

PHENIX results in small collision systems

Sanghoon Lim University of Colorado Boulder for the PHENIX collaboration

Large Rapidity Coverage

Study of small collision systems in PHENIX

Study of small collision systems in PHENIX

Control initial geometry

- Clearly different initial collision geometry in p/d/³He+Au collisions
 - Smaller $< \epsilon_2 >$ in p+Au collisions
 - Larger $< \varepsilon_3 >$ in ³He+Au collisions

Translation of geometry in hydrodynamics

How about in data?

Smaller $\langle \epsilon_2 \rangle$ in p+Au Smaller v_2 in p+Au

Nature Phys. 15, 214 (2019)

How about in data?

Nature Phys. 15, 214 (2019)

Model description (Hydrodynamic model)

Nature Phys. 15, 214 (2019)

SONIC: Eur. Phys. J. C 75, 15 (2015) iEBE-VISHNU: Phys. Rev. C 95, 014906 (2017)

Good agreement with v_2 and v_3 from hydrodynamic models in all three systems

Alternative model description ?

A model considering initial-state correlation from color domain claimed to describe the order of v_2 in three systems

Alternative model description ?

MSTV recently reported a bug such that the momentum scale is changed by $\hbar c$ With correction: v_2 in p+Au > v_2 in d+Au

Initial-state correlations are ruled out as the entire explanation

slides from Mark Mace: http://www.int.washington.edu/talks/WorkShops/int_19_1b/People/Mace_M/Mace.pdf

Collectivity in η

 $v_2(\eta)$ in d+Au and ³He+Au scales with dN_{ch}/dη

Sharp sudden rise in v_2 at backward in p+Al and p+Au likely from non-flow

Collectivity in η

 $v_2(\eta)$ in d+Au and ³He+Au scales with dN_{ch}/dη

Sharp sudden rise in v_2 at backward in p+AI and p+Au likely from non-flow

Good agreement with 3D hydrodynamics model in p+Au and d+Au but overpredicts v₂ at forward in ³He+Au

Non-flow effect

- Non-flow contribution is expected to be more significant in smaller collision systems
 - larger in p+Au than d+Au
- PHENIX results using EP with $|\Delta \eta| > 2.5$

 Systematic uncertainty on the non-flow contribution is evaluated using p+p data

Non-flow effect

Plots from Shengli Huang's presentation at 2019 RHIC & AGS AUM

- Non-flow contribution is expected to be more significant in smaller collision systems
 - larger in p+Au than d+Au
 - PHENIX results using EP with IΔηI>2.5

- Systematic uncertainty on the non-flow contribution is evaluated using p+p data
- STAR preliminary template fit results agree with PHENIX published results for p_T <2.5 GeV/c in d+Au for p_T <1.5 GeV/c in p+Au

Non-flow effect

Plots from Shengli Huang's presentation at 2019 RHIC & AGS AUM

- On-going efforts in PHENIX to better understand the non-flow effect
 - Need careful studies because of the possibility of non-closure
 - Possible over-subtraction at higher $p_{\rm T}$ based on the study with HIJING and AMPT

arXiv:1902.11290

Multiparticle correlation

Phys. Rev. Lett. 120, 062302 (2018)

Positive $c_2{4}$ in p+Au and negative $c_2{4}$ in d+Au Positive $c_2{4}$ in p+Au from large fluctuation? remaining non-flow?

$$v_2\{2\} = (c_2\{2\})^{1/2} \approx (v_2^2 + \sigma^2)^{1/2}$$
$$v_2\{4\} = (-c_2\{4\})^{1/4} \approx (v_2^2 - \sigma^2)^{1/2}$$

Multiparticle correlation

Confirm positive c₂{4} in p+Au with sub-event method (ablab) and (aalbb) More results in d+Au beam energy scan data will come

Study of small collision systems in PHENIX

Particle production in small systems

Phys. Rev. Lett. 121, 222301 (2018)

Phys. Rev. C 97, 034901 (2018) for the model

 $dN_{ch}/d\eta$ increases with system size

Wounded quark model can describe the $dN_{ch}/d\eta$ shapes in all centrality bins of different collision systems

with a common wounded quark emission function extracted from PHOBOS d+Au data

π^{0} and ϕ in small systems

Clearly different modification of p_T distribution for $p_T < 7$ GeV/c in three systems

π^{0} and ϕ in small systems

Stronger p_T broadening in p+Au where multiplicity is smallest *Larger initial k_T due to more <N_{coll}> per projectile nucleon? <N_{coll}>: 9.7 in p+Au, 15.1 in d+Au, 22.3 in ³He+Au*

Final-state effects in ³He+Au?

Modification of ϕ at forward and backward

Observed enhancement at backward and suppression at forward indicate different nuclear effects dominate in different η ranges

Modification of ϕ at forward and backward

Observed enhancement at backward and suppression at forward indicate different nuclear effects dominate in different η ranges

Parton-x in nucleus?

Sensitive to shadowing of low-x (anti-shadowing of high-x) partons in Au at forward (backward)

Multiplicity effect?

Larger particle density at backward

Charged hadrons in p+A

pQCD calculation: Phys. Lett. B 740, 23 (2015)

In charged hadron production, very similar modification as the ϕ results Modification based on nPDF sets can describe the forward results but underestimate the enhancement at backward

Charged hadrons in p+A

pQCD calculation: Phys. Lett. B 740, 23 (2015)

In charged hadron production, very similar modification as the ϕ results Modification based on nPDF sets can describe the forward results but underestimate the enhancement at backward

In p+AI collisions, a clear A-dependence only at backward (*A-going direction*) pQCD calculation considering incoherent multiple scattering can describe the difference between p+Au and p+AI collsions

A-dependent modification

pQCD calculation: Phys. Lett. B 740, 23 (2015)

At backward rapidity (A-going direction),

 R_{pA} in p+Au and p+Al follows the same trend of increasing with $\langle N_{part} \rangle$

A-dependent modification

pQCD calculation: Phys. Lett. B 740, 23 (2015)

At backward rapidity (A-going direction),

 R_{pA} in p+Au and p+AI follows the same trend of increasing with $\langle N_{part} \rangle$

At forward rapidity (*p-going direction*),

 R_{pA} in p+Au and p+Al show their own trend of decreasing with $\langle N_{part} \rangle$

A-dependent modification

pQCD calculation: Phys. Lett. B 740, 23 (2015)

At backward rapidity (A-going direction),

 R_{pA} in p+Au and p+Al follows the same trend of increasing with $\langle N_{part} \rangle$

Dominated by final-state effects (multiplicity)?

At forward rapidity (*p-going direction*),

R_{pA} in p+Au and p+Al show their own trend of decreasing with <N_{part}> Dominated by initial-state effects (impact parameter)?

Comparison with heavy-flavor

Phys. Rev. Lett. 112, 252301 (2014)

Similar modification in charged hadrons and heavy-flavor muons (dominated by charm) both at forward and backward

Common nuclear effects for light and charm in small collision systems?

To be on arXiv today

dimuons from bb

Indication of modification in pair p_T of dimuon from bb at both forward and backward

dimuons from bb

Indication of modification in pair p_T of dimuon from bb at both forward and backward

Similar with p_T broadening of charged hadrons and heavy-flavor muons

PHENIX talks at Initial Stages 2019

- PHENIX measurements of muon pairs from cc, bb, and Drell-Yan in p+p and p+Au at 200 GeV
 - Axel Drees (nPDF/CNM, June/25 TUE, PM 3:10)
- Probing collision dynamics of small system collisions via high p_T hadrons and direct photons by the PHENIX experiment at RHIC
 - Takao Sakaguchi (high p_T probe of initial states, June/26 WED, PM 2:40)
- Observation of collectivity in p+Au, d+Au, and ³He+Au collisions with PHENIX
 - Qiao Xu (Collectivity in small systems, June/26 WED, PM 4:50)

Thank you

Model description (Hydrodynamic model)

Good agreement with v_2 and v_3 from hydrodynamic models in all three systems

Hydrodynamic model with pre-flow (superSONIC) does not give as good agreement model without pre-flow (SONIC)

Identified particles

Phys. Rev. C 97, 064904 (2018)

Clear mass dependent v_2 in all three systems $p_T < 1.5 \text{ GeV}$: Higher pion v_2 $p_T > 1.5 \text{ GeV/c}$: Higher proton v_2

Hydrodynamic model describes the mass ordering in p_T <1.5 GeV/c

Identified particles

Phys. Rev. C 97, 064904 (2018)

Clear mass dependent v_2 in all three systems p_T <1.5 GeV: Higher pion v_2 p_T >1.5 GeV/c: Higher proton v_2

AMPT with hadronic rescattering also describes the mass ordering in p_T <1.5 GeV/c The splitting in p_T >1.5 GeV/c is also described by AMPT from coalescence

Heavy-flavor v₂

Non-zero v_2 of muons from heavy-flavor decays (mostly charm) at forward and backward in d+Au collisions

Finite v₂ for charm in p+Pb CMS: Phys. Rev. Lett. 121, 082301 (2018) ALICE: Phys. Rev. Lett.122, 072301 (2019)

Multiparticle correlation in d+Au

Phys. Rev. Lett. 120, 062302 (2018)

Non-zero v_2 {4} in d+Au collisions at all energies!

At 200 GeV, consistent v_2 {2, $|\Delta\eta|>2$ }, v_2 {4}, and v_2 {6} indicate minimal non-flow effect

Direct photons in p+Au

Direct photon yield in 0-5% p+Au collision is higher than the scaled p+p yield

Integrated yields in p+Au and d+Au collisions fill the gap between p+p and A+A

dimuons from bb

No overall modification in $\Delta \phi$ between dimuon from bb both at forward and backward

Consistent with nPDF

J/ψ in small systems

Initial-state effects are expected to be similar for open and hidden heavy-flavor

Clear indication of final-state effects at A-going direction

Modification of J/ψ

Similar modification of J/ ψ in p+Au and ³He+Au both at forward and backward No dependence on projectile

Modification of J/ψ

Different modification of J/ ψ in p+Al and p+Au both at forward and backward Clear dependence on target size

Centrality dependence study in all small systems coming soon

