

CFNS Workshop on Lattice Parton Distribution Functions

Physics Department, April 17-19, 2019

Good Lattice Cross Sections

Jianwei Qiu *Theory Center, Jefferson Lab*

Based on work done with

C. Egerer, T. Ishikawa, J. Karpie, Z.Y. Li, Y.-Q. Ma,

K. Orginos, D.G. Richards, R. Sufian, S. Yoshida, ...

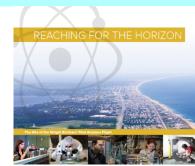
and work by many others, ...

Hadron's Partonic Structure in QCD

Understanding the structure of hadrons in terms of QCD's quarks and gluons is one of the central goals of modern nuclear physics.

- 2015 NSAC Long-Range Plan

BUT, we do not see any quarks and gluons in isolation!



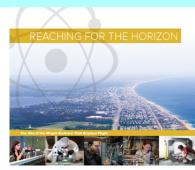
- Any cross section with identified hadron is NOT calculable perturbatively!
- How to test a theory and quantify the structure of hadrons without being able to see the quarks and gluons?

Hadron's Partonic Structure in QCD

Understanding the structure of hadrons in terms of QCD's quarks and gluons is one of the central goals of modern nuclear physics.

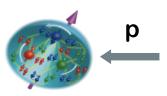
– 2015 NSAC Long-Range Plan

BUT, we do not see any quarks and gluons in isolation!



The 2015 LONG RANGE PLAN for NUCLEAR SCIENCE

- ♦ Any cross section with identified hadron is NOT calculable perturbatively!
- How to test a theory and quantify the structure of hadrons without being able to see the quarks and gluons?
- ☐ Factorization approximation:



$$\sigma_{\text{DIS}}(x,Q^2) = \boxed{\begin{array}{c} p \\ \hline \\ e \end{array}} \boxed{2}$$

Hadron's Partonic Structure in QCD

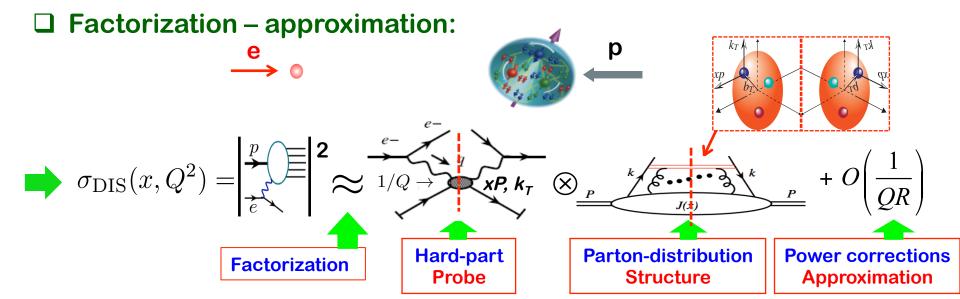
Understanding the structure of hadrons in terms of QCD's quarks and gluons is one of the central goals of modern nuclear physics.

– 2015 NSAC Long-Range Plan

BUT, we do not see any quarks and gluons in isolation!

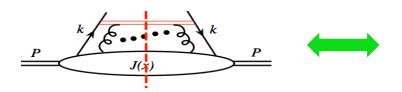
The 2015 LONG RANGE PLAN for NUCLEAR SCIENCE

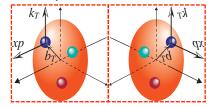
- ☐ Unprecedented intellectual challenge:
 - ♦ Any cross section with identified hadron is NOT calculable perturbatively!
 - How to test a theory and quantify the structure of hadrons without being able to see the quarks and gluons?

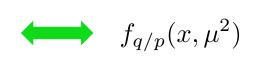


Quantify Hadron's Partonic Structure

□ Parton distribution functions (PDFs):







$$f_q(x,\mu^2) \equiv \int \frac{dP^+\xi^-}{2\pi} e^{-ixP^+\xi^-} \langle P|\overline{\psi}(\xi^-) \frac{\gamma^+}{2P^+} \exp\left\{-ig \int_0^{\xi^-} d\eta^- A^+(\eta^-)\right\} \psi(0) |P\rangle$$

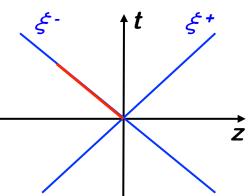
Dominated by the region:

$$\xi^- \lesssim 1/(xP^+) \sim 1/Q$$

Interpreted as:

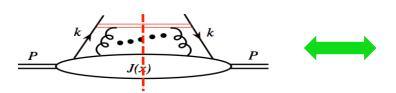
Probability density to find a quark with a momentum fraction x

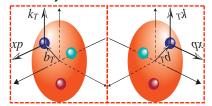
Quantum correlation of quark fields along ξ direction! (Conjugated to the large P^+)

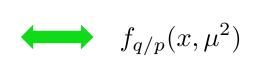


Quantify Hadron's Partonic Structure

□ Parton distribution functions (PDFs):







$$f_q(x,\mu^2) \equiv \int \frac{dP^+\xi^-}{2\pi} e^{-ixP^+\xi^-} \langle P|\overline{\psi}(\xi^-) \frac{\gamma^+}{2P^+} \exp\left\{-ig \int_0^{\xi^-} d\eta^- A^+(\eta^-)\right\} \psi(0)|P\rangle$$

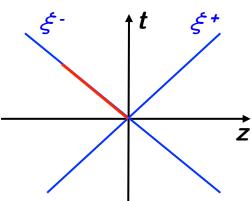
Dominated by the region:

$$\xi^- \lesssim 1/(xP^+) \sim 1/Q$$

Interpreted as:

Probability density to find a quark with a momentum fraction x

Quantum correlation of quark fields along ξ direction! (Conjugated to the large P^{t})



- Good hadron cross sections:
 - 1) can be measured experimentally with good precision,
 - 2) can be factorized into universal matrix elements of quarks and gluons
 - parton distribution functions with controllable approximation

Provide the indirect access to hadron's partonic structure!

Global QCD Analyses – A Successful Story

☐ World data with "Q" > 2 GeV

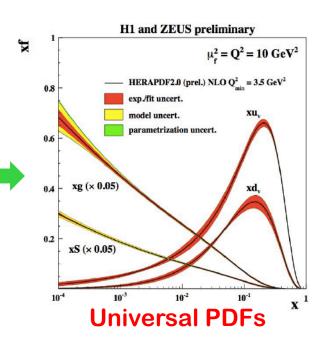
+ QCD Factorization:

e-H:
$$F_2(x_B, Q^2) = \Sigma_f C_f(x_B/x, \mu^2/Q^2) \otimes f(x, \mu^2)$$

H-H:
$$\frac{d\sigma}{dydp_T^2} = \Sigma_{ff'}f(x) \otimes \frac{d\hat{\sigma}_{ff'}}{dydp_T^2} \otimes f'(x')$$

+ DGLAP Evolution:

$$\frac{\partial f(x,\mu^2)}{\partial \ln \mu^2} = \sum_{f'} P_{ff'}(x/x') \otimes f'(x',\mu^2)$$



Global QCD Analyses – A Successful Story

☐ World data with "Q" > 2 GeV

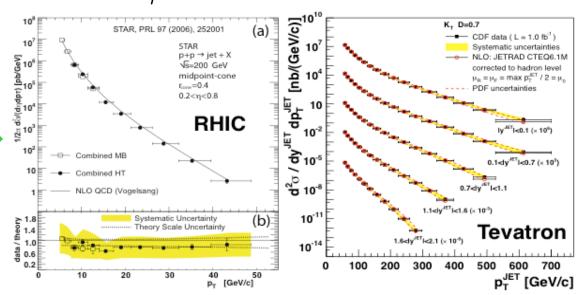
+ QCD Factorization:

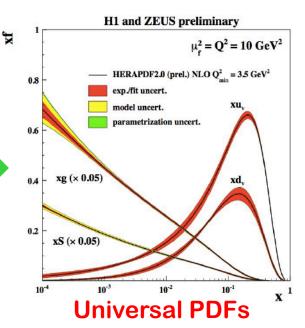
e-H:
$$F_2(x_B, Q^2) = \Sigma_f C_f(x_B/x, \mu^2/Q^2) \otimes f(x, \mu^2)$$

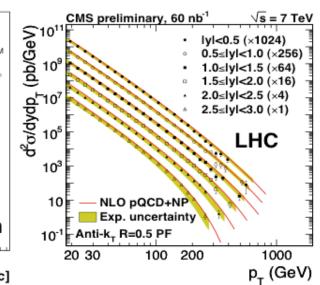
H-H:
$$\frac{d\sigma}{dydp_T^2} = \Sigma_{ff'}f(x) \otimes \frac{d\hat{\sigma}_{ff'}}{dydp_T^2} \otimes f'(x')$$

+ DGLAP Evolution:

$$\frac{\partial f(x,\mu^2)}{\partial \ln \mu^2} = \Sigma_{f'} P_{ff'}(x/x') \otimes f'(x',\mu^2)$$







Global QCD Analyses – A Successful Story

☐ World data with "Q" > 2 GeV

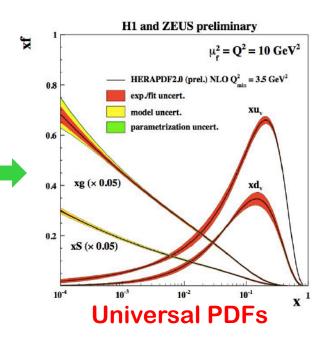
+ QCD Factorization:

e-H:
$$F_2(x_B, Q^2) = \Sigma_f C_f(x_B/x, \mu^2/Q^2) \otimes f(x, \mu^2)$$

H-H:
$$\frac{d\sigma}{dydp_T^2} = \Sigma_{ff'}f(x) \otimes \frac{d\hat{\sigma}_{ff'}}{dydp_T^2} \otimes f'(x')$$

+ DGLAP Evolution:

$$\frac{\partial f(x,\mu^2)}{\partial \ln \mu^2} = \Sigma_{f'} P_{ff'}(x/x') \otimes f'(x',\mu^2)$$



☐ The "BIG" question(s)

Why these PDFs behave as what have been extracted from the fits?

What have been tested is the evolution from μ_1 to μ_2 But, does not explain why they have the shape to start with!

Can QCD calculate and predict the shape of PDFs at the input scale, and other parton correlation functions?

□ Answer: Not directly!

Particle nature of quarks/gluons Large momentum transfer Operators on light-cone Probes with large Q transfer
Operators on light-cone
Can't be calculated in lattice QCD

■ Answer: Not directly!

Particle nature of quarks/gluons Large momentum transfer **Operators on light-cone**

Quasi-PDFs:

Ji, arXiv:1305.1539

$$\tilde{q}(x,\mu^2,P_z) \equiv \int \frac{d\xi_z}{4\pi} e^{-ixP_z\xi_z} \langle P|\overline{\psi}(\xi_z)\gamma_z \exp\left\{-ig\int_0^{\xi_z} d\eta_z A_z(\eta_z)\right\} \psi(0)|P\rangle$$

Proposed matching:

$$\tilde{q}(x,\mu^2,P_z) = \int_x^1 \frac{dy}{y} \, Z\left(\frac{x}{y},\frac{\mu}{P_z}\right) q(y,\mu^2) + \mathcal{O}\left(\frac{\Lambda^2}{P_z^2},\frac{M^2}{P_z^2}\right)$$
 + gluon contribution beyond LO

■ Answer: Not directly!

Particle nature of quarks/gluons Large momentum transfer **Operators on light-cone**

Quasi-PDFs:

$$\tilde{q}(x,\mu^2,P_z) \equiv \int \frac{d\xi_z}{4\pi} e^{-ixP_z\xi_z} \langle P|\overline{\psi}(\xi_z)\gamma_z \exp\left\{-ig\int_0^{\xi_z} d\eta_z A_z(\eta_z)\right\} \psi(0)|P\rangle$$

Proposed matching:

$$\tilde{q}(x,\mu^2,P_z) = \int_x^1 \frac{dy}{y} \, Z\left(\frac{x}{y},\frac{\mu}{P_z}\right) q(y,\mu^2) + \mathcal{O}\left(\frac{\Lambda^2}{P_z^2},\frac{M^2}{P_z^2}\right)$$
 + gluon contribution beyond LO

Pseudo-PDFs:

$$\mathcal{M}^{\alpha}(\nu=p\cdot\xi,\xi^2) \equiv \langle p|\overline{\psi}(0)\gamma^{\alpha}\Phi_v(0,\xi,v\cdot A)\psi(\xi)|p\rangle \qquad \text{Radyushkin, 2017}$$

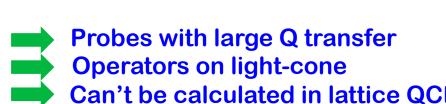
$$\equiv 2p^{\alpha}\mathcal{M}_p(\nu,\xi^2) + \xi^{\alpha}(p^2/\nu)\mathcal{M}_{\xi}(\nu,\xi^2) \approx 2p^{\alpha}\mathcal{M}_p(\nu,\xi^2)$$

$$\mathcal{P}(x,\xi^2) \equiv \int \frac{d\nu}{2\pi}\,e^{ix\,\nu}\frac{1}{2p^+}\mathcal{M}^+(\nu,\xi^2) \qquad \text{with } \xi^2 < 0$$

Off-light-cone extension of PDFs:
$$f(x)=\mathcal{P}(x,\xi^2=0)$$
 with $\xi^\mu=(0^+,\xi^-,0_\perp)$

■ Answer: Not directly!

Particle nature of quarks/gluons Large momentum transfer **Operators on light-cone**



Can't be calculated in lattice QCD

Quasi-PDFs:

$$\tilde{q}(x,\mu^2,P_z) \equiv \int \frac{d\xi_z}{4\pi} e^{-ixP_z\xi_z} \langle P|\overline{\psi}(\xi_z)\gamma_z \exp\left\{-ig\int_0^{\xi_z} d\eta_z A_z(\eta_z)\right\} \psi(0)|P\rangle$$

Proposed matching:

$$\tilde{q}(x,\mu^2,P_z) = \int_x^1 \frac{dy}{y} \, Z\left(\frac{x}{y},\frac{\mu}{P_z}\right) q(y,\mu^2) + \mathcal{O}\left(\frac{\Lambda^2}{P_z^2},\frac{M^2}{P_z^2}\right)$$
 + gluon contribution beyond LO

Pseudo-PDFs:

$$\mathcal{M}^{\alpha}(\nu=p\cdot\xi,\xi^2) \equiv \langle p|\overline{\psi}(0)\gamma^{\alpha}\Phi_v(0,\xi,v\cdot A)\psi(\xi)|p\rangle \qquad \text{Radyushkin, 2017} \\ \equiv 2p^{\alpha}\mathcal{M}_p(\nu,\xi^2) + \xi^{\alpha}(p^2/\nu)\mathcal{M}_{\xi}(\nu,\xi^2) \approx 2p^{\alpha}\mathcal{M}_p(\nu,\xi^2) \\ \mathcal{P}(x,\xi^2) \equiv \int \frac{d\nu}{2\pi}\,e^{ix\,\nu}\frac{1}{2p^+}\mathcal{M}^+(\nu,\xi^2) \qquad \text{with } \xi^2 < 0$$

Off-light-cone extension of PDFs:
$$f(x)=\mathcal{P}(x,\xi^2=0)$$
 with $\xi^\mu=(0^+,\xi^-,0_\perp)$

Other approaches, ...

"OPE without OPE" (Chambers et al. 2017), Hadronic tensor (Liu et al. 1994, ...), ...

☐ Good "Lattice cross sections":

Ma and Qiu, arXiv:1404.6860 arXiv:1709.03018

= Single hadron matrix element:

p and ξ define collision kinematics

$$\sigma_n(\omega, \xi^2, P^2) = \langle P | T \{ \mathcal{O}_n(\xi) \} | P \rangle$$
 with $\omega \equiv P \cdot \xi, \ \xi^2 \neq 0, \ \text{and} \ \xi_0 = 0;$

Plus:

1) can be calculated in lattice QCD with precision, has a well-defined continuum limit (UV+IR safe perturbatively), and

2) can be factorized into universal matrix elements of quarks and gluons with controllable approximation

with controllable approximation

Collaboration between lattice QCD and perturbative QCD!

☐ Good "Lattice cross sections":

Ma and Qiu, arXiv:1404.6860 arXiv:1709.03018

= Single hadron matrix element:

p and ξ define collision kinematics

$$\sigma_n(\omega, \xi^2, P^2) = \langle P | T \{ \mathcal{O}_n(\xi) \} | P \rangle$$
 with $\omega \equiv P \cdot \xi, \ \xi^2 \neq 0, \ \text{and} \ \xi_0 = 0;$

Plus:

- 1) can be calculated in lattice QCD with precision, has a well-defined continuum limit (UV+IR safe perturbatively), and
- 2) can be factorized into universal matrix elements of quarks and gluons with controllable approximation

□ Quasi-parton operators:

Collaboration between lattice QCD and perturbative QCD!

$$\begin{split} \mathcal{O}_q^\nu(\xi) &= Z_q^{-1}(\xi^2)\overline{\psi}_q(\xi)\gamma^\nu\Phi^{(f)}(\xi,0)\psi_q(0)\\ \mathcal{O}_g^{\mu\nu\alpha\beta}(\xi) &= Z_g^{-1}(\xi^2)F^{\mu\nu}(\xi)\Phi^{(a)}(\xi,0)F^{\alpha\beta}(0)\\ \text{with the gauge link:}\quad &\Phi^{(f,a)}(\xi,0) = \mathcal{P}e^{-ig\int_0^1\xi\cdot A^{(f,a)}(\lambda\xi)d\lambda} \end{split}$$

- \diamondsuit Quasi-PDFs are given by F.T. of ξ_z with fixed p_z
- \Rightarrow Pseudo-PDFs are given by F.T. of p_z with fixed ξ_z

☐ Good "Lattice cross sections":

Ma and Qiu, arXiv:1404.6860 arXiv:1709.03018

= Single hadron matrix element:

p and ξ define collision kinematics

$$\sigma_n(\omega, \xi^2, P^2) = \langle P | T \{ \mathcal{O}_n(\xi) \} | P \rangle$$
 with $\omega \equiv P \cdot \xi, \ \xi^2 \neq 0, \ \text{and} \ \xi_0 = 0;$

Plus:

- 1) can be calculated in lattice QCD with precision, has a well-defined continuum limit (UV+IR safe perturbatively), and
- 2) can be factorized into universal matrix elements of quarks and gluons with controllable approximation
- Quasi-parton operators:

Collaboration between lattice QCD and perturbative QCD!

$$\begin{split} \mathcal{O}_q^\nu(\xi) &= Z_q^{-1}(\xi^2) \overline{\psi}_q(\xi) \gamma^\nu \Phi^{(f)}(\xi,0) \psi_q(0) \\ \mathcal{O}_g^{\mu\nu\alpha\beta}(\xi) &= Z_g^{-1}(\xi^2) F^{\mu\nu}(\xi) \Phi^{(a)}(\xi,0) F^{\alpha\beta}(0) \\ \text{with the gauge link:} \quad \Phi^{(f,a)}(\xi,0) &= \mathcal{P} e^{-ig \int_0^1 \xi \cdot A^{(f,a)}(\lambda \xi) d\lambda} \end{split}$$

- \diamondsuit Quasi-PDFs are given by F.T. of ξ_z with fixed p_z
- \diamond Pseudo-PDFs are given by F.T. of p_z with fixed ξ_z

Need a UV renormalization scheme:

See Y.Q Ma's talk

- ♦ Easy to be implemented non-perturbatively, as well as perturbatively.
- ♦ Need to be both IR and CO insensitive!

☐ Good "Lattice cross sections":

Ma and Qiu, arXiv:1404.6860 arXiv:1709.03018

= Single hadron matrix element:

p and ξ define collision kinematics

$$\sigma_n(\omega, \xi^2, P^2) = \langle P | T \{ \mathcal{O}_n(\xi) \} | P \rangle$$
 with $\omega \equiv P \cdot \xi, \ \xi^2 \neq 0, \ \text{and} \ \xi_0 = 0;$

Plus:

1) can be calculated in lattice QCD with precision, has a well-defined continuum limit (UV+IR safe perturbatively), and

2) can be factorized into universal matrix elements of quarks and gluons

with controllable approximation

Collaboration between lattice QCD and perturbative QCD!

Current-current correlators:

$$\mathcal{O}_{j_1 j_2}(\xi) \equiv \xi^{d_{j_1} + d_{j_2} - 2} Z_{j_1}^{-1} Z_{j_2}^{-1} j_1(\xi) j_2(0)$$

with

 d_i : Dimension of the current

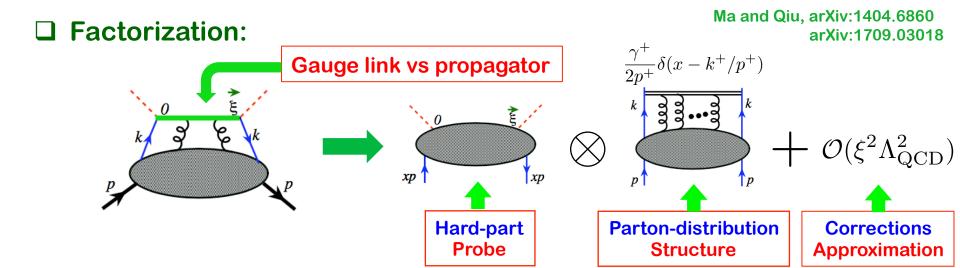
 Z_i : Renormalization constant of the current

Sample currents:

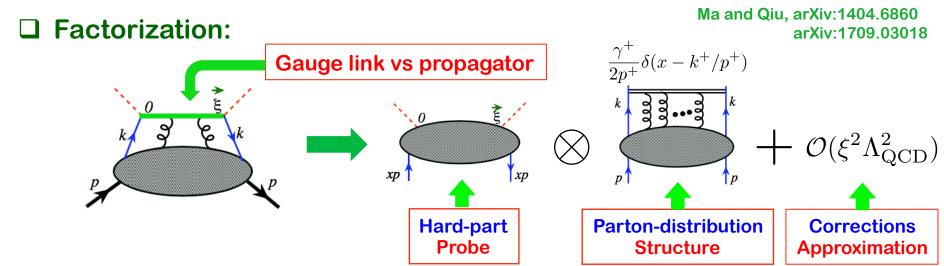
$$\begin{split} j_S(\xi) &= \xi^2 Z_S^{-1}[\overline{\psi}_q \psi_q](\xi), & j_V(\xi) &= \xi Z_V^{-1}[\overline{\psi}_q \gamma \cdot \xi \psi_q](\xi), \\ j_{V'}(\xi) &= \xi Z_{V'}^{-1}[\overline{\psi}_q \gamma \cdot \xi \psi_{q'}](\xi), & j_G(\xi) &= \xi^3 Z_G^{-1}[-\frac{1}{4} F_{\mu\nu}^c F_{\mu\nu}^c](\xi), \dots \end{split}$$

- **♦ Easier for UV renormalization, more "lattice cross sections", ...**
- ♦ Harder to calculate in lattice QCD, ...

Lattice Data + QCD Global Analyses



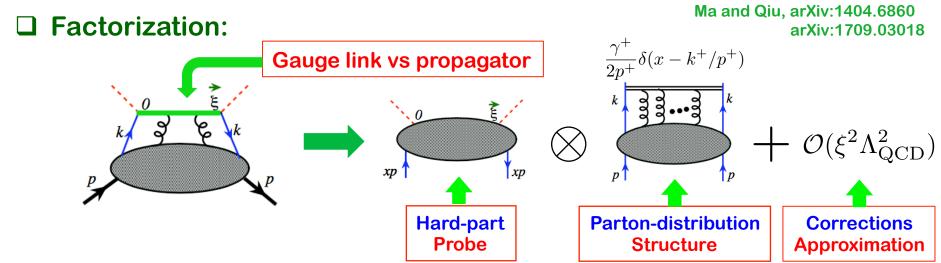
Lattice Data + QCD Global Analyses



□ QCD Global analysis:

Need data of "many" good lattice cross sections to be able to extract the x, Q, flavor dependence of the hadron structure, ...

Lattice Data + QCD Global Analyses



QCD Global analysis:

Need data of "many" good lattice cross sections to be able to extract the x, Q, flavor dependence of the hadron structure, ...

- □ Complementarity and advantages:
 - ♦ Complementary to existing approaches for analyzing exp data, large x, ...
 - ♦ Complementary between different "lattice cross sections", ...
 - **♦ Have tremendous potentials:**

Neutron PDFs, ... (no free neutron target!)
Meson PDFs, such as pion, ...
More direct access to gluons – gluonic current, quark flavor, ...

Ma and Qiu, arXiv:1404.6860 arXiv:1709.03018

Factorized formula for lattice cross section:

$$\sigma_n(\omega, \xi^2, P^2) = \sum_a \int_{-1}^1 \frac{dx}{x} f_a(x, \mu^2) \times K_n^a(x\omega, \xi^2, x^2 P^2, \mu^2) + O(\xi^2 \Lambda_{\text{QCD}}^2)$$

with
$$f_a(x, \mu^2) = -f_a(-x, \mu^2)$$

☐ Steps needed to prove:

Let ξ^2 be small but not vanishing, apply OPE to the operator,

$$\sigma_n(\omega, \xi^2, P^2) = \sum_{J=0} \sum_a W_n^{(J,a)}(\xi^2, \mu^2) \, \xi^{\nu_1} \cdots \xi^{\nu_J} \times \langle P | \mathcal{O}_{\nu_1 \cdots \nu_J}^{(J,a)}(\mu^2) | P \rangle$$

with

Local, symmetric and traceless with spin *J*

$$\langle P|\mathcal{O}_{\nu_1\cdots\nu_J}^{(J,a)}(\mu^2)|P\rangle = 2A^{(J,a)}(\mu^2)\times(P_{\nu_1}\cdots P_{\nu_J}-\text{traces})$$

With reduced matrix element: $A^{(J,a)}(\mu^2) = \langle P | \mathcal{O}^{(J,a)}(\mu^2) | P \rangle$

Ma and Qiu, arXiv:1404.6860 arXiv:1709.03018

☐ Factorized formula for lattice cross section:

$$\sigma_n(\omega, \xi^2, P^2) = \sum_a \int_{-1}^1 \frac{dx}{x} f_a(x, \mu^2) \times K_n^a(x\omega, \xi^2, x^2 P^2, \mu^2) + O(\xi^2 \Lambda_{\text{QCD}}^2)$$

with
$$f_a(x, \mu^2) = -f_a(-x, \mu^2)$$

□ Steps needed to prove:

Let ξ^2 be small but not vanishing, apply OPE to the operator,

$$\sigma_n(\omega, \xi^2, P^2) = \sum_{J=0} \sum_a W_n^{(J,a)}(\xi^2, \mu^2) \, \xi^{\nu_1} \cdots \xi^{\nu_J} \times \langle P | \mathcal{O}_{\nu_1 \cdots \nu_J}^{(J,a)}(\mu^2) | P \rangle$$

with

Local, symmetric and traceless with spin J

$$\langle P|\mathcal{O}_{\nu_1\cdots\nu_J}^{(J,a)}(\mu^2)|P\rangle = 2A^{(J,a)}(\mu^2)\times(P_{\nu_1}\cdots P_{\nu_J}-\text{traces})$$

With reduced matrix element: $A^{(J,a)}(\mu^2) = \langle P | \mathcal{O}^{(J,a)}(\mu^2) | P \rangle$

$$\sigma_n(\omega, \xi^2, P^2) = \sum_{I=0}^{\infty} \sum_{j=1}^{\infty} W_n^{(J,a)}(\xi^2, \mu^2) \, 2A^{(J,a)}(\mu^2) \times \Sigma_J(\omega, P^2 \xi^2)$$

with
$$\Sigma_J(\omega, P^2 \xi^2) \equiv \xi^{\nu_1} \cdots \xi^{\nu_J} (P_{\nu_1} \cdots P_{\nu_J} - \text{traces})$$

$$[J/2]$$

 $= \sum_{j=1}^{\lfloor J/2 \rfloor} C_{J-i}^{i}(\omega)^{J-2i} \left(-P^{2}\xi^{2}/4 \right)^{i}$

No approximation yet!

□ Approximation – leading power/twist:

Ma and Qiu, arXiv:1404.6860 arXiv:1709.03018

$$A^{(J,a)}(\mu^2) = \frac{1}{S_a} \int_{-1}^1 dx x^{J-1} f_a(x,\mu^2)$$
 With symmetry factor: $S_a = 1,2$ for $a = q,g$

$$\sigma_n(\omega, \xi^2, P^2) = \sum_a \int_{-1}^1 \frac{dx}{x} f_a(x, \mu^2) \times K_n^a(x\omega, \xi^2, x^2 P^2, \mu^2) + O(\xi^2 \Lambda_{\text{QCD}}^2)$$
with $K_n^a = \sum_{I=1} \frac{2}{S_a} W_n^{(J,a)}(\xi^2, \mu^2) \Sigma_J(x\omega, x^2 P^2 \xi^2)$

Note: our proof of factorization is valid only when $|\omega|\ll 1$ and $|p^2\xi^2|\ll 1$

□ Approximation – leading power/twist:

Ma and Qiu, arXiv:1404.6860 arXiv:1709.03018

$$A^{(J,a)}(\mu^2) = \frac{1}{S_a} \int_{-1}^1 dx x^{J-1} f_a(x,\mu^2)$$
 With symmetry factor: $S_a = 1, 2$ for $a = q, g$

$$\sigma_n(\omega, \xi^2, P^2) = \sum_a \int_{-1}^1 \frac{dx}{x} f_a(x, \mu^2) \times K_n^a(x\omega, \xi^2, x^2 P^2, \mu^2) + O(\xi^2 \Lambda_{\text{QCD}}^2)$$
with $K_n^a = \sum_{J=1} \frac{2}{S_a} W_n^{(J,a)}(\xi^2, \mu^2) \Sigma_J(x\omega, x^2 P^2 \xi^2)$

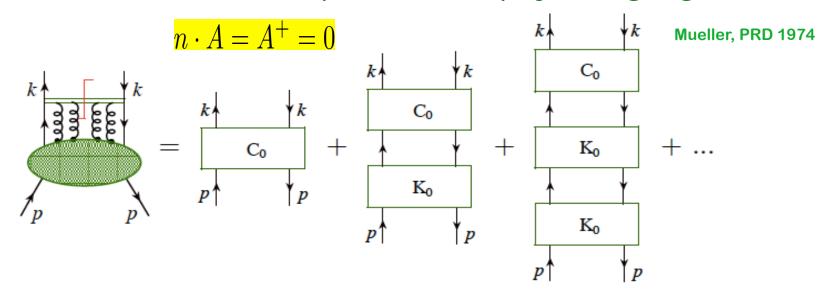
Note: our proof of factorization is valid only when $|\omega|\ll 1$ and $|p^2\xi^2|\ll 1$

- $lue{}$ Extrapolate into large ω region:
 - \diamond Validity of OPE guarantees that σ_n is an analytic function of ω , so as its Taylor series of ω around ω =0, defined above
 - \diamond If we fix ξ to be short-distance, while we increase ω by adjusting p, we can't introduce any new perturbative divergence
 - \diamond That is, σ_n remains to be an analytic function of ω unless $\omega = \infty$

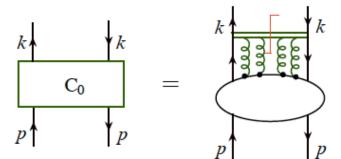
Factorization holds for any finite value of ω and $p^2 \xi^2$, if ξ is short-distance

Ma and Qiu, arXiv:1404.6860

☐ Generalized ladder decomposition in a physical gauge



- $lue{}$ $C_0, \ K_0$:2PI kernels
 - **♦ Only process dependence:**



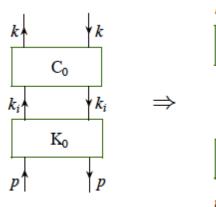
♦ 2PI are finite in a physical gauge for tixed k and p:

Ellis, Georgi, Machacek, Politzer, Ross, 1978, 1979

Arguments valid on if UV divergences are multiplicatively renormalizable

□ 2PI kernels – Diagrams:

lacksquare Ordering in virtuality: $P^2 \ll k^2 \lesssim \tilde{\mu}^2$ - Leading power in $\frac{1}{\tilde{\mu}}$



$$\leftarrow \frac{1}{2}\gamma \cdot p \\ \leftarrow \frac{\gamma \cdot n}{2p \cdot n} \delta \left(x_i - \frac{k_i \cdot n}{p \cdot n} \right) \text{ + power suppressed}$$

$$Cut\text{-}vertex for normal quark distribution}$$

Cut-vertex for normal quark distribution Logarithmic UV and CO divergence

Renormalized kernel - parton PDF:

$$K \equiv \int d^4k_i \,\delta\left(x_i - \frac{k^+}{p^+}\right) \operatorname{Tr}\left[\frac{\gamma \cdot n}{2p \cdot n} \,K_0 \,\frac{\gamma \cdot p}{2}\right] + \operatorname{UVCT}_{\operatorname{Logarithmic}}$$

Projection operator for CO divergence:

$$\widehat{\mathcal{P}}\,K$$
 Pick up the logarithmic CO divergence of K

Factorization of CO divergence:

$$\begin{split} \tilde{f}_{q/p} &= \lim_{m \to \infty} C_0 \sum_{i=0}^m K^i + \text{UVCTs} \\ &= \lim_{m \to \infty} C_0 \left[1 + \sum_{i=0}^{m-1} K^i (1 - \widehat{\mathcal{P}}) K \right]_{\text{ren}} + \tilde{f}_{q/p} \widehat{\mathcal{P}} K \\ &= \lim_{m \to \infty} C_0 \left[1 + \sum_{i=1}^m \left[(1 - \widehat{\mathcal{P}}) K \right]^i \right]_{\text{ren}} + \tilde{f}_{q/p} \widehat{\mathcal{P}} K \end{split}$$

$$\widetilde{f}_{q/P} = \left[C_0 \frac{1}{1 - (1 - \widehat{\mathcal{P}})K} \right]_{\text{ren}} \left[\frac{1}{1 - \widehat{\mathcal{P}}K} \right]$$
Normal Quark distribution

CO divergence free

All CO divergence of quasi-quark distribution

Projection operator for CO divergence:

$$\widehat{\mathcal{P}}\,K$$
 Pick up the logarithmic CO divergence of K

Factorization of CO divergence:

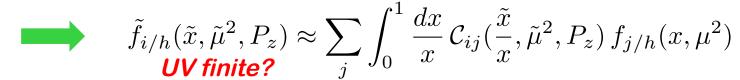
$$\begin{split} \tilde{f}_{q/p} &= \lim_{m \to \infty} C_0 \sum_{i=0}^m K^i + \text{UVCTs} \\ &= \lim_{m \to \infty} C_0 \left[1 + \sum_{i=0}^{m-1} K^i (1 - \widehat{\mathcal{P}}) K \right]_{\text{ren}} + \tilde{f}_{q/p} \widehat{\mathcal{P}} K \\ &= \lim_{m \to \infty} C_0 \left[1 + \sum_{i=1}^m \left[(1 - \widehat{\mathcal{P}}) K \right]^i \right]_{\text{ren}} + \tilde{f}_{q/p} \widehat{\mathcal{P}} K \end{split}$$

 $\widetilde{f}_{q/P} = \left\lceil C_0 \frac{1}{1 - (1 - \widehat{\mathcal{P}})K} \right\rceil - \left\lceil \frac{1}{1 - \widehat{\mathcal{P}}K} \right\rceil$ Normal Quark distribution

$$\frac{1}{1-\widehat{\mathcal{P}}K}$$

CO divergence free

All CO divergence of quasi-quark distribution



☐ Current-current correlators – take care by construction:

Construct operators by using renormalizable, or conserved currents

Renormalization of quasi-parton operators:

Bad: UV power divergence, mixing, ...

Good: UV divergences are multiplicative!

"Ugly": Several proposals, impact to high orders, not converging yet, ...

See talks by

Y. Zhao, Y.Q. Ma J.H. Zhang, ...

☐ Current-current correlators – take care by construction:

Construct operators by using renormalizable, or conserved currents

Renormalization of quasi-parton operators:

Bad: UV power divergence, mixing, ...

Good: UV divergences are multiplicative!

"Ugly": Several proposals, impact to high orders, not converging yet, ...

■ Basic requirements/considerations:

Z. Li, Y.Q. Ma, J. Qiu See talk by Y.Q. Ma

See talks by

Y. Zhao, Y.Q. Ma J.H. Zhang, ...

- ♦ Fact: UV divergence is only sensitive to the operator, not to the state defining the matrix elements
- ♦ Ambiguity in choosing the finite piece:

e.g., \overline{MS} scheme vs DIS scheme (no gluonic contribution to F_2)

☐ Current-current correlators – take care by construction:

Construct operators by using renormalizable, or conserved currents

Renormalization of quasi-parton operators:

Bad: UV power divergence, mixing, ...

Good: UV divergences are multiplicative!

"Ugly": Several proposals, impact to high orders, not converging yet, ...

■ Basic requirements/considerations:

Z. Li, Y.Q. Ma, J. Qiu See talk by Y.Q. Ma

See talks by

Y. Zhao, Y.Q. Ma J.H. Zhang, ...

- ♦ Fact: UV divergence is only sensitive to the operator, not to the state defining the matrix elements
- ♦ Ambiguity in choosing the finite piece:

e.g., \overline{MS} scheme vs DIS scheme (no gluonic contribution to F₂)

- **♦ Our choice:**
 - Easy to be implemented non-perturbatively, as well as perturbatively
 - Not to be sensitive to the hadron state, especially, its CO behavior

Need to be both IR and CO insensitive – it is a choice

e.g., Pseudo-PDFs suppress certain power correction

V. Braun's talk:

☐ For multiplicative renormalizable quasi-parton operators:

Focus on the continuum formalism for now

$$\mathcal{O}_q^{\nu}(\xi)_B = \overline{\psi}_q(\xi)\gamma^{\nu}\Phi^{(f)}(\xi,0)\psi_q(0)$$
$$\mathcal{O}_q^{\mu\nu\alpha\beta}(\xi)_B = F^{\mu\nu}(\xi)\Phi^{(a)}(\xi,0)F^{\alpha\beta}(0)$$

□ Lattice cross sections - observables:

$$\sigma_n(\omega, \xi^2, p^2) \equiv Z_n^{-1}(\xi^2) \langle P | T \{ \mathcal{O}_n(\xi)_B \} | P \rangle$$
$$Z_n(\xi^2) = \frac{\langle \Omega | T \{ \mathcal{O}_n(\xi)_B \} | \Omega \rangle}{\langle \Omega | T \{ \mathcal{O}_n(\xi)_B \} | \Omega \rangle^{(0)}}$$

No sum over any indices! Effectively, a "scalar" operator for any given indice

- \Rightarrow Hard scale: $1/\xi^2$
- ♦ IR and CO safe!
- Calculable with a UV regulator

For multiplicative renormalizable quasi-parton operators:

Focus on the continuum formalism for now

$$\mathcal{O}_q^{\nu}(\xi)_B = \overline{\psi}_q(\xi)\gamma^{\nu}\Phi^{(f)}(\xi,0)\psi_q(0)$$
$$\mathcal{O}_q^{\mu\nu\alpha\beta}(\xi)_B = F^{\mu\nu}(\xi)\Phi^{(a)}(\xi,0)F^{\alpha\beta}(0)$$

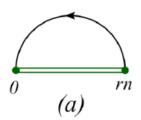
No sum over any indices! Effectively, a "scalar" operator for any given indice

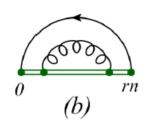
Lattice cross sections - observables:

$$\sigma_n(\omega, \xi^2, p^2) \equiv Z_n^{-1}(\xi^2) \langle P | T \{ \mathcal{O}_n(\xi)_B \} | P \rangle$$
$$Z_n(\xi^2) = \frac{\langle \Omega | T \{ \mathcal{O}_n(\xi)_B \} | \Omega \rangle}{\langle \Omega | T \{ \mathcal{O}_n(\xi)_B \} | \Omega \rangle^{(0)}}$$

$$\Rightarrow$$
 Hard scale: $1/\xi^2$

♦ Calculable with a UV regulator

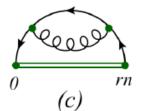




$$Z_q(\xi^2) = 1 + \frac{\alpha_s}{}$$

$$Z_q(\xi^2) = 1 + \frac{\alpha_s C_F}{\pi} \left[2 - \frac{3}{4} \gamma_E - \frac{1}{4} \ln \pi + \frac{1}{3} \pi^2 \right]$$

$$+\frac{3}{4\epsilon}(-\xi^2\mu^2)^{\epsilon} - \frac{|\xi|\mu}{1-2\epsilon}$$



Completely IR and CO safe, independent of hadron state

□ For multiplicative renormalizable quasi-parton operators:

Focus on the continuum formalism for now

$$\mathcal{O}_q^{\nu}(\xi)_B = \overline{\psi}_q(\xi)\gamma^{\nu}\Phi^{(f)}(\xi,0)\psi_q(0)$$
$$\mathcal{O}_q^{\mu\nu\alpha\beta}(\xi)_B = F^{\mu\nu}(\xi)\Phi^{(a)}(\xi,0)F^{\alpha\beta}(0)$$

☐ Lattice cross sections - observables:

$$\sigma_n(\omega, \xi^2, p^2) \equiv Z_n^{-1}(\xi^2) \langle P | T \{ \mathcal{O}_n(\xi)_B \} | P \rangle$$
$$Z_n(\xi^2) = \frac{\langle \Omega | T \{ \mathcal{O}_n(\xi)_B \} | \Omega \rangle}{\langle \Omega | T \{ \mathcal{O}_n(\xi)_B \} | \Omega \rangle^{(0)}}$$

No sum over any indices! Effectively, a "scalar" operator for any given indice

- \Rightarrow Hard scale: $1/\xi^2$
- ♦ IR and CO safe!
- Calculable with a UV regulator

$$\sigma_{q/q}(\omega,\xi^{2}) = \int_{-1}^{1} \frac{dx}{x} f_{q/q}^{\overline{MS}}(x,\mu_{f}^{2}) e^{ix\omega} H_{q}^{\nu}(x\omega,\xi^{2},\mu_{f}^{2})$$

$$f_{q/q}^{\overline{MS}}(x,\mu_{f}^{2}) = \delta(1-x) - \frac{\alpha_{s}C_{F}}{\pi} \frac{1}{2\epsilon} \left[\frac{1+x^{2}}{1-x} \right]_{+}^{\theta(x)} (4\pi\mu^{2}/\mu_{f}^{2})^{\epsilon}$$

$$H_{q}^{\nu}(x\omega,\xi^{2},\mu_{f}^{2}) = \frac{i\xi^{\nu}}{-\xi^{2}} H_{1}(x\omega,\mu_{f}^{2}) + xp^{\nu} H_{2}(x\omega,\mu_{f}^{2})$$

 $-\xi^2$

 H_1 and H_2 are given in Y.Q. Ma's talk

Current-Current Correlators

☐ Pion/Keon PDFs:

Ma, Qiu, PRL (2018)
Sufian et al. JLab
PRD99 (2019) 074507

- using a vector-axial-vector correlation as an example
- ♦ Parity-Time-reversal invariance:

$$\frac{1}{2} \left[T_{v5}^{\mu\nu}(\xi, p) + T_{5v}^{\mu\nu}(\xi, p) \right] = \frac{\xi^4}{2} \left\langle h(p) | \left(\mathcal{J}_v^{\mu}(\xi/2) \, \mathcal{J}_5^{\nu}(-\xi/2) + \mathcal{J}_5^{\mu}(\xi/2) \, \mathcal{J}_v^{\nu}(-\xi/2) \right) | h(p) \right\rangle \\
\equiv \epsilon^{\mu\nu\alpha\beta} \, p_{\alpha} \xi_{\beta} \, \widetilde{T}_1(\omega, \xi^2) + \left(p^{\mu} \xi^{\nu} - \xi^{\mu} p^{\nu} \right) \widetilde{T}_2(\omega, \xi^2)$$

♦ Collinear factorization:

$$\widetilde{T}_{i}(\omega, \xi^{2}) = \sum_{f=q,\bar{q},q} \int_{0}^{1} \frac{dx}{x} f(x,\mu^{2}) C_{i}^{f}(\omega, \xi^{2}; x, \mu^{2}) + \mathcal{O}[|\xi|/\text{fm}]$$

Current-Current Correlators

Pion/Keon PDFs:

Ma, Qiu, PRL (2018) Sufian et al. JLab PRD99 (2019) 074507

- using a vector-axial-vector correlation as an example
- ♦ Parity-Time-reversal invariance:

$$\frac{1}{2} \left[T_{v5}^{\mu\nu}(\xi, p) + T_{5v}^{\mu\nu}(\xi, p) \right] = \frac{\xi^4}{2} \left\langle h(p) | \left(\mathcal{J}_v^{\mu}(\xi/2) \, \mathcal{J}_5^{\nu}(-\xi/2) + \mathcal{J}_5^{\mu}(\xi/2) \, \mathcal{J}_v^{\nu}(-\xi/2) \right) | h(p) \right\rangle \\
\equiv \epsilon^{\mu\nu\alpha\beta} \, p_{\alpha} \xi_{\beta} \, \widetilde{T}_1(\omega, \xi^2) + \left(p^{\mu} \xi^{\nu} - \xi^{\mu} p^{\nu} \right) \widetilde{T}_2(\omega, \xi^2)$$

♦ Collinear factorization:

$$\widetilde{T}_{i}(\omega, \xi^{2}) = \sum_{f=q,\bar{q},q} \int_{0}^{1} \frac{dx}{x} f(x,\mu^{2}) C_{i}^{f}(\omega, \xi^{2}; x, \mu^{2}) + \mathcal{O}[|\xi|/\text{fm}]$$

Lowest order coefficient functions:

$$C_1^{q(0)}(\omega,\xi^2;x) = \frac{1}{\pi^2} x \left(e^{ix\omega} + e^{-ix\omega}\right) \qquad \qquad -\xi/2 \qquad V \qquad l \qquad \mu \\ C_2^{q(0)}(\omega,\xi^2) = 0 \qquad \qquad k = xp \qquad k =$$

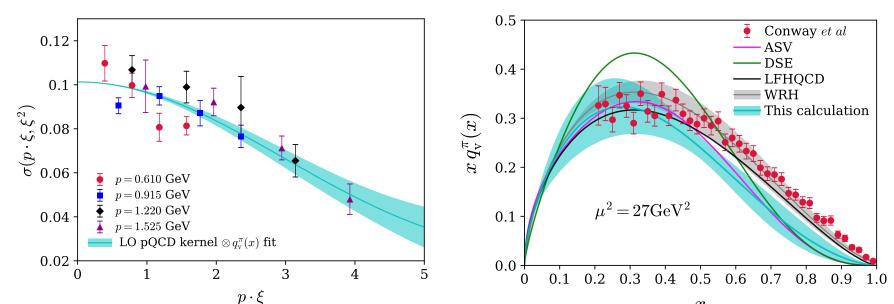
Sufian et al. PRD99 (2019) 074507

♦ Lattice QCD calculation results with 1-loop matching coefficient

Current-Current Correlators

☐ First lattice QCD calculation of pion PDFs:

Sufian et al. JLab PRD99 (2019) 074507 See Sufian's talk



 $oldsymbol{\square}$ Global analysis of LQCD data – complementary to experimental data:

QCD factorization of "lattice cross section"

$$\sigma_n^h\left(\omega,\xi^2,p^2\right) = \sum_{a=q,\overline{q},g} \int_0^1 \frac{dx}{x} f_a\left(x,\mu^2\right) K_n^a\left(x\omega,\xi^2,x^2p^2,\mu^2\right) + \mathcal{O}\big(\xi^2\Lambda_{\mathrm{QCD}}^2\big)$$
 LQCD calculable Global analyses PQCD calculable

Complementary to experimental data!

Summary and outlook

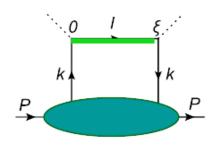
□ Good "lattice cross sections" = single hadron matrix elements calculable in Lattice QCD, renormalizable + factorizable in QCD

Going beyond the quasi-parton operators

Extract PDFs by global analysis of data of "Lattice x-sections"

$$\sigma_n(\omega, \xi^2, P^2) = \sum_a \int_{-1}^1 \frac{dx}{x} f_a(x, \mu^2) \times K_n^a(x\omega, \xi^2, x^2 P^2, \mu^2) + O(\xi^2 \Lambda_{\text{QCD}}^2)$$
with $f_a(x, \mu^2) = -f_a(-x, \mu^2)$

☐ Conservation of difficulties – an example:



Use heavy-light flavor changing current to suppress noise from the middle propagator:

$$\Rightarrow f_q(x,\mu^2) + f_Q(x,\mu^2) \approx f_q(x,\mu^2)$$
 if $m_Q \sim \mu$

No free-lunch! But, we are trying to find a better way to get our lunch!

□ Lattice QCD can be used to study hadron structure, but, more works are needed!

Thank you!