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General Overview

Dynamical description of heavy-ion collisions from underlying theory of
QCD remains an outstanding challenge

Standard model of nucleus-nucleus (A+A) collisions based on
macroscopic description of the space-time dynamics of the QGP
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Space-time dynamics (bulk) dominated by hydrodynamics expansion

Description requires knowledge of macroscopic properties of initial
state (energy momentum tensor TH conserved currents JH) as input for

hydrodynamic models @



General Overview

New perspective & significant increase of interest in initial state
with observation of collective behavior in small systems at
RHIC (p/d/He3+A) and LHC (p+p/A)
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Shorter life-time of the system (~R) increases sensitivity to initial
state and early-time dynamics

Description may require a more detailed knowledge of microscopic
properties and non-equilibrium dynamics of initial state @



Macroscopic features of initial state

Separation of time scale in high-energy collisions (top RHIC & LHC
energies)

Non-equilibrium evolution

Energy deposition
Nergy GEposi towards hydrodynamics
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Teoll K 1fm/c THydro ™ 1fm/c

Energy deposition described in terms of different microscopic &
phenomenological descriptions

CGC: IP-Glasma, EKRT Shockwave collisions in AdS/CFT

oheno: MC-Glauber, TrENtO, IP-dJazma



Energy deposition (XT)

Nucleon positions and their fluctuations dictate the eccentricities en
of transverse profiles in A+A collisions
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Energy deposition in the transverse overlap area
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Schenke, Tribedy, Venugopalan PRC86 (2012) 034908 @
Niemi,Eskola,Paatalainen, PRC 93 (2016) no.2, 024907
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Successtul description of experimental data over range of energies
and systems
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Energy deposition (xT)

Microscopically spatial distribution of partons in protons/nuclei
responsible for xrdependence

AY=0 AY=3 AY=6

o 1 | 1 |
l \\: . \ [ _—
"\\ | : \\ | 4 .

2 -1 0 1 2 2 -1 0 1 2 2 1 0 1 2
x-Coordinate [fm)

Sub-nucleonic fluctuations play a
crucial role for geometry
In small systems
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Connection to spatial imaging of
proton in e+p at EIC
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coherent/incoherent diffraction probes
spatial dependence/tfluctuations of gluon
distribution
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=> constraints on models of proton structure e

Schenke, Mantysaari
PRL 117 (2016) no.5, 052301

Connections to multi-parton distributions?
Future input from lattice QCD calculations of hadronic structure”



Non-equilibrium towards hydrodynamics

Evolution of homogenous (x1) boost invariant (n) systems studied
based on different microscopic descriptions

QCD Kinetic theory
boost invariant holography AdS/CFT
Boltzmann RTA

/

Similar macroscopic features TH = diag(e, pr, pT, PL)
memory |0Sss e .
about details of non-equilibrium VISCOUS local thermal
attractor hydrodynamics equilibrium

initial conditions
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THydro ~ 1fm/c

pre-thermalization hydrodynamization Kinetic equilibration
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Non-equilibrium towards hydrodynamics

Evolution of homogenous boost invariant system in QCD kinetic theory

Kurkela, Zhu PRL 115 (2015) 182301; Keegan,Kurkela,Mazeliauskas, Teaney JHEP 1608 (2016) 171;
Kurkela, Mazeliauskas, Paquet, SS, Teaney PRL 122 (2019) no.12, 122302; PRC 99 (2019) no.3, 034910
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Kinetic equilibration ""bottom-up” via radiative break-up



Non-equilibrium towards hydrodynamics

Evolution of homogenous boost invariant system in Boltzmann RTA

M. Strickland JHEP 1812 (2018) 128
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Energy (TT) & pressure (1) evolution

Despite microscopic differences evolution of average components of
energy-momentum tensor remarkably similar
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QCD Kinetic " .
- Botlzmann RTA —— pr Early tlmes .
ADS/CFT —— Strongly anisotropic
08| Ner & dominated by long. expansion

Intermediate times:
Effective memory loss and
onset of Isotropization

Energy/pressure density: t/° TV / («¥3¢)
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Evolution time: T(t)t/(4nn/s)

Non-universality of non-equilibrium attractors:
Different transient dynamics for different microscopic descriptions



Energy/pressure density: t/° TV / («¥3¢)

Energy (TT) & pressure (1) evolution

Eventually ditferent non-equilibrium attractors match onto the
universal hydrodynamics
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Ditferent microscopic descriptions
suggest that viscous hydrodynamics
becomes applicable on time scales

cay y e Amn/s
7-/7-R (7-) ~ 1 R (T) - Teff(T)

when Knudsen number Kn~1 and
system is out-of-equilibrium

Hydrodynamization (= kinetic thermalization) time in A+A collisions

Thydro ~ 1.1fm (
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Pre-flow (1) & Viscous corrections (1)

Gradients in xt induce off-diagonal components of T

P. Chesler JHEP 1603 (2016) 146

Universal pre-flow: early expansion of matter ?
INnsensitive to microscopic details
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Pre-flow package KoMPoST provide unified description of pre-
equilibrium evolution of T¥ based on linear response to gradients @



Longitudinal dynamics (n)

Boost invariance (N~0) on average is reasonable assumption for
symmetric high-energy collisions

Different models for long. fluctuations based on different degrees of
freedom nucleons, strings, ...

High-energy: Energy deposition at different N~y simultaneous probes
gluon distribution at different x

x=0.1
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SS Schenke PRC 94 (2016) no.4, 044907, McDonald, Jeon, NPA 982 (2019) 239-242, Ipp, Mueller PLB 771 (2017) 74-79

Significant differences in microscopic implementations; not clear how
fluctuations of long. proftiles are moditied during the pre-equilibrium

phase

backward gonng
nucleus

J)

()



Longitudinal dynamics (n)

Lower energies: RHIC BES I/Il, fixed target

No separation of central and fragmentation region

l' nucleon
© 0-5% Au+Au 7 decelerated |

Simultaneous description of energy o086 57 armtim |
deposition & baryon stopping T i)

No longer a clear separation between Tcon and THydro

Dynamical matching between
initial state/hydrodynamics

‘ [TIZE T ‘ — '
(),,T = ']source’ (),u]B = Psource 10 00 10
z (fm)

Solid understanding of initial state (incl. fluctuations) crucial for
critical point search



Sensitivity to Initial state

Space-time dynamics in nucleus-nucleus collisions dominated by
hydrodynamic expansion

initial state free-streaming
I I I
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-> strong sensitivity to global features of initial conditions (en,Wnh,dS/dn, .. .)
-> small effects of pre-equilibrium dynamics on typical observables (vn,<pTt>,...)

Entropy production (dNcr/dn) dominated by initial state

T ) —> (G W)~ = ()= () @)
<d > <d_> <dn> N<d77 dn New/ \Ndn /oo
77 n THydro Tf —ou

Tcoll THydro -

but mutual uncertainties in energy deposition <@> and pre-equilibrium

dn

dynamics spoil sensitivity .



Small systems (p/d/He3+p/A)

Shorter life-time of the system (~R) increases sensitivity to
Initial state and non-equilibrium dynamics

Initial state Non-equilibrium Hydrodynamic
regime regime regime

initial state
correlations

— lesponse to
initial geometry

contributions to
azimuthal correlations vn

Event multiplicity (dNch/dn)

Some additional control parameters (pr,...) besides multiplicity dNcn/dn



Hydrodynamic QGP in small systems?

Conditions for formation of near equilibrium QGP controlled by
the ratio of hydrodynamization time (Thydro) and system size (R)

If Thyaro >> R insufficient time to achieve equilibrated QGP

If THyaro << R long lived hydrodynamic QGP phase

Based on previous estimates of the hydrodynamization time

critical multiplicity can be estimated R
3 _1
THydro - 47'('(77/8) 2 chh/dn 2 <=> d N,y — 63 77/3 ’ (THydro)_2
R 2 63 dn |ow 2/4m R
+Pb 5.02TeV Pb+Pb 2.76TeV

dN,, [PTP TTeV dNep, | dN.;,
ilch ~ 6 ~16 ~ 1600

Where d77 min. bias ! d?] min. bias d?] 0—5%

Experimental results in small systems mostly fall into the regime Thyaro/R~1
dominated by non-equilibrium phase

Caveat: Discussion ignores effects of thermodynamic fluctuations @



Small systems — Initial state correlations

QCD multi-particle production gives rise to jetlike intrinsic

Intrinsic momentum space correlations present ,
In the initial state —

trf

Different calculations based on Color-Glass Condensate
agree on general features of correlation
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Schenke, SS, Venugopalan PLB 747 (2015) 76-82 CMS v;{4} 120 < N, < 150
Mace, Skokov, Tribedy, Venugoplan PLB788 (2019) 161-165, ... 0.15 Shem a0t ':‘::’ .
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No significant correlation with event geometry N I AR, .. -

Effects can be sizeable (~1/N¢?2) in small systems
Difficulties in explaining data without geometric component

Challenge: Effects of re-scattering & hadronization effects?



Small systems — Kinetic transport

Non-equilibrium description can interpolate _ oftemann TTA
between initial state & hydrodynamics will be &,.(‘)"f'l/'siin?m']"ﬁ@éﬁ -
needed to describe dynamics of small 2 ol Ful rasport.
systems across wide range of multiplicities £ oof mperinnw B
= o) = o cumime? | ]
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New popularity of transport models Kurkela, WiedernannWu ariv:1905:05139
& semi-analytic transport calculations Class. Yang-Mills (IP-Glasma)

Orjuela Koop, Adare, McGlinchey, Nagle PRC 92 (2015) no.5, 054903 + pQCD transport (BAMPS)
V)

Borghini, Gombeaud, EPJC 71 (2011) 1612 Low‘mun"plici;y '

IP-Glasma

Kurkela,Wiedemann,Wu, PLB 783 (2018) 274-279, arXiv:1905:05139 0.08 |{dNy/dy)=6 +BAMPS .
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§ %\g\e ¥ . initial state
S oo | &
=

Small opacity can generate significant

response to event geometry at low pr
c.f. talk by U. Wiedemann Wed 14:40
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Greif, Greiner, Schenke, SS, Xu

Challenge: Connections to QCD? PRO96 (2017) no. 9, 091604
Validity of kinetic transport (as,AdeBroglie/R)?



Small systems — Hydrodynamics

Best developed theoretical framework for phenomenology
of bulk observables in hadronic collisions

Several calculations in general
agreement with experimental
data, but details start to matter

Pre-tlow and initial viscous
corrections become important

Non-hydrodynamic modes (included

in every hydro code) can play an
important role especially for T<Thydro

c.f. talk by W. Broniowski Wed 9:45

Challenge: Quantity uncertainties”
Thermodynamic fluctuations?
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Conclusions & Outlook

Large systems:
Solid understanding of global macroscopic properties of initial state due

to microscopic insights and tight constraints from experimental data
Significant progress in theoretical description of pre-equilibrium dynamics

several things to improve: long. fluctuations, nucleon sub-structure,
QGP chemistry, E&M field, ...

Small systems: No clear distinction between “initial state” and later
stages as separation of scales Thydro << Tfreeze-out CEASES 1O exist

=> Need for unified description of non-equilibrium dynamics
(initial state, evolution, hadronization, ...)

Significant potential for new insights into non-equilibrium QCD
beyond strict hydro regime from small system studies



