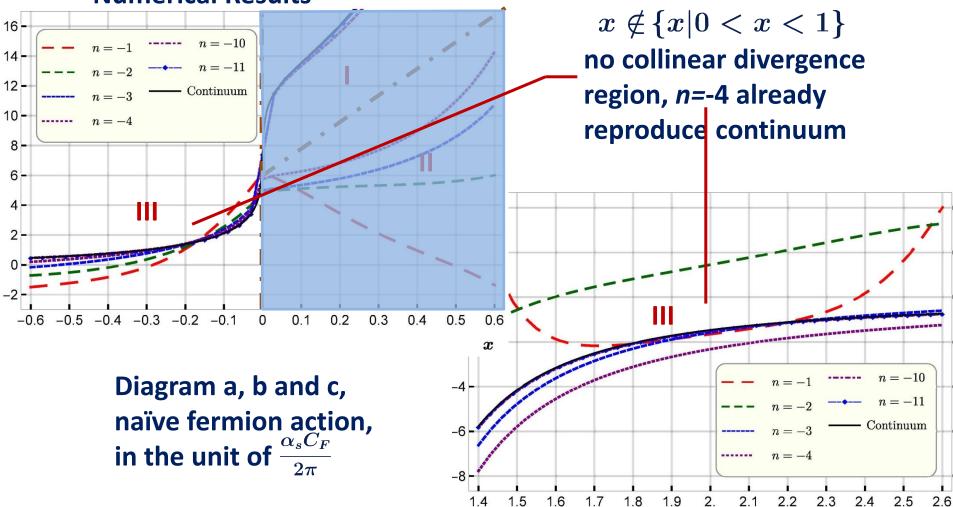
2.1

2.3

2.2

2.4

Numerical Results

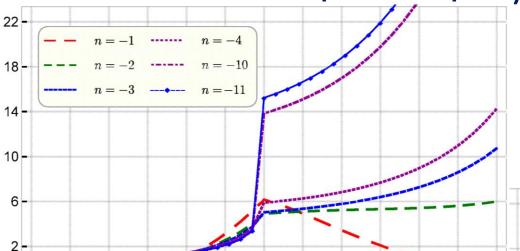


Numerical Results (massless quark)

0.1

0.2

0.3



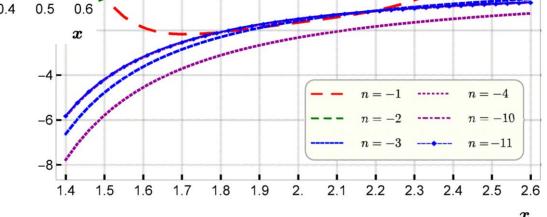
$$r=0,\,P_3=rac{3\pi}{2}{
m fm}^{-1}$$

 $a=2^n{
m fm},\, m=0$ No collinear divergence in all

regions, lattice artifacts have regulated it

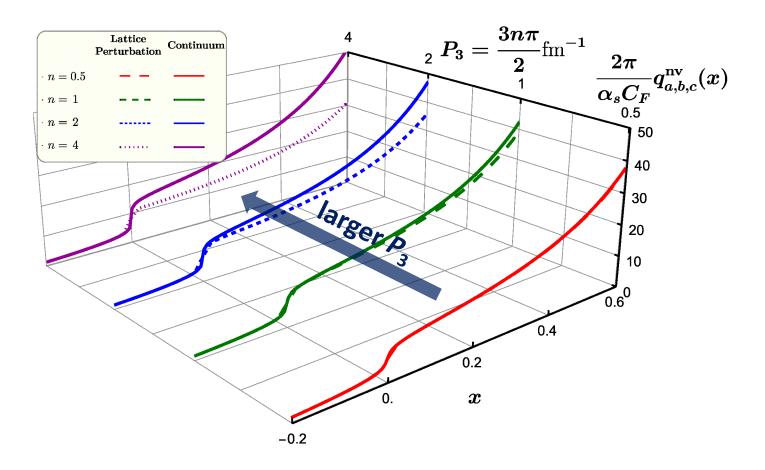
Diagram a, b and c, naïve fermion action, in the unit of $\frac{\alpha_s C_F}{2\pi}$

-0.5 -0.4 -0.3 -0.2 -0.1

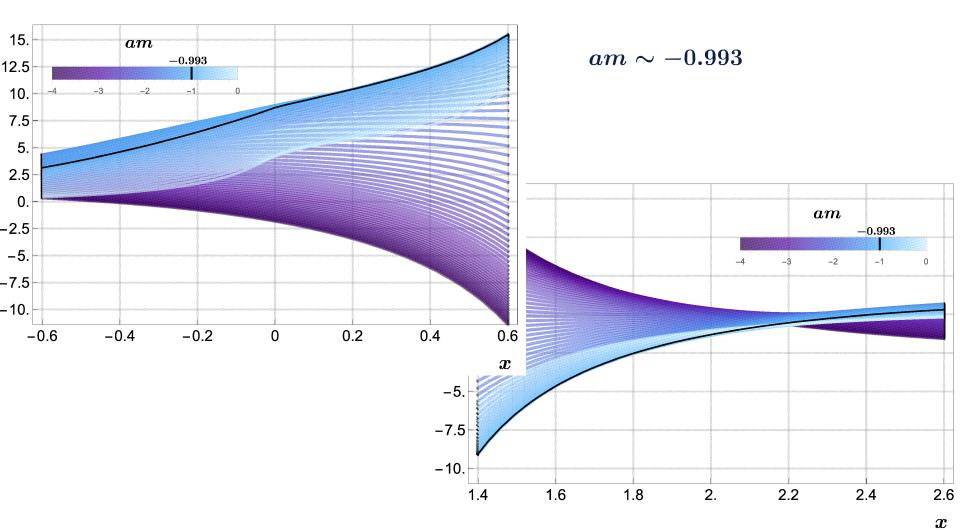


• Numerical Results (increasing P_3)

Lattice artifacts $\sim \left(aP_3^2\right)^n$ boost will increase the influence of lattice artifacts, resulting larger discrepancy to continuum quasi-PDF

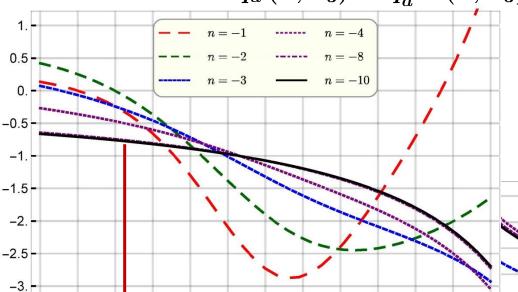


Numerical Results (Wilson-Clover fermion action)
 Wilson-Clover fermion: additive mass renormalization,
 Negative bare quark mass to get vanishing renormalized quark mass



Numerical Results (difference between Wilson-Clover fermion and naïve fermion)

$$egin{aligned} \delta ilde{q}_{abc}\left(x,P_{3}
ight) &= ilde{q}_{abc}^{ ext{WC}}\left(x,P_{3}
ight) - ilde{q}_{abc}^{ ext{nv}}\left(x,P_{3}
ight) \ \delta ilde{q}_{d}\left(x,P_{3}
ight) &= ilde{q}_{d}^{ ext{WC}}\left(x,P_{3}
ight) - ilde{q}_{d}^{ ext{nv}}\left(x,P_{3}
ight) = 0 \end{aligned}$$



0.1

0.2

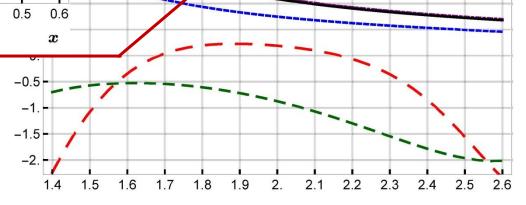
0.3

0.4

 $r=0.5, P_3=rac{3\pi}{2}{
m fm}^{-1} \ a=2^n{
m fm}, m=rac{\pi}{2}{
m fm}^{-1}$

 $a o 0, \delta ilde{q}_{a,b,c}(x,P_3)$ is finite $ilde{q}_{a,b,c}^{
m WC}(x,P_3)$ can not reproduce continuum quasi-PDF

-0.6 -0.5 -0.4



Conclusion

- $a \rightarrow 0$ does not commute with $m \rightarrow 0$
- Condition to reproduce collinear behavior in continuum:

$$a o 0$$
 and $aP_3^2 pprox m$

- Lattice artifact can regulate collinear divergence
- Boost increases the influence of lattice artifact $\sim a P_3^2$
- Quasi-PDF (naive fermion) $ilde{q}^{
 m nv}(x,P_3)$ reproduces continuum quasi-PDF in a o 0

Quasi-PDF (Wilson-Clover) $\tilde{q}^{\mathrm{WC}}(x,P_3)$ can not reproduce continuum quasi-PDF $a \to 0$, due to the power UV divergent terms after k_{4} integration, e.g.

$$\lim_{k_\perp o\infty} ilde{q}^{ ext{WC}}(x,k_\perp,P_3) = \int^{rac{\pi}{a}} rac{d^2k_\perp}{16\pi^3} rac{g_s^2 C_F mr P_3}{P_0^2} rac{a}{|k_\perp|} + \cdots \sim \mathcal{O}\left(a^0
ight)$$

Thanks!

Backup Slides

• Definition of κ , η

$$\kappa = \sum_{j=1}^{3} \widehat{2k}_{j}^{2} + 4m^{2} + rac{2}{a^{2}}, \eta = \sum_{j=1}^{3} \widehat{k-P}_{j}^{2} + rac{2}{a^{2}}$$

• k_{\perp} integration after Wick rotation

$$egin{aligned} \Pi_{-}|_{P_4
ightarrow-iP^0} &= rac{e^{aP^0}}{2} \left(\eta - \sqrt{\eta^2 - rac{4}{a^4}}
ight) < rac{1}{a^2} \implies k_{\perp} \in \mathcal{R}_1\left(a,m,P_3,x
ight) \ \Pi_{-}|_{P_4
ightarrow-iP^0} &= rac{e^{aP^0}}{2} \left(\eta - \sqrt{\eta^2 - rac{4}{a^4}}
ight) > rac{1}{a^2} \implies k_{\perp} \in \mathcal{R}_2\left(a,m,P_3,x
ight) \ \int_{-rac{\pi}{a}}^{+rac{\pi}{a}} d^2k_{\perp} \oint_{|z|=a^{-2}} dz f(z) \ &= 2\pi i \! \int_{k_{\perp} \in \mathcal{R}_1} \! dk_{\perp} \left\{ \operatorname{Res}\left[f(z), -rac{1}{a}\sqrt{\Gamma_{-}}
ight] + \operatorname{Res}\left[f(z), rac{1}{a}\sqrt{\Gamma_{-}}
ight] + \operatorname{Res}\left[f(z), rac{1}{a}\sqrt{\Gamma_{-}}
ight]
ight\} \ &= 2\pi i \! \int_{k_{\perp} \in \mathcal{R}_2} \! dk_{\perp} \left\{ \operatorname{Res}\left[f(z), -rac{1}{a}\sqrt{\Gamma_{-}}
ight] + \operatorname{Res}\left[f(z), rac{1}{a}\sqrt{\Gamma_{-}}
ight]
ight\} \end{aligned}$$

In continuum limit

$$\lim_{a \to 0} \mathcal{R}_1 = 1 + a \left(\sqrt{m^2 + P_3^2} - \sqrt{k_\perp^2 + P_3^2 (1 - x)^2} \right) < 1$$

$$\implies k_\perp^2 > m^2 + x(2 - x)P_3^2$$

$$\lim_{a \to 0} \mathcal{R}_2 = 1 + a \left(\sqrt{m^2 + P_3^2} - \sqrt{k_\perp^2 + P_3^2 (1 - x)^2} \right) > 1$$

$$\implies k_\perp^2 < m^2 + x(2 - x)P_3^2$$