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High energy scattering in QCD

High energy scattering in QCD:
The x evolution of a hadron :

above the saturation line there is no rapid increase in the number of
gluons
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Regge-Gribov limit : x → 0

at small x → saturation!

Qs ≡ saturation scale
≡ αs × (gluon density per unit area)

Qs is a measure of the strength of the gluon
interaction processes that may occur when
the gluon density becomes large.

Qs � ΛQCD ⇒ weak coupling

methods can still be applied !

[ McLerran, Venugopalan - hep-ph/9309289 / hep-ph/9311205]
In the saturation regime the prescription of scattering process: Color Glass Condensate (CGC)

CGC description of a process: ”effective degrees of freedom” with respect to a cut off Λ+

fast partons : k+ > Λ+ → described by color sources: Jµ(x) = δµ+ρ(x−, x⊥)

slow partons: k+ < Λ+ → described by color fields Aµ(x)

interaction between fast and slow partons:
∫
d4xJµ(x)Aµ(x)
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Forward hadron production

[Dumitru, Hayashigaki, Jalilian-Marian - hep-ph/0506308]:

State-of-the-art calculation framework for forward production in pA collisions: Hybrid factorization

The wave function of the projectile proton is treated in the spirit of collinear factorization (an
assembly of partons with zero intrinsic transverse momenta)

Perturbative corrections to this wave function are provided by the usual QCD perturbative splitting
processes.

Target is treated as distribution of strong color fields which during the scattering event transfer
transverse momentum to the propagating partonic configuration. (CGC like treatment)

x0

k⊥

x1

dσpA→q+X

dk+d2k⊥
∝
∫

dxpfq(xp, µ
2)

∫
e ik⊥(x0−x1)〈d(x0, x1)〉

NLO calculations ( at mid rapidity) in p-space:
[Roy, Venugopalan - arXiv:1802.09550] → NLO photon production
[Boussarie, Grabovsky, Szymanowski, Wallon - arXiv:1606.00419] → NLO diffractive dijet production
.
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Forward hadron production

Does LO ”Hybrid” formula take into account all contributions at high k⊥?

[TA, Kovner - arXiv:1102.5327]

For k⊥ � Qs :

dσ

d2kdη
∝
[

dσ

d2kdη

]

el .

+

[
dσ

d2kdη

]

inel .

Real contributions at NLO.

Particle Production at NLO within ”Hybrid” formalism

[ T.A., A. Kovner - 2011 ]

The single inclusive gluon cross section :

d�

d2k dy
/


d�

d2k dy

�

elastic

+


d�

d2k dy

�

inelastic

In the limit of large transverse momentum of the produced gluon k � Qs ,⇤QCD

there are two dominant contributions:

”Elastic Scattering” (LO)

kT

kT

pT ⌧ kT

”Inelastic Scattering” (NLO)

pT ⌧ kT

kT

�kT
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[Chirilli, Xiao, Yuan - arXiv:1112.1061 / arXiv:1203.6139 ] → Full NLO computation.

[Stasto, Xiao, Zaslavsky - arXiv:1307.4057] → Numerical studies of full NLO result.

Particle Production at NLO within ”Hybrid” formalism

[ G.A. Chirilli, B.W. Xiao, F. Yuan - 2012 ]
Full NLO calculation...
[ A.M.Stasto, B.W.Xiao, D. Zaslavsky - 2013 ]
Numerical analysis...
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Comparison of BRAHMS (h�) and STAR (⇡0) yields in dAu collisions to results of
the numerical calculation with rcBK gluon distribution, both at LO and with NLO
corrections included.
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Comparison of BRAHMS (h−) and STAR (π0) yields in dAu collisions.
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Revisiting NLO hybrid formula

Kinematical constraints are important in the high k⊥ collinear regime!

[TA, Armesto, Beuf, Kovner, Lublinsky - arXiv:1411.2869] → Ioffe time restriction.

[Watanabe, Xiao, Yuan, Zaslavsky - arXiv:1505.05183] → exact kinematical constraint.12
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FIG. 4. Comparisons of BRAHMS data [9] with the center-of-mass energy of
p

sNN = 200GeV per nucleon
at rapidity y = 2.2, 3.2 with our results. As illustrated above, the crosshatch fill shows LO results, the
grid fill indicates LO+NLO results, and the solid fill corresponds to our new results which include the NLO
corrections from Lq and Lg due to the kinematical constraint. The error band is obtained by changing µ2

from 10 GeV2 to 50 GeV2.

(transformed) formulas. The LO and LO+NLO curves are very similar to earlier results published
in Ref. [43]; some slight di↵erences are due to the increased precision of the new formulas. In the
meantime, the Lq and Lg corrections are completely negligible in the region where p? . Qs. On
the other hand, where p? & Qs, Lq and Lg start to become important and alleviate the negativity
problem in the GBW model, and help us to better describe the data in the high p? region. In the
rcBK case, we find that the full NLO cross section now becomes completely positive and provides
us excellent agreement with all the RHIC data.

In Figure 6, we show the comparison between the forward ATLAS data at y = 1.75 and the
numerical results from SOLO. We observe remarkable agreement between the full NLO calculation
from the saturation formalism and experimental data up to 6GeV. Again, as we have seen earlier,
the newly added Lq and Lg corrections help to increase the applicable p? window of the saturation
formalism from roughly 2.5–3 GeV to 6 GeV. From 6 GeV and up, the full NLO cross section
still becomes negative, which implies that the saturation formalism does not apply anymore and
the collinear factorization should be used. Admittedly, what we have seen is only one piece of
a promising clue for the gluon saturation phenomenon. More data in di↵erent forward rapidity
windows at the LHC would allow us to conduct precise tests of the theoretical calculation, and
may eventually provide us the smoking gun proof.

BRAHMS data with
√
sNN = 200 GeV.
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Revisiting NLO hybrid formula - I

Rapidity divergences have to be accounted for properly!

[Ducloue, Lappi, Zhu, - arXiv:1604.00225 / arXiv:1703.04962]

Collinear divergences: absorbed into DGLAP evolution of PDFs and FFs.

Rapidity divergences: absorbed into evolution of the target.
B. Ducloué, T. Lappi, Y. Zhu / Nuclear and Particle Physics Proceedings 00 (2018) 1–4 3
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Figure 1: Upper: Multiplicity as a function of p? for di↵erent values
of ⇠f. Lower: Ratio of the multiplicity at NLO and LO for di↵erent
values of ⇠f. In both cases the vertical dashed line corresponds to
Qs ⇡ p?.

solid line. For ⇠f = 0, the NLO result turns negative at
p? ⇠ 2.5 GeV, which is similar to the full NLO cross
section displayed in Ref. [12]. However, as discussed
in the preceding section, the oversubtraction is indeed
reduced when ⇠f ! 1, in particular, the multiplicity is
positive up to 8 GeV when ⇠f = 0.999. In the lower
panel, we show the ratio of the NLO multiplicity to the
LO one with various values of ⇠f for p? up to 2.5 GeV.
Contrary to ⇠f = 0, the NLO multiplicity is suppressed
at moderate transverse momenta with respect to the LO
result when ⇠f is close to 1.

We have seen that the value of ⇠f indeed has an impor-
tant e↵ect on the NLO multiplicity. However the choice
of ⇠f was kind of arbitrary. Physically, the value of ⇠f
should be fixed by light cone ordering at NLO. More
precisely, this is related to the k� or x+ ordering required
in the BK evolution. In the calculation of the NLO cross
section, k+ ordering is automatically implemented by
the radiation of a gluon with 0 < 1 � ⇠ < 1 as depicted

q q − l, ξ

l, 1 − ξ

q q � l, ⇠

l, 1 � ⇠

Figure 2: Gluon emission.

in Fig. 2, while the k� ordering has to be implemented
explicitly. At LO, the light cone energy required from
the target is k�LO =

k2

2k+ =
k2

2xpP+ for a collinear quark
from the projectile with energy k+, which defines the
momentum fraction x = k�LO/P

� = xg from the target
at LO. At NLO, according to Fig. 2, the light cone en-
ergy required for the production of the on-shell outgoing
quark and gluon is

�k�qg =
xgP�

k2

(l � (1 � ⇠)q)2

⇠(1 � ⇠) . (9)

A correct renormalization of the target should include
the point ⇠ = 1 in the subtraction. In addition, one
should also implement k� ordering for the evolution of
target. This can be done by requiring the light cone en-
ergy to be greater than the factorization fraction of target
energy x f , i.e., �k�qg >� xfP�, which tells that gluons
with x > xf should be included in the evolution of the
target. A natural choice for the renormalization scale is
xf ⇡ xg such that all the large energy logarithms are re-
summed into the target. For the production of a quark
with large transverse momentum k � Qs, the momen-
tum q � l ⇠ k � Qs. The momentum l is an integration
variable, thus of the order of Qs. With those in mind,
when ⇠ ! 1, the light cone ordering reduces to

�k�qg =
xgP�

k2

Q2
s

1 � ⇠ � xfP� , 1 � ⇠  Q2
s

k2

xg

xf
. (10)

Therefore, the factorization scale in Eq. 7 can be fixed
with

⇠f ! ⇠f(k?) = 1 �min(1,
xg

xf

Q2
s

k2 ) , (11)

Using ⇠f(k?) = 1/(1 + xg

xf

Q2
s

k2
?

) for a smooth transition
between large and small k, the result is displayed in
Fig. 3 with the variation of xf/xg by a factor of 2. The
choice xf/xg = 2 pushes the negativity to much larger
value of p? than ⇠2.5 GeV with CXY subtraction.

4. Conclusions and discussion

We have studied rapidity factorization in NLO sin-
gle inclusive hadron production in pA collisions at for-
ward rapidity following the calculation of Ref. [11]. The

ξ → 1: soft gluon emission collinear to the target.

over subtraction is the cause of the negativity!

Proposed solution: implementing k− ordering in the evolution of the target.

S(k⊥) = S(0)(k⊥) + 2αsNc

∫ 1

ξf

dξ

1− ξ
[
I(k⊥, 1)− Iν(k⊥, 1)

]

In CXY: ξf → 0.

Effectively, solution corresponds to :

ξf → ξf (k⊥) = 1−min

(
1,

xg
xf

Q2
s

k2
⊥

)

B. Ducloué, T. Lappi, Y. Zhu / Nuclear and Particle Physics Proceedings 00 (2018) 1–4 4
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Figure 3: Multiplicity obtained using di↵erent values of xf
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.

oversubtraction in the rapidity regularization is reduced
by introducing a rapidity factorization scale, which al-
lows us to achieve a positive NLO multiplicity up to ar-
bitrarily large transverse momenta. To fix the factoriza-
tion scale, we proposed to impose light cone ordering in
the evolution of the target, which can significantly im-
prove the results for larger transverse momenta. How-
ever these results are very sensitive to the variation of
the factorization scale even in its natural range. This
could probably be improved by using dipole correlators
obeying the BK equation instead of the simple GBW
model. Furthermore, light cone ordering should be im-
posed exactly in the transverse momentum integrals.
We will address these issues in the future.
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Revisiting NLO hybrid formula - II

[Iancu, Mueller, Triantafyllopoulos - arXiv:1608.05293]

claim: negativity problem is due to approximations adopted in hybrid formalism.

proposed solution: a more general factorization scheme that is non local in rapidity.

Revisiting NLO hybrid formula - II

[Iancu, Mueller, Triantafyllopoulos - arXiv:1608.05293]
claim: negativity problem is due to approximations adopted in hybrid formalism.
proposal: a more general factorization scheme that is non local in rapidity.

2 E. Iancu et al. / Nuclear Physics A 00 (2018) 1–5

Fig. 1. Leading-order contributions to the dipole S -matrix. Left: the scattering of the bare dipole, which yields S 0. Right: one step in
the LO evolution (the emission of a soft gluon in the eikonal approximation), yielding a contribution of O(�sY) with Y = ln(1/Xg)

the proton and carries a relatively large longitudinal fraction xp, scatters o� the dense gluon distribution in
the nuclear target and thus acquires a transverse momentum k. The quark distribution is computed as

dN pA�qX

d2 k d�

�����
LO

=
1

(2�)2 xpq(xp)S(k, Xg) , S(k, Xg) =
�

d2r e�ik·rS (r, Xg), (1)

where � is the rapidity of the produced quark in the center-of-mass frame and Xg is longitudinal momentum
fraction carried by the gluons from the target that are involved in the collision. Energy-momentum conser-
vation implies xp = (k�/

�
s)e� and Xg = (k�/

�
s)e��. The forward kinematics corresponds to the situation

where � is positive and large, which implies Xg� xp < 1. Thus, forward particle production explores the
small-Xg part of the nuclear wavefunction, as anticipated. Furthermore, xpq(xp) is the quark distribution of
the proton and S (r, Xg) is the elastic S –matrix for the scattering between a ‘color dipole’ (a quark-antiquark
pair in a color-singlet state) and the nucleus. Its Fourier transform S(k, Xg) plays the role of an unintegrated
gluon distribution in the nuclear target, as probed by particle production in dilute-dense collisions.

To the same accuracy, the dipole S -matrix is obtained by solving the LO version of the BK equation
[6], which resums an arbitrary number of soft gluon emissions in the scattering between the dipole and the
nuclear target, in the eikonal approximation. For what follows, it is convenient to chose a Lorentz frame
in which the ‘primary’ gluon (the one which is closest in rapidity to the dipole) is emitted by the dipole,
whereas all the other, even softer, gluons belong to the nuclear wavefunction. Then, the LO dipole S -matrix
S (r, Xg) � S

�
x, y; Xg

�
(with r = x � y) admits the following integral representation (see also Fig. 1)

S
�
x, y; Xg

�
= S 0(x, y) +

�̄s

2�

� 1

Xg/X0

dx
x

�
d2 z (x � y)2

(x � z)2(z � y)2

�
S
�
x, z; X(x)

�
S
�
z, y; X(x)

� � S
�
x, y; X(x)

��
, (2)

where �̄s = �sNc/�, x and y are the transverse coordinates of the quark and the antiquark (which are not
changed by an eikonal emission), z is the transverse position of the primary gluon, X0 is the value of X at
which one starts the high-energy evolution of the target, S 0 = S (X0) is the corresponding initial condition
(say, as given by the McLerran-Venugopalan model), x � 1 is the fraction of the dipole longitudinal mo-
mentum taken by the primary gluon, and X(x) � Xg/x is the longitudinal momentum fraction of the gluons
from the target which scatter o� the projectile made with the dipole and the primary gluon.

3. Beyond leading order

The quark multiplicity in Eq. (1) receives two types of next-to-leading order (NLO) corrections (see
Figs. 2 and 3): those related to the dipole evolution — i.e. corrections of O(�s) to the kernel of the BK
equation [7] — and those related to the impact factor — corrections of O(�s) which arise when the emission
of the primary gluon is computed “with exact kinematics”, i.e. beyond the eikonal approximation [1].

The NLO corrections to the BK kernel are generated by the ensemble of the genuine one-loop corrections
to the emission of a soft (x � 1) primary gluon. For instance, Fig. 2 illustrates the e�ect of a gluon loop
where the secondary gluons are both soft, but their longitudinal momentum fractions are comparable to each
other: x1 � x2 � 1. (The situation where x2 � x � x1 contributes to the second step of the LO evolution
and must be properly subtracted when computed the NLO correction to the evolution kernel.) Accordingly,

”LO dipole S-matrix” ”one step in LO evolution”
At NLO

E. Iancu et al. / Nuclear Physics A 00 (2018) 1–5 3

Fig. 2. Next-to-leading order correction to the kernel of the BK equation

Fig. 3. Next-to-leading order correction to the quark impact factor in the dipole picture.

the 3-gluon vertices visible in Fig. 2 must be computed with exact kinematics, and similarly for the other
one-loop diagrams. The ensemble of such corrections has been computed in [7]. The strict NLO version
of the BK equation turns out to be unstable [8], due to the presence of large NLO corrections enhanced by
collinear logarithms. All-order resummations which overcome this problem have been devised in [9, 10, 11].

In what follows we shall focus on the NLO correction to the impact factor, which as we shall see is
responsible for the negativity problem mentioned in the introduction. To isolate this correction, one must
compute the primary emission with the exact kinematics (as valid for any x � 1) and subtract away the
respective contribution of an eikonal emission (strictly correct for x � 1 alone), that was already included
in the LO BK evolution. This is illustrated in Fig. 3. To simplify the discussion, we shall keep the dipole
evolution at LO (possibly amended by running coupling corrections; see below). Also, we shall not present
the NLO corrections in detail (these can be found in the literature; see e.g. [5, 12]), rather we shall use
symbolic notations, which are both compact and suggestive.

To start with, we shall rewrite the LO BK equation (2) as [we recall that r = x � y and X(x) = Xg/x]

S (r, Xg) = S 0(r) + �̄s

� 1

Xg/X0

dx
x

K(r; 0) S
�
r, X(x)

�
, (3)

where the kernel K(r; 0) succinctly denotes the convolution in transverse space and the terms quadratic in
S are kept implicit. Clearly, a similar representation can be written in momentum space, with K(r; 0) �
K(k; 0). In these symbolic notations, the LO cross-section (1) reads

dN pA�qX

d2 k d�

�����
LO

= S(k, Xg) = S0(k) + �̄s

� 1

Xg/X0

dx
x
K(k; 0)S�k, X(x)

�
, (4)

where we also have omitted the quark distribution, to simplify notations. Notice that the last expression in
(4) is the integral representation for S(k, Xg) obtained by taking a Fourier transform in (3).

This last expression can be generalized to include the NLO correction to the impact factor [5]:
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NLO

= S0(k) + �̄s

� 1

Xg/X0
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x
K(k; x)S�k, X(x)
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, (5)

where K(k; x) is the kernel describing a ‘non-eikonal’ emission, that is, the emission of a gluon with a
generic value of x, as computed without any kinematical approximation. [As the notation suggests, the
‘eikonal’ kernel K(k; 0) which enters the LO BK evolution is obtained by letting x � 0 inside the more
general kernel K(k; x).] Eq. (5) can be viewed as the sum of Figs. 1 and 3: the contribution of the eikonal
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the proton and carries a relatively large longitudinal fraction xp, scatters o� the dense gluon distribution in
the nuclear target and thus acquires a transverse momentum k. The quark distribution is computed as

dN pA�qX

d2 k d�

�����
LO

=
1

(2�)2 xpq(xp)S(k, Xg) , S(k, Xg) =
�

d2r e�ik·rS (r, Xg), (1)

where � is the rapidity of the produced quark in the center-of-mass frame and Xg is longitudinal momentum
fraction carried by the gluons from the target that are involved in the collision. Energy-momentum conser-
vation implies xp = (k�/

�
s)e� and Xg = (k�/

�
s)e��. The forward kinematics corresponds to the situation

where � is positive and large, which implies Xg� xp < 1. Thus, forward particle production explores the
small-Xg part of the nuclear wavefunction, as anticipated. Furthermore, xpq(xp) is the quark distribution of
the proton and S (r, Xg) is the elastic S –matrix for the scattering between a ‘color dipole’ (a quark-antiquark
pair in a color-singlet state) and the nucleus. Its Fourier transform S(k, Xg) plays the role of an unintegrated
gluon distribution in the nuclear target, as probed by particle production in dilute-dense collisions.

To the same accuracy, the dipole S -matrix is obtained by solving the LO version of the BK equation
[6], which resums an arbitrary number of soft gluon emissions in the scattering between the dipole and the
nuclear target, in the eikonal approximation. For what follows, it is convenient to chose a Lorentz frame
in which the ‘primary’ gluon (the one which is closest in rapidity to the dipole) is emitted by the dipole,
whereas all the other, even softer, gluons belong to the nuclear wavefunction. Then, the LO dipole S -matrix
S (r, Xg) � S

�
x, y; Xg

�
(with r = x � y) admits the following integral representation (see also Fig. 1)

S
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S
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, (2)

where �̄s = �sNc/�, x and y are the transverse coordinates of the quark and the antiquark (which are not
changed by an eikonal emission), z is the transverse position of the primary gluon, X0 is the value of X at
which one starts the high-energy evolution of the target, S 0 = S (X0) is the corresponding initial condition
(say, as given by the McLerran-Venugopalan model), x � 1 is the fraction of the dipole longitudinal mo-
mentum taken by the primary gluon, and X(x) � Xg/x is the longitudinal momentum fraction of the gluons
from the target which scatter o� the projectile made with the dipole and the primary gluon.

3. Beyond leading order

The quark multiplicity in Eq. (1) receives two types of next-to-leading order (NLO) corrections (see
Figs. 2 and 3): those related to the dipole evolution — i.e. corrections of O(�s) to the kernel of the BK
equation [7] — and those related to the impact factor — corrections of O(�s) which arise when the emission
of the primary gluon is computed “with exact kinematics”, i.e. beyond the eikonal approximation [1].

The NLO corrections to the BK kernel are generated by the ensemble of the genuine one-loop corrections
to the emission of a soft (x � 1) primary gluon. For instance, Fig. 2 illustrates the e�ect of a gluon loop
where the secondary gluons are both soft, but their longitudinal momentum fractions are comparable to each
other: x1 � x2 � 1. (The situation where x2 � x � x1 contributes to the second step of the LO evolution
and must be properly subtracted when computed the NLO correction to the evolution kernel.) Accordingly,
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the 3-gluon vertices visible in Fig. 2 must be computed with exact kinematics, and similarly for the other
one-loop diagrams. The ensemble of such corrections has been computed in [7]. The strict NLO version
of the BK equation turns out to be unstable [8], due to the presence of large NLO corrections enhanced by
collinear logarithms. All-order resummations which overcome this problem have been devised in [9, 10, 11].

In what follows we shall focus on the NLO correction to the impact factor, which as we shall see is
responsible for the negativity problem mentioned in the introduction. To isolate this correction, one must
compute the primary emission with the exact kinematics (as valid for any x � 1) and subtract away the
respective contribution of an eikonal emission (strictly correct for x � 1 alone), that was already included
in the LO BK evolution. This is illustrated in Fig. 3. To simplify the discussion, we shall keep the dipole
evolution at LO (possibly amended by running coupling corrections; see below). Also, we shall not present
the NLO corrections in detail (these can be found in the literature; see e.g. [5, 12]), rather we shall use
symbolic notations, which are both compact and suggestive.

To start with, we shall rewrite the LO BK equation (2) as [we recall that r = x � y and X(x) = Xg/x]

S (r, Xg) = S 0(r) + �̄s

� 1

Xg/X0

dx
x

K(r; 0) S
�
r, X(x)

�
, (3)

where the kernel K(r; 0) succinctly denotes the convolution in transverse space and the terms quadratic in
S are kept implicit. Clearly, a similar representation can be written in momentum space, with K(r; 0) �
K(k; 0). In these symbolic notations, the LO cross-section (1) reads

dN pA�qX

d2 k d�

�����
LO

= S(k, Xg) = S0(k) + �̄s

� 1

Xg/X0

dx
x
K(k; 0)S�k, X(x)

�
, (4)

where we also have omitted the quark distribution, to simplify notations. Notice that the last expression in
(4) is the integral representation for S(k, Xg) obtained by taking a Fourier transform in (3).

This last expression can be generalized to include the NLO correction to the impact factor [5]:

dN pA�qX

d2 k d�

�����
NLO

= S0(k) + �̄s

� 1

Xg/X0

dx
x
K(k; x)S�k, X(x)

�
, (5)

where K(k; x) is the kernel describing a ‘non-eikonal’ emission, that is, the emission of a gluon with a
generic value of x, as computed without any kinematical approximation. [As the notation suggests, the
‘eikonal’ kernel K(k; 0) which enters the LO BK evolution is obtained by letting x � 0 inside the more
general kernel K(k; x).] Eq. (5) can be viewed as the sum of Figs. 1 and 3: the contribution of the eikonal
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the 3-gluon vertices visible in Fig. 2 must be computed with exact kinematics, and similarly for the other
one-loop diagrams. The ensemble of such corrections has been computed in [7]. The strict NLO version
of the BK equation turns out to be unstable [8], due to the presence of large NLO corrections enhanced by
collinear logarithms. All-order resummations which overcome this problem have been devised in [9, 10, 11].

In what follows we shall focus on the NLO correction to the impact factor, which as we shall see is
responsible for the negativity problem mentioned in the introduction. To isolate this correction, one must
compute the primary emission with the exact kinematics (as valid for any x � 1) and subtract away the
respective contribution of an eikonal emission (strictly correct for x � 1 alone), that was already included
in the LO BK evolution. This is illustrated in Fig. 3. To simplify the discussion, we shall keep the dipole
evolution at LO (possibly amended by running coupling corrections; see below). Also, we shall not present
the NLO corrections in detail (these can be found in the literature; see e.g. [5, 12]), rather we shall use
symbolic notations, which are both compact and suggestive.

To start with, we shall rewrite the LO BK equation (2) as [we recall that r = x � y and X(x) = Xg/x]
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where the kernel K(r; 0) succinctly denotes the convolution in transverse space and the terms quadratic in
S are kept implicit. Clearly, a similar representation can be written in momentum space, with K(r; 0) �
K(k; 0). In these symbolic notations, the LO cross-section (1) reads
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, (4)

where we also have omitted the quark distribution, to simplify notations. Notice that the last expression in
(4) is the integral representation for S(k, Xg) obtained by taking a Fourier transform in (3).

This last expression can be generalized to include the NLO correction to the impact factor [5]:
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where K(k; x) is the kernel describing a ‘non-eikonal’ emission, that is, the emission of a gluon with a
generic value of x, as computed without any kinematical approximation. [As the notation suggests, the
‘eikonal’ kernel K(k; 0) which enters the LO BK evolution is obtained by letting x � 0 inside the more
general kernel K(k; x).] Eq. (5) can be viewed as the sum of Figs. 1 and 3: the contribution of the eikonal
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the proton and carries a relatively large longitudinal fraction xp, scatters o� the dense gluon distribution in
the nuclear target and thus acquires a transverse momentum k. The quark distribution is computed as

dN pA�qX

d2 k d�

�����
LO

=
1

(2�)2 xpq(xp)S(k, Xg) , S(k, Xg) =
�

d2r e�ik·rS (r, Xg), (1)

where � is the rapidity of the produced quark in the center-of-mass frame and Xg is longitudinal momentum
fraction carried by the gluons from the target that are involved in the collision. Energy-momentum conser-
vation implies xp = (k�/

�
s)e� and Xg = (k�/

�
s)e��. The forward kinematics corresponds to the situation

where � is positive and large, which implies Xg� xp < 1. Thus, forward particle production explores the
small-Xg part of the nuclear wavefunction, as anticipated. Furthermore, xpq(xp) is the quark distribution of
the proton and S (r, Xg) is the elastic S –matrix for the scattering between a ‘color dipole’ (a quark-antiquark
pair in a color-singlet state) and the nucleus. Its Fourier transform S(k, Xg) plays the role of an unintegrated
gluon distribution in the nuclear target, as probed by particle production in dilute-dense collisions.

To the same accuracy, the dipole S -matrix is obtained by solving the LO version of the BK equation
[6], which resums an arbitrary number of soft gluon emissions in the scattering between the dipole and the
nuclear target, in the eikonal approximation. For what follows, it is convenient to chose a Lorentz frame
in which the ‘primary’ gluon (the one which is closest in rapidity to the dipole) is emitted by the dipole,
whereas all the other, even softer, gluons belong to the nuclear wavefunction. Then, the LO dipole S -matrix
S (r, Xg) � S

�
x, y; Xg

�
(with r = x � y) admits the following integral representation (see also Fig. 1)
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where �̄s = �sNc/�, x and y are the transverse coordinates of the quark and the antiquark (which are not
changed by an eikonal emission), z is the transverse position of the primary gluon, X0 is the value of X at
which one starts the high-energy evolution of the target, S 0 = S (X0) is the corresponding initial condition
(say, as given by the McLerran-Venugopalan model), x � 1 is the fraction of the dipole longitudinal mo-
mentum taken by the primary gluon, and X(x) � Xg/x is the longitudinal momentum fraction of the gluons
from the target which scatter o� the projectile made with the dipole and the primary gluon.

3. Beyond leading order

The quark multiplicity in Eq. (1) receives two types of next-to-leading order (NLO) corrections (see
Figs. 2 and 3): those related to the dipole evolution — i.e. corrections of O(�s) to the kernel of the BK
equation [7] — and those related to the impact factor — corrections of O(�s) which arise when the emission
of the primary gluon is computed “with exact kinematics”, i.e. beyond the eikonal approximation [1].

The NLO corrections to the BK kernel are generated by the ensemble of the genuine one-loop corrections
to the emission of a soft (x � 1) primary gluon. For instance, Fig. 2 illustrates the e�ect of a gluon loop
where the secondary gluons are both soft, but their longitudinal momentum fractions are comparable to each
other: x1 � x2 � 1. (The situation where x2 � x � x1 contributes to the second step of the LO evolution
and must be properly subtracted when computed the NLO correction to the evolution kernel.) Accordingly,
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the 3-gluon vertices visible in Fig. 2 must be computed with exact kinematics, and similarly for the other
one-loop diagrams. The ensemble of such corrections has been computed in [7]. The strict NLO version
of the BK equation turns out to be unstable [8], due to the presence of large NLO corrections enhanced by
collinear logarithms. All-order resummations which overcome this problem have been devised in [9, 10, 11].

In what follows we shall focus on the NLO correction to the impact factor, which as we shall see is
responsible for the negativity problem mentioned in the introduction. To isolate this correction, one must
compute the primary emission with the exact kinematics (as valid for any x � 1) and subtract away the
respective contribution of an eikonal emission (strictly correct for x � 1 alone), that was already included
in the LO BK evolution. This is illustrated in Fig. 3. To simplify the discussion, we shall keep the dipole
evolution at LO (possibly amended by running coupling corrections; see below). Also, we shall not present
the NLO corrections in detail (these can be found in the literature; see e.g. [5, 12]), rather we shall use
symbolic notations, which are both compact and suggestive.

To start with, we shall rewrite the LO BK equation (2) as [we recall that r = x � y and X(x) = Xg/x]

S (r, Xg) = S 0(r) + �̄s

� 1

Xg/X0

dx
x

K(r; 0) S
�
r, X(x)

�
, (3)

where the kernel K(r; 0) succinctly denotes the convolution in transverse space and the terms quadratic in
S are kept implicit. Clearly, a similar representation can be written in momentum space, with K(r; 0) �
K(k; 0). In these symbolic notations, the LO cross-section (1) reads

dN pA�qX
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= S(k, Xg) = S0(k) + �̄s

� 1

Xg/X0

dx
x
K(k; 0)S�k, X(x)
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, (4)

where we also have omitted the quark distribution, to simplify notations. Notice that the last expression in
(4) is the integral representation for S(k, Xg) obtained by taking a Fourier transform in (3).

This last expression can be generalized to include the NLO correction to the impact factor [5]:
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= S0(k) + �̄s

� 1

Xg/X0
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K(k; x)S�k, X(x)
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, (5)

where K(k; x) is the kernel describing a ‘non-eikonal’ emission, that is, the emission of a gluon with a
generic value of x, as computed without any kinematical approximation. [As the notation suggests, the
‘eikonal’ kernel K(k; 0) which enters the LO BK evolution is obtained by letting x � 0 inside the more
general kernel K(k; x).] Eq. (5) can be viewed as the sum of Figs. 1 and 3: the contribution of the eikonal
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the proton and carries a relatively large longitudinal fraction xp, scatters o� the dense gluon distribution in
the nuclear target and thus acquires a transverse momentum k. The quark distribution is computed as
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=
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(2�)2 xpq(xp)S(k, Xg) , S(k, Xg) =
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d2r e�ik·rS (r, Xg), (1)

where � is the rapidity of the produced quark in the center-of-mass frame and Xg is longitudinal momentum
fraction carried by the gluons from the target that are involved in the collision. Energy-momentum conser-
vation implies xp = (k�/

�
s)e� and Xg = (k�/
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s)e��. The forward kinematics corresponds to the situation

where � is positive and large, which implies Xg� xp < 1. Thus, forward particle production explores the
small-Xg part of the nuclear wavefunction, as anticipated. Furthermore, xpq(xp) is the quark distribution of
the proton and S (r, Xg) is the elastic S –matrix for the scattering between a ‘color dipole’ (a quark-antiquark
pair in a color-singlet state) and the nucleus. Its Fourier transform S(k, Xg) plays the role of an unintegrated
gluon distribution in the nuclear target, as probed by particle production in dilute-dense collisions.

To the same accuracy, the dipole S -matrix is obtained by solving the LO version of the BK equation
[6], which resums an arbitrary number of soft gluon emissions in the scattering between the dipole and the
nuclear target, in the eikonal approximation. For what follows, it is convenient to chose a Lorentz frame
in which the ‘primary’ gluon (the one which is closest in rapidity to the dipole) is emitted by the dipole,
whereas all the other, even softer, gluons belong to the nuclear wavefunction. Then, the LO dipole S -matrix
S (r, Xg) � S
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x, y; Xg
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(with r = x � y) admits the following integral representation (see also Fig. 1)
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where �̄s = �sNc/�, x and y are the transverse coordinates of the quark and the antiquark (which are not
changed by an eikonal emission), z is the transverse position of the primary gluon, X0 is the value of X at
which one starts the high-energy evolution of the target, S 0 = S (X0) is the corresponding initial condition
(say, as given by the McLerran-Venugopalan model), x � 1 is the fraction of the dipole longitudinal mo-
mentum taken by the primary gluon, and X(x) � Xg/x is the longitudinal momentum fraction of the gluons
from the target which scatter o� the projectile made with the dipole and the primary gluon.

3. Beyond leading order

The quark multiplicity in Eq. (1) receives two types of next-to-leading order (NLO) corrections (see
Figs. 2 and 3): those related to the dipole evolution — i.e. corrections of O(�s) to the kernel of the BK
equation [7] — and those related to the impact factor — corrections of O(�s) which arise when the emission
of the primary gluon is computed “with exact kinematics”, i.e. beyond the eikonal approximation [1].

The NLO corrections to the BK kernel are generated by the ensemble of the genuine one-loop corrections
to the emission of a soft (x � 1) primary gluon. For instance, Fig. 2 illustrates the e�ect of a gluon loop
where the secondary gluons are both soft, but their longitudinal momentum fractions are comparable to each
other: x1 � x2 � 1. (The situation where x2 � x � x1 contributes to the second step of the LO evolution
and must be properly subtracted when computed the NLO correction to the evolution kernel.) Accordingly,
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the 3-gluon vertices visible in Fig. 2 must be computed with exact kinematics, and similarly for the other
one-loop diagrams. The ensemble of such corrections has been computed in [7]. The strict NLO version
of the BK equation turns out to be unstable [8], due to the presence of large NLO corrections enhanced by
collinear logarithms. All-order resummations which overcome this problem have been devised in [9, 10, 11].

In what follows we shall focus on the NLO correction to the impact factor, which as we shall see is
responsible for the negativity problem mentioned in the introduction. To isolate this correction, one must
compute the primary emission with the exact kinematics (as valid for any x � 1) and subtract away the
respective contribution of an eikonal emission (strictly correct for x � 1 alone), that was already included
in the LO BK evolution. This is illustrated in Fig. 3. To simplify the discussion, we shall keep the dipole
evolution at LO (possibly amended by running coupling corrections; see below). Also, we shall not present
the NLO corrections in detail (these can be found in the literature; see e.g. [5, 12]), rather we shall use
symbolic notations, which are both compact and suggestive.

To start with, we shall rewrite the LO BK equation (2) as [we recall that r = x � y and X(x) = Xg/x]

S (r, Xg) = S 0(r) + �̄s

� 1

Xg/X0

dx
x

K(r; 0) S
�
r, X(x)

�
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where the kernel K(r; 0) succinctly denotes the convolution in transverse space and the terms quadratic in
S are kept implicit. Clearly, a similar representation can be written in momentum space, with K(r; 0) �
K(k; 0). In these symbolic notations, the LO cross-section (1) reads
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where we also have omitted the quark distribution, to simplify notations. Notice that the last expression in
(4) is the integral representation for S(k, Xg) obtained by taking a Fourier transform in (3).

This last expression can be generalized to include the NLO correction to the impact factor [5]:
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where K(k; x) is the kernel describing a ‘non-eikonal’ emission, that is, the emission of a gluon with a
generic value of x, as computed without any kinematical approximation. [As the notation suggests, the
‘eikonal’ kernel K(k; 0) which enters the LO BK evolution is obtained by letting x � 0 inside the more
general kernel K(k; x).] Eq. (5) can be viewed as the sum of Figs. 1 and 3: the contribution of the eikonal
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the 3-gluon vertices visible in Fig. 2 must be computed with exact kinematics, and similarly for the other
one-loop diagrams. The ensemble of such corrections has been computed in [7]. The strict NLO version
of the BK equation turns out to be unstable [8], due to the presence of large NLO corrections enhanced by
collinear logarithms. All-order resummations which overcome this problem have been devised in [9, 10, 11].

In what follows we shall focus on the NLO correction to the impact factor, which as we shall see is
responsible for the negativity problem mentioned in the introduction. To isolate this correction, one must
compute the primary emission with the exact kinematics (as valid for any x � 1) and subtract away the
respective contribution of an eikonal emission (strictly correct for x � 1 alone), that was already included
in the LO BK evolution. This is illustrated in Fig. 3. To simplify the discussion, we shall keep the dipole
evolution at LO (possibly amended by running coupling corrections; see below). Also, we shall not present
the NLO corrections in detail (these can be found in the literature; see e.g. [5, 12]), rather we shall use
symbolic notations, which are both compact and suggestive.

To start with, we shall rewrite the LO BK equation (2) as [we recall that r = x � y and X(x) = Xg/x]

S (r, Xg) = S 0(r) + �̄s

� 1

Xg/X0

dx
x

K(r; 0) S
�
r, X(x)

�
, (3)

where the kernel K(r; 0) succinctly denotes the convolution in transverse space and the terms quadratic in
S are kept implicit. Clearly, a similar representation can be written in momentum space, with K(r; 0) �
K(k; 0). In these symbolic notations, the LO cross-section (1) reads

dN pA�qX

d2 k d�

�����
LO

= S(k, Xg) = S0(k) + �̄s

� 1

Xg/X0

dx
x
K(k; 0)S�k, X(x)

�
, (4)

where we also have omitted the quark distribution, to simplify notations. Notice that the last expression in
(4) is the integral representation for S(k, Xg) obtained by taking a Fourier transform in (3).

This last expression can be generalized to include the NLO correction to the impact factor [5]:

dN pA�qX

d2 k d�

�����
NLO

= S0(k) + �̄s

� 1

Xg/X0

dx
x
K(k; x)S�k, X(x)

�
, (5)

where K(k; x) is the kernel describing a ‘non-eikonal’ emission, that is, the emission of a gluon with a
generic value of x, as computed without any kinematical approximation. [As the notation suggests, the
‘eikonal’ kernel K(k; 0) which enters the LO BK evolution is obtained by letting x � 0 inside the more
general kernel K(k; x).] Eq. (5) can be viewed as the sum of Figs. 1 and 3: the contribution of the eikonal

dN

d2k?d⌘

����
NLO

= S(k?, Xg ) + ↵̄s

Z 1

Xg/X0

dx

x

�
K(k?, x) � K(k?, 0)

�
S(k?, X (x))
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Xg ⌘ long. mom. frac. of the target gluons
X0 ⌘ initial X when starting the evolution
X (x) ⌘ Xg/x
K(k?, x) ⌘ non-eikonal emission kernel
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to go from NLO (exact calculation of the quark impact factor) → CXY:

(i) X (x)→ X (1) = Xg inside the S-matrix since the integral over x is dominated by x ∼ 1

(ii) After (i), x integral can be extended down to x = 0

Approximations (i) and (ii) are identified to be the source of the negativity problem!!
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Evolution equations at NLO

For a fully consistent NLO calculation one needs to use the NLO evolution equations!

[Balitsky, Chirilli - arXiv:0710.4330] → the complete set of NLO corrections to the BK equation.

[Kovner, Lublinsky, Mulian - arXiv:1405.0418 / arXiv:1610.03453] → NLO JIMWLK equation.

[Balitsky, Grabovsky - arXiv:1405.0443] → NLO evolution of three quark Wilson loop operators.

The first numerical solution to NLO BK equation: [Lappi, Mäntysaari - arXiv:1502.02400]
/ Nuclear Physics B Proceedings Supplement 00 (2018) 1–4 2

We implement the running coupling by replacing the
terms proportional to the � function coe�cient by the
Balitsky running coupling prescription from Ref. [13].
The kernel K1 then reads
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We will later refer to the part proportional to
ln X2/r2 ln Y2/r2 as the double logarithmic term.

The kernels K2 and Kf are combinations of rational
expressions of transverse separations and a logarithm
ln X2Y 02/(X02Y2). Note that this logarithm vanishes in
the small parent dipole limit where x! y, in contrast to
the double logarithm. The coupling constant ↵s is eval-
uated at the scale set by the parent dipole, as it is the
only external scale. For explicit expressions, we refer
the reader to Refs. [11, 12].

As an initial condition for the NLO BK equation we
use a modified McLerran-Venugopalan (MV) model

N(r) = 1�S (r) = 1� exp

2666664�
(r2Q2

s,0)�

4
ln

 
1

r⇤QCD
+ e

!3777775 .

(4)
Here the MV model is modified by introducing an
anomalous dimension � which controls the power-like
tail of the dipole amplitude at small dipole sizes. The
leading order fits to the HERA data prefer [8] values
of � ⇠ 1.1, which then reduces during the evolution to
� ⇠ 0.8. The constant Qs,0 parametrizes the saturation
scale at initial Bjorken-x. In this work, we do not seek
for parameter values that are compatible with the ex-
perimental data. In practice, Qs,0 controls the relative
importance of the NLO terms as it scales the value of
↵s.

3. Solution to the NLO BK

In Fig. 1 we show the evolution speed @yN(r)/N(r)
as a function of the dipole size for the MV model
(� = 1) initial condition. At small initial saturation
scales Qs,0/⇤QCD, when the strong coupling constant
and the NLO corrections are largest, the evolution speed
is negative at all dipole sizes. With smaller values of ↵s
(larger saturation scale) the evolution speed turns nega-
tive at small dipole sizes when r ⌧ 1/Qs.
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Figure 1: Evolution speed of the dipole amplitude at initial condition
(MV model with � = 1) with di↵erent values for the initial saturation
scale.

The negative evolution speed is unphysical, as it cor-
responds to having an unintegrated gluon distribution
that decreases when it is probed at smaller and smaller
x. However, having @yN/N ⇠ ln r in the small r limit
is a signal of mathematical instability, as in that case
there is a small (but finite) r below which the dipole am-
plitude becomes negative in one step dy of the rapidity
evolution. On the other hand, the definition of the dipole
amplitude N(x � y) = 1 � 1/NchTr U†(x)U(y)i requires
that N(r) ! 0 in the limit r ! 0. Also, if the dipole
amplitude does not satisfy this requirement the z inte-
gral in the leading order equation does not converge. In
our numerical analysis we impose by hand a constraint
N(r) � 0.

Let us then trace back the origin of the negative evo-
lution speed. In Fig. 2 we show contributions to @yN/N
originating from the di↵erent terms of the NLO BK
equation. We observe that the double logarithmic term,
which is part of the kernel K1, is the one that drives the
evolution speed negative. The other NLO corrections
also decrease the evolution speed but do not cause the
problematic @yN/N ⇠ ln r behavior.

It has been argued in Ref. [14] that the double loga-
rithmic contributions should be resummed to all orders.
The resummation e↵ectively removes the double loga-
rithmic term from the kernel K1 and multiplies the lead-
ing order BK kernel r2/X2Y2 by an oscillatory factor,
which expanded to order ↵2

s gives the double logarith-
mic term to the kernel K1. The initial condition is also
modified by the resummation procedure. We implement
this resummation in our analysis and show in Fig. 3 the
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anomalous dimension � which controls the power-like
tail of the dipole amplitude at small dipole sizes. The
leading order fits to the HERA data prefer [8] values
of � � 1.1, which then reduces during the evolution to
� � 0.8. The constant Qs,0 parametrizes the saturation
scale at initial Bjorken-x. In this work, we do not seek
for parameter values that are compatible with the ex-
perimental data. In practice, Qs,0 controls the relative
importance of the NLO terms as it scales the value of
�s.

3. Solution to the NLO BK

In Fig. 1 we show the evolution speed �yN(r)/N(r)
as a function of the dipole size for the MV model
(� = 1) initial condition. At small initial saturation
scales Qs,0/�QCD, when the strong coupling constant
and the NLO corrections are largest, the evolution speed
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The negative evolution speed is unphysical, as it cor-
responds to having an unintegrated gluon distribution
that decreases when it is probed at smaller and smaller
x. However, having �yN/N � ln r in the small r limit
is a signal of mathematical instability, as in that case
there is a small (but finite) r below which the dipole am-
plitude becomes negative in one step dy of the rapidity
evolution. On the other hand, the definition of the dipole
amplitude N(x � y) = 1 � 1/Nc�Tr U†(x)U(y)� requires
that N(r) � 0 in the limit r � 0. Also, if the dipole
amplitude does not satisfy this requirement the z inte-
gral in the leading order equation does not converge. In
our numerical analysis we impose by hand a constraint
N(r) � 0.

Let us then trace back the origin of the negative evo-
lution speed. In Fig. 2 we show contributions to �yN/N
originating from the di�erent terms of the NLO BK
equation. We observe that the double logarithmic term,
which is part of the kernel K1, is the one that drives the
evolution speed negative. The other NLO corrections
also decrease the evolution speed but do not cause the
problematic �yN/N � ln r behavior.

It has been argued in Ref. [14] that the double loga-
rithmic contributions should be resummed to all orders.
The resummation e�ectively removes the double loga-
rithmic term from the kernel K1 and multiplies the lead-
ing order BK kernel r2/X2Y2 by an oscillatory factor,
which expanded to order �2

s gives the double logarith-
mic term to the kernel K1. The initial condition is also
modified by the resummation procedure. We implement
this resummation in our analysis and show in Fig. 3 the

Evolution speed as a func. of r for the
MV model (� = 1) initial condition.
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• at small Qs,0/ΛQCD , when αs and NLO corrections are the
largest, the evolution speed is negative at all dipole sizes.

• for smaller αs (larger Qs), the evolution speed turns
negative at r � 1/Qs .

The source of the negativity problem is traced back to the ln2 r terms in the NLO BK kernel!

resummation is needed!
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Collinearly improved BK evolution

[Beuf - arXiv:1401.0313] → include a kinematical constraint in the BK kernel to account for the finite
energy corrections:

∂Y +〈S01〉Y + ∝
∫

dx2
x2

01

x2
02x

2
21

θ(Y + −∆012)

{
. . .

}
with ∆012 = max

{
0, log

(
min(x2

02,x
2
21)

x2
01

)}

[Iancu, Madrigal, Mueller, Soyez, Triantafyllopoulos - arXiv:1502.05642 / arXiv:1507.03651]

Double logarithmic terms are resummed:
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ᾱsρ2
)

√
ᾱsρ2

Large Logs Resummation in BK Equation J.D. Madrigal
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Fig. 5. Numerical solutions to the BK equation for the dipole amplitude at strict LO (i.e. Eq. (32) with KDLA → 1), NLO (meaning with kernel KDLA → KNLO), and after 
resummation (i.e. with the full kernel KDLA of Eq. (27)). The long-dashed (black) line in figure (c) indicate the transition between Y < ρ and Y > ρ; short-dashed, colorful, 
lines are the direct result of the numerical simulation, while solid lines have been matched to the expected physical behavior for ρ > Y , i.e. T ∝ e−ρ . (For interpretation of 
the references to color in this figure, the reader is referred to the web version of this article.)

Fig. 6. The rapidity-dependence of the target saturation momentum Q 2
s (Y ) as obtained by numerically solving the BK equation (32) with either the LO (BFKL) kernel, or the 

fully resummed one, and with ᾱs = 0.25. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

A crude estimate of the saturation line13 based on the DLA re-
sult in Eq. (21) yields [38]

ρs(Y ) ≡ ln
Q 2

s (Y )

Q 2
0

≃ λsY , with λs = 4ᾱs

1 + 4ᾱs
, (33)

which is significantly smaller than the respective LO result (no re-
summation) λBFKL ≃ 4.88ᾱs [35]. This suggests that the reduction 
of the longitudinal phase-space coming from time-ordering and 
giving rise to collinear double logs leads to a considerable reduc-
tion in the speed of the evolution.

This expectation is indeed confirmed by the numerical solutions 
to Eq. (32). In Fig. 5, we show the results for ᾱs = 0.25 and for 
an initial condition of the MV type, with A(0, ρ) = 1 (and hence 
Ã(0, ρ) as given in the first line of Eq. (31)). As before, the results 
with all-order resummation (cf. Fig. 5c) are compared to the re-
spective predictions of LO BFKL (cf. Fig. 5a) and to the ‘NLO’ results 
obtained by using KNLO(ρ) = 1 − ᾱsρ2/2 (cf. Fig. 5b). The latter are 
highly unstable and physically meaningless — the evolution rapidly 
leads to a negative scattering amplitude — as it could have been 
anticipated in view of the pathological behavior of the correspond-
ing characteristic function χNLO(γ ) in Fig. 4. Similar instabilities 
have been recently observed [28] in numerical simulations of the 
full NLO BK equation and they have been traced back to the large 
double-logarithmic terms ∼ ᾱsρ2 in the NLO kernel, in agreement 
with our present findings. By contrast, the evolution with the fully 

13 We recall the saturation line ρs(Y ) is defined by the condition that T (Y , ρ) ∼ 1
when ρ = ρs(Y ).

resummed kernel, shown in Fig. 5c, is perfectly smooth. We also 
see in Fig. 5c that the non-physical oscillations at ρ > Y intro-
duced by resummation in the initial condition tend to disappear 
at larger rapidities. Finally, by comparing the LO results in Fig. 5a
to the resummed ones in Fig. 5c, one clearly sees the anticipated 
reduction in the evolution speed.

To more precisely characterize this reduction, we have numer-
ically computed the target saturation momentum Q 2

s (Y ) for both 
the LO BFKL kernel and the fully resummed kernel, with results 
shown in Fig. 6 (for ᾱs = 0.25 once again). Clearly, the growth 
of the saturation scale with Y is considerably reduced by the re-
summation: for sufficiently large Y , the saturation exponent λs ≡
dρs/dY approaches a value which is smaller by, roughly, a factor 
of 2 for the resummed kernel as compared to LO one. Remark-
ably, the asymptotic value which is thus obtained in the presence 
of resummation, namely λs ≃ 0.55, agrees quite well with the re-
spective DLA estimate in Eq. (33). We leave more detailed studies 
to a subsequent publication [38].
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giving rise to collinear double logs leads to a considerable reduc-
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Figure 4: Rapidity dependence of the target saturation momentum Q2
s (Y ), with ās = 0.25.

Eq. (3.1) implies that we can write the DLA-resummed evolution of the amplitude in terms of a Y -
independent kernel KDLA(r) (the inverse Mellin transform of the characteristic function cDLA(g)):

Ã(Y,r) = Ã(0,r)+ās

Z Y

0
dY1

Z r

0
dr1KDLA(r�r1)Ã(Y1,r1), KDLA(r) =

J1(2
p

āsr2)p
āsr2

. (3.3)

Notice that the resummation also enters the initial condition, given by the limit of (3.1) at the an-
alytically continued point Y = 0, f̃ (0,r) = d (r)�p

āsJ1(2
p

āsr2), from which analytical expres-
sions for Ã(0,r) can be obtained for initial conditions of the Golec-Biernat-Wüsthoff (A (0,r)GBW ⇠
1) [20] and McLerran-Venugopalan (A (0,r)MV ⇠ r) [21] type. After having performed the re-
summation at double-logarithmic accuracy, it is easy to promote Eq. (3.3) into a more complete
equation matching NLO BK3 [15]:

∂Y Txxxyyy =
ās

2p

Z
d2zzzMxxxyyyzzzKDLA

 r
ln (xxx�zzz)2

(xxx�yyy)2 ln (yyy�zzz)2

(xxx�yyy)2

!
[Txxxzzz +Tzzzyyy �Txxxyyy �TxxxzzzTzzzyyy], Y > r. (3.4)

4. Some Numerical Results

The numerical solution to Eq. (3.4) is presented in Fig. 3. We clearly see that while introducing
the double log term from the NLO BK kernel renders the evolution unstable and physically mean-
ingless, the evolution is perfectly smooth after resummation and certainly slower than that observed
at LO. To characterize more precisely this reduction, we computed numerically the target saturation

3Single-log (collinear and running-coupling) and finite terms appearing in NLO BK have not been included in Eq.
(3.4), although they can be simply added to the kernel. Prescriptions to resum single logs are discussed in [19].

5

single logs and finite terms appearing in NLO BK have not been included!
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Collinearly improved BK evolution - II

[Lappi, Mäntysaari - arXiv:1601.06598]

Numerical solution of NLO BK with resummation of large single and double logs.

Collinearly improved BK evolution - II

[Lappi, Mäntysaari - arXiv:1601.06598]
Numerical solution of NLO BK with resummation of large single and double logs.

DIS16 H. Mäntysaari

The evolution speed is studied in more detail in Fig. 2, where the rapidity derivative of the
saturation scale is shown. The saturation scale Q2

s is defined as

N(r2 = 2/Q2
s ) = 1� e�1/2. (3.1)

The resummed NLO BK equation, labeled as Total in Fig. 2 is found to evolve significantly (about
30%) slower than the leading order equation that has running coupling corrections included. This
is expected, as the leading order fits to HERA DIS data tend to prefer slower evolution speeds than
what one would naturally obtain within the CGC picture [18]. At large saturation scales we find
that the fixed order �2

s corrections become negligible, as the evolution speeds obtained from full
resummed NLO BK equation and leading order equation with resummations are approximately
the same. However, close to initial condition which is expected to be in the phenomenologically
relevant range, having a saturation scale ⇠ 1 GeV, the contribution from fixed order �2

s terms are
large. They are numerically much more demanding to compute, but our results suggest that they
should not be neglected.
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Figure 3: Evolution speed of the dipole amplitude
at the initial condition.
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Figure 4: Evolution speed of the dipole amplitude
at y = 10.

The evolution speed as a function of dipole size is studied in Fig. 3 where we show the rapidity
derivative of the dipole amplitude as a function of parent dipole size at the initial condition. In addi-
tion, different contributions to (�yN(r))/N(r) are shown. The resummation contribution is defined
by calculating the contribution from the resummed part of the LO BK kernel KBalKDLAKSTL and
subtracting the LO BK contribution with running coupling (for explicit expressions, see Ref. [38]).
The resummation effects can be seen to significantly reduce the evolution speed at small dipoles.

The fixed order �2
s contribution consists of contributions originating from kernels KSub, Kfin

1 ,
K2 and Kf that are not enhanced by large logarithms. These other NLO terms are found to have
small positive contribution to the evolution speed at small dipoles, the contribution becoming nu-
merically comparable to the resummation contribution around r ⇠ 1/Qs. Note that modifying the
value of Csub moves contributions between the resummation and the other �2

s terms, and we have
checked that it does not significantly affect the overall evolution.

The oscillations seen in Fig. 3 originate from resummation of the initial condition. These
oscillations are washed away in the evolution, as at larger rapidity y = 10 they are not visible

3

Evolution speed at initial condition. Evolution speed at y = 10.
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• NLO BK eqn. becomes stable when single and & double logs are resummed.

• Negative evolution speed problem is fixed.

• Evolution speed is reduced compared to LO BK with running coupling.

[Ducloue, Iancu, Mueller, Soyez, Triantafyllopoulos - arXiv:1902.06637]

Resummed NLO BK: evolution from projectile to target requires fine tuning.

claim: inverted evolution (from target to projectile), ordered in k+, gives more stable/reliable results.

see talk by Ducloue

Tolga Altinoluk Saturation overview 10/22



Hybrid factorization and gluon TMDs at small-x

[Collins - hep-ph/0204004] / [Belitsky, Ji, Yuan - hep-ph/0208038] / [Ji,Yuan - arXiv: 0206057]

The unpolarized TMDs are defined as the FT of forward matrix elements of bilocal products gluon field
strength tensor:

F(x2, kt) = 2

∫
dz+d2z⊥
(2π)3p−A

e ix2p
−
A z+−ikt ·z⊥〈pA|tr

[
F i−

0 U
[C ]
(0,z)F

i−
z U

[C ′]
(z,0)

]
|pA〉

U
[C ]
(0,z): gauge staples connecting the points (0+, 0⊥) and (z+, z⊥) to ensure gauge invariance.

32

Transverse-momentum-dependent (TMD) factorization

SIDIS Drell-Yan

S. J. Brodsky, D. S. Hwang, and I. Schmidt, 2002;    J.C. Collins, 2002
A. V. Belitsky, X. Ji, and F. Yuan, 2003;   D. Boer, P. J. Mulders, and F. Pijlman, 2003

• different choices to connect the points! → different TMDs enter different processes!

[Kotko, Kutak, Marquet, Petreska, Sapeta, van Hameren - arXiv:1503.03421]

TMD factorization formula for dijet production in pA collisions

dσpA→dijets+X

dy1d2p1dy2d2p2
∝ x1fa/p(x1)

∑

i

H
(i)
ag→cd F

(i)
ag (x2, kt)

x1fa/p(x1): parton distribution functions

H
(i)
ag→cd : hard factors

F (i)
ag (x2, kt): several different TMDs

see talk by Boussarie
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Forward dijet production in pA collisions

Correlation limit in the CGC:

production of two hard jets: |p1| ∼ |p2| � Qs

total momenta of the produced jets come from target: |p1 + p2| ∼ Qs

61

Forward dijet production in pA

Close to back-to-back:

Collinear PDF 2 H 2 
Hard factor 8 TMDs

Dipole distribution

Weizsacker-Williams gluon distribution

Two typical transverse scale that appears:
PT = p1 + p2: total momentum of the produced jets
QT = p1 − p2: momentum imbalance of the two jets

PT � QT : jets fly almost back-to-back (correlation limit).

[Dominguez, Marquet, Xiao, Yuan - arXiv: 1101.0715] / [Petreska - arXiv:1804.04981] / [Marquet,
Petreska, Roiesnel - arXiv:1608.02577]

small-x limit of TMD factorization ≡ correlation limit of the Hybrid factorization

in the small-x limit: phase drops - only longitudinal dependence is in staple gauge links.

in the correlation limit: expansion around small dipole size!

F
(1)
qg (x2,PT ) ∝

∫

r r̄bb̄
r i r̄ je iPT (b−b̄)〈tr[(∂ iU†b)(∂jUb̄)]〉

[Marquet, Roiesnel, Taels - arXiv:1710.05698] Forward heavy quark production
probes not only the unpolarized gluon TMDs but also their linearly polarized partners.

[TA, Armesto, Kovner, Lublinsky, Petreska - arXiv:1802.01398]
[TA, Boussarie, Marquet,Taels - arXiv:1810.11273]
Extension to three final state particles: forward dijet+ photon production

first step to study the equivalence between the TMD and CGC frameworks at NLO.
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Two particle correlations

Motivation: Ridge structure

• correlations between particles over large intervals
of rapidity peaking at zero and π relative azimuthal
angle.

• observed first at RHIC in Au-Au collisions.

• observed at LHC for high multiplicity pp and pA
collisions.

[ATLAS Collaboration - arXiv:1609.06213]
The ridge:

 3

● Two-particle correlations in 
pp and pPb at the LHC show 
features that in AA are 
attributed to final state 
interactions describable by 
viscous relativistic 
hydrodynamics and interpreted 
as a signal of equilibration.
● EKT and AdS/CFT: hydro 
works even for large 
momentum anisotropies.
● What about a non-hydro 
initial-state explanation? 
(anyway long range rapidity 
correlations must come from 
the very early times…).

1609.06213

N. Armesto, 18.04.2018 - Multi gluon correlations in the CGC: 1. Introduction.
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Correlations within the CGC framework

Ridge in HICs ↔ collective flow due to strong final state interactions

(good description of the data in the framework of relativistic viscous hydrodynamics)

Ridge in small size systems: similar reasoning looks tenuous but hydro describes the data very well.

see talks by Wiedemann & Broniowski
Can it be initial state effect?

idea: final state particles carry the imprint of the partonic correlations that exist in the initial state.

Several mechanisms have been suggested to explain the ridge correlations in the CGC framework.

[Kovner, Lublinsky - arXiv:1012.3398 / arXiv:1109.0347 / arXiv:1211.1928 ]

Local anisotropy of the target fields → rotational symmetry is broken.

How big is the effect?

To be correlated two gluons have to be in the same incoming color state and have to
scatter of the same target field

Qs
−1

E

Transverse correlation length in the hadron L = 1/Qs (”mean density”)

The correlated production ∝ 1/(Qmax
s )2,

while the total multiplicity ∝ Smin
A

[
d2N

d2pd2k
− dN

d2k

dN

d2p

]
/
dN

d2k

dN

d2p
∝ 1

(Qmax
s )2 Smin

A

.

Qs grows with energy. Hence correlations should disappear with increasing energy. Less
correlations at the LHC than at RHIC? Not obvious, because we fully ignored the flow.

particles correlated in the incoming w.f.

transverse separation � 1/Qs

scatter through the same domain.

initial state correlations → final state correlations

Numerical studies based on local anisotropy of the target:

[Dumitru, Skokov - arXiv:1411.6030] / [Dumitru, McLerran, Skokov - arXiv:1410.4844] /
[Dumitru, Giannini - arXiv:1406.5781]
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Correlations within the CGC framework -II

[Dumitru, Gelis, McLerran, Venugopalan - arXiv:0804.3858]

[Dumitru, Dusling, Gelis, Jalilian-Marian, Lappi, Venugopalan - arXiv:1009.5295]

Glasma graph approach to two gluon productionCorrelations within the CGC - II
(k2 � q2)

k2

q2

(k1 � q1)

q1

k1

(k1 � q1)

k1

q1

(k2 � q2)

k2

q2

1

Glasma graph calculation contains two physical e↵ects:

Bose enhancement of the gluons in the projectile wave function.
T.A., N. Armesto, G. Beuf, A. Kovner, M. Lublinsky, Phys.Lett. B751 (2015) 448-452

� /
h
�(2)(k1 � q1 � k2 + q2) + �(2)(k1 � q1 + k2 � q2)

i

Hanbury-Brown-Twiss (HBT) correlations between gluons far separated in rapidity.

� /
h
�(2)(k1 � k2) + �(2)(k1 + k2)

i

kT -factorized approach
Y. V. Kovchegov, D. E. Wertepny, Nucl. Phys. A 906 (2013) 50
Y. V. Kovchegov, D. E. Wertepny, Nucl. Phys. A 925 (2014) 254
Glasma graph approach:
T.A., N. Armesto, G. Beuf, A. Kovner, M. Lublinsky, Phys.Lett. B752 (2016) 113-121

Glasma graph approach dilute-dense collisions: kT -factorized approach
T.A., N. Armesto, D. E. Wertepny, arXiv:1804.02910 [hep-ph]
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Glasma graph calculation contains two physical effects:

Bose enhancement of the gluons in projectile/target wave function

[TA, Armesto, Beuf, Kovner, Lublinsky - arXiv:1503.07126]

σ|BE ,P ∝
{
δ(2)
[
(k1 − q1)− (k2 − q2)

]
+ δ(2)

[
(k1 − q1) + (k2 − q2)

]}

σ|BE ,T ∝
{
δ(2)
(
q1 − q2

)
+ δ(2)

(
q1 + q2

)}

Hanbury-Brown-Twiss (HBT) correlations between gluons far separated in rapidity.

σ|HBT ∝
{
δ(2)(k1 − k2) + δ(2)(k1 + k2)

}

[Kovchegov,Wertepny - arXiv:1212.1195 / arXiv:1310.6701] → k⊥-factorized approach

[TA, Armesto, Beuf, Kovner, Lublinsky - arXiv:1509.03223] → Glasma graph approach
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Correlations within the CGC framework -III

Two particle correlations beyond the glasma graph approach: 2 gluon production in pA collisions

[TA, Armesto, Wertepny - arXiv:1804.02910] → k⊥-factorized approach

[TA, Armesto, Kovner, Lublinsky - arXiv:1805.07739] → Glasma graph approach .

scattering on a dense target → dipole and quadrupole operators. Factorization assumption:

Target Averaging in double inclusive production

Using these physical assumptions

hQ(x , y , z , v)iT ! d(x , y)d(z , v) + d(x , v)d(z , y) +
1

N2
c � 1

d(x , z)d(y , v)

hD(x , y)D(z , v)iT ! d(x , y)d(z , v) +
1

(N2
c � 1)2

[d(x , v)d(y , z) + d(x , z)d(v , y)]

should be plugged in the double inclusive gluon production cross section

d�

d2k1d⌘1d2k2d⌘2
= ↵2

s (4⇡)2
Z

z1z̄1z2z̄2

e ik1·(z1�z̄1)+ik2·(z2�z̄2)

Z

x1x2y1y2

Ai (x1 � z1)A
i (z̄1 � y1)A

j(x2 � z2)A
j(z̄2 � y2)

⇥
(

µ2(x1, x2) µ2(y1, y2)

⌧
tr
n⇥

U(z1) � U(x1)
⇤⇥

U†(z̄1) � U†(y1)
⇤⇥

U(z̄2) � U(y2)
⇤⇥

U†(z2) � U†(x2)
⇤o�

T

+µ2(x1, y1) µ2(x2, y2)

⌧
tr
n⇥

U(z1) � U(x1)
⇤⇥

U†(z̄1) � U†(y1)
⇤o

tr
n⇥

U(z2) � U(x2)
⇤⇥

U†(z̄2) � U†(y2)
⇤o�

T

+µ2(x1, y2) µ2(x2, y1)

⌧
tr
n⇥

U(z1) � U(x1)
⇤⇥

U†(z̄1) � U†(y1)
⇤⇥

U(z2) � U(x2)
⇤⇥

U†(z̄2) � U†(y2)
⇤o�

T

)
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double inclusive X-section:

dσ

d3k1d3k2
∝
∫

q1q2

{
d(q1)d(q2)

[
I0 +

1

N2
c − 1

I1 +
1

(N2
c − 1)2

I2

]
+ (k2 → −k2)

}
+ O

(
1

QsS⊥

)

symmetry under (k2 → −k2) : ”accidental symmetry of the CGC”

I0 ∝ δ(2)(0)→ uncorrelated contribution.

I1 ∝
{
f1δ

(2)
[
(k1 − q1)− (k2 − q2)

]
︸ ︷︷ ︸+ f2δ

(2)(k1 − k2)︸ ︷︷ ︸
}

BE. proj. HBT

I2 ∝
{
g1δ

(2)(q1 − q2)︸ ︷︷ ︸+ g2δ
(2)
[
(k1 − q1)− (k2 − q2)

]
︸ ︷︷ ︸

}

BE. target BE. proj.

[Martinez, Sievert, Wertepny - arXiv:1801.08986/arXiv:1808.04896]→(gg), (qq), (qq̄) correlations in pA
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Accidental symmetry in the CGC

”accidental symmetry in CGC” ⇒ vanishing odd harmonics

•breaking the accidental symmetry with nonlinear Gaussian approximation for dipole-dipole correlator:

[Lappi, Schenke, Schlichting, Venugopalan - arXiv:1509.03499]

Accidental symmetry in the CGC

• ”accidental symmetry in CGC:” double inclusive X-section is symmetric under k2 ! �k2

+

vanishing odd harmonics

• breaking the accidental symmetry with nonlinear Gaussian approximation for dipole-dipole correlator:
[Lappi, Schenke, Schlichting, Venugopalan - arXiv:1509.03499]

• breaking the accidental symmetry with the density corrections to the projectile:
[A. Kovner, M. Lublinsky, V. Skokov - 2017 / Y. Kovchegov, V. Skokov 2018 ]

hD(x , y)D(u, v)i = d1 +
1

N2
c


ln(d3/d2)

ln(d1/d2)

�2⇢
d1 + d2

⇥
ln(d1/d2) � 1

⇤�

d1 ⌘ D(x � y)D(u � v)

d2 ⌘ D(x � v)D(u � y)

d3 ⌘ D(x � u)D(y � v)
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• breaking the accidental symmetry with the density corrections to the projectile:

[Kovner, Lublinsky, Skokov - arXiv:1612.07790] / [Kovchegov, Skokov - arXiv:1802.08166]
Open problems:

 6

● CGC calculations for the central rapidity region resum terms in 
which each source emits one gluon, !(gρ)

✗
➜ Odd harmonics require additional terms 
(1611.09870, 1612.07790, 1802.08166, see Mark 
Mace’s talk),

✓
● Glasma graph calculations are valid for a dilute target (pp) and 
usually performed for two particles (up to 4 in 1409.6347, 1712.05571):

➜ Extension to dilute-dense (pA) numerically (1509.03499, 1705.00745, 
1706.06260) or analytically (1804.02910, 1808.04896): this work.
➜ Three gluons in pA: this work.

● Correlations are subleading in Nc in the MV model: new ones 
including anisotropies (Dumitru-Skokov).

N. Armesto, 18.04.2018 - Multi gluon correlations in the CGC: 1. Introduction.

!(g2ρ)
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• breaking the accidental symmetry with the density corrections to the projectile:
[Kovner, Lublinsky, Skokov - arXiv:1612.07790] / [Kovchegov, Skokov - arXiv:1802.08166]
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FIG. 1. Examples of color charge densities determined from Glauber sampling with the IP-Sat model [26, 27] for a single event
for p, d, and 3He from high multiplicity events which contribute to the 0-5% centrality class.

dN even,odd(k⊥)
d2kdy

= 1

2
�dN(k⊥)

d2kdy
�⇢p,⇢t� ± dN(−k⊥)

d2kdy
�⇢p,⇢t�� . (1)

Analytical computations [14, 28–31] provide the compact result [17, 22]

dN even(k⊥)
d2kdy

�⇢p,⇢t� = 2(2⇡)3 �ij�lm + �ij�lm
k2

�a
ij(k⊥) [�a

lm(k⊥)]� , (2)

dNodd(k⊥)
d2kdy

�⇢p,⇢t� = 2(2⇡)3 Im

�������
g

k⊥2 �
d2l(2⇡)2 Sign(k⊥ × l⊥)

l2�k⊥ − l⊥�2 fabc�a
ij(l⊥)�b

mn(k⊥ − l⊥) ��c
rp(k⊥)�� (3)

× ��k⊥2�ij�mn − l⊥ ⋅ (k⊥ − l⊥)(�ij�mn + �ij�mn)� �rp + 2k⊥ ⋅ (k⊥ − l⊥)�ij�mn�rp�������� ,

where �a
ij(k⊥) = g ∫ d2p(2�)2 pi(k−p)j

p2 ⇢b
p(p⊥)Uab(k⊥ − p⊥)

and �ij(�ij) denotes the Levi-Civita symbol (Kronecker
delta). The adjoint Wilson line Uab is a functional of
the target charge density and is the two-dimensional
Fourier transform of its coordinate space counterpart:

Ũ(x⊥) = P exp �ig2 ∫ dx+ 1∇⊥2 ⇢̃a
t (x+,x⊥)Ta� .

Comparing the even and odd contributions in Eqs. (2)

and (3) respectively, one observes that the odd contri-
bution is suppressed in the CGC EFT by ↵S⇢p, where
↵S = g2�4⇡ is the QCD coupling. This factor arises from
the first saturation correction in the interactions with the
dilute projectile [17, 22]. This systematic suppression
in the power counting is what naturally explains in this
framework the relative magnitude of v2

3{2} compared to
v2
2{2} observed in the experimental data on small sys-

tems.

The m-particle momentum distribution is obtained after performing an ensemble average over the color charge
distributions with the weight functionals, W [⇢̃p,t],

dmN

d2k1dy1�d2kmdym
= � D⇢pD⇢t W [⇢p]W [⇢t] dN

d2k1dy1
�⇢p,⇢t�� dN

d2kmdym
�⇢p,⇢t� . (4)

These have the form described by the McLerran-Venugopalan (MV) model [32, 33]

W [⇢̃p,t] =N exp �−� dx−,+d2x
⇢̃a

p,t(x−,+,x⊥)⇢̃a
p,t(x−,+,x⊥)

2µ2
p,t

� , (5)

but are in fact more general because, as a consequence of renormalization group evolution of the color sources in

) non-vanishing odd harmonics.

Open problems:

 6

● CGC calculations for the central rapidity region resum terms in 
which each source emits one gluon, �(g�)

✗
➜ Odd harmonics require additional terms 
(1611.09870, 1612.07790, 1802.08166, see Mark 
Mace’s talk),

✓
● Glasma graph calculations are valid for a dilute target (pp) and 
usually performed for two particles (up to 4 in 1409.6347, 1712.05571):

➜ Extension to dilute-dense (pA) numerically (1509.03499, 1705.00745, 
1706.06260) or analytically (1804.02910, 1808.04896): this work.
➜ Three gluons in pA: this work.

● Correlations are subleading in Nc in the MV model: new ones 
including anisotropies (Dumitru-Skokov).
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�(g2�)
• numerical studies:
[Mace, Skokov, Tribedy, Venugopalan - arXiv:1805.09342 / arXiv:1807.00825 / arXiv:1901.10506]

see talk by Mace
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FIG. 1. Examples of color charge densities determined from Glauber sampling with the IP-Sat model [26, 27] for a single event
for p, d, and 3He from high multiplicity events which contribute to the 0-5% centrality class.

dN even,odd(k⊥)
d2kdy

= 1

2
�dN(k⊥)

d2kdy
�⇢p,⇢t� ± dN(−k⊥)

d2kdy
�⇢p,⇢t�� . (1)

Analytical computations [14, 28–31] provide the compact result [17, 22]

dN even(k⊥)
d2kdy

�⇢p,⇢t� = 2(2⇡)3 �ij�lm + ✏ij✏lm
k2

⌦a
ij(k⊥) [⌦a

lm(k⊥)]� , (2)

dNodd(k⊥)
d2kdy

�⇢p,⇢t� = 2(2⇡)3 Im

�������
g

k⊥2 �
d2l(2⇡)2 Sign(k⊥ × l⊥)

l2�k⊥ − l⊥�2 fabc⌦a
ij(l⊥)⌦b

mn(k⊥ − l⊥) �⌦c
rp(k⊥)�� (3)

× ��k⊥2✏ij✏mn − l⊥ ⋅ (k⊥ − l⊥)(✏ij✏mn + �ij�mn)� ✏rp + 2k⊥ ⋅ (k⊥ − l⊥)✏ij�mn�rp�������� ,

where ⌦a
ij(k⊥) = g ∫ d2p(2⇡)2 pi(k−p)j

p2 ⇢b
p(p⊥)Uab(k⊥ − p⊥)

and ✏ij(�ij) denotes the Levi-Civita symbol (Kronecker
delta). The adjoint Wilson line Uab is a functional of
the target charge density and is the two-dimensional
Fourier transform of its coordinate space counterpart:

Ũ(x⊥) = P exp �ig2 ∫ dx+ 1∇⊥2 ⇢̃a
t (x+,x⊥)Ta� .

Comparing the even and odd contributions in Eqs. (2)

and (3) respectively, one observes that the odd contri-
bution is suppressed in the CGC EFT by ↵S⇢p, where
↵S = g2�4⇡ is the QCD coupling. This factor arises from
the first saturation correction in the interactions with the
dilute projectile [17, 22]. This systematic suppression
in the power counting is what naturally explains in this
framework the relative magnitude of v2

3{2} compared to
v2
2{2} observed in the experimental data on small sys-

tems.

The m-particle momentum distribution is obtained after performing an ensemble average over the color charge
distributions with the weight functionals, W [⇢̃p,t],

dmN

d2k1dy1�d2kmdym
= � D⇢pD⇢t W [⇢p]W [⇢t] dN

d2k1dy1
�⇢p,⇢t�� dN

d2kmdym
�⇢p,⇢t� . (4)

These have the form described by the McLerran-Venugopalan (MV) model [32, 33]

W [⇢̃p,t] =N exp �−� dx−,+d2x
⇢̃a

p,t(x−,+,x⊥)⇢̃a
p,t(x−,+,x⊥)

2µ2
p,t

� , (5)

but are in fact more general because, as a consequence of renormalization group evolution of the color sources in

⇒ non-vanishing odd harmonics.

• numerical studies and comparison with data:

[Mace, Skokov, Tribedy, Venugopalan - arXiv:1805.09342 / arXiv:1807.00825 / arXiv:1901.10506]

see talk by Mace
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Subeikonal corrections in the CGC

Eikonal approximation amounts dropping the energy suppressed terms!

For realistic values of energy one should go beyond eikonal approximation.

Subeikonal studies for evolution equations:

[Balitsky, Tarasov - arXiv:1505.02151/arXiv:1603.06548/arXiv:1712.09389]

Rapidity evolution of gluon TMDs from low to moderate x .

[Kovchegov, Pitonyak, Sievert -
arXiv:1511.06737/arXiv:1610.06188/arXiv:1610.06197/arXiv:1703.05809/arXiv:1706.04236]

Helicity evolution of quark and gluon distributions at small x .

[Chirilli - arXiv:1807.11435]

Rapidity evolution for flavour singlet and non-singlet polarized structure functions.

see talk by Sievert
Subeikonal corrections in particle production:

[TA, Armesto, Beuf, Martnez, Salgado - arXiv:1404.2219]
[TA, Armesto, Beuf, Moscoso - arXiv:1505.01400]

finite-width-target corrections in single inclusive gluon production in pA collisions.

• dense target is defined by Aµ(x) and eikonal approximation amounts to:

Corrections beyond eikonal accuracy

At the level of the background field, the eikonal approximation amounts to

1 Aµ
a (x) ' �µ�A�

a (x)

2 Aµ
a (x) ' Aµ

a (x+, x)

3 Aµ
a (x) / �(x+)

Relaxing any of these approximations will give correction to the strict eikonal limit! Three sources of
corrections to eikonal approximation:

1 other components of the target background field Aµ
a (x)

2 dynamics of the target : x� dependence of Aµ
a (x)

3 Finite width L+ of the target along x+

When the target is a large nucleus, the dominant contribution beyond the eikonal accuracy is
obtained by relaxing the 3rd approximation because of the A1/3 nuclear enhancement of the finite
width target!

Aµ = �µ��(x+)A�(x) ! Aµ = �µ�A�(x+, x)
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direct relation with jet quenching (BDMPS-Z formulation)!
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Subeikonal corrections in the CGC - II

[TA, Armesto, Beuf, Moscoso - arXiv:1505.01400]

Finite width target: relaxing the eikonal approximation

[ T.A., N. Armesto, G. Beuf, M. Martinez, C.A. Salgado - 2014 ]
[ T.A., N. Armesto, G. Beuf, A. Moscoso - 2015 ]

Consider a finite width target :

0 L+

j+
a (x)

x?

x+

B? k+,k? The target ! Aµ(x) ⌘ �µ�A�
a (x+, x)

The projectile ! jµa (x) / �µ+�(x�) ⇢b(x � B)

The single inclusive gluon cross section for pA:

(2⇡)3 (2k+)
d�

dk+ d2k
=

Z
d2B

X

� phys.

⌧D
|Ma

�(k ,B)|2
E

p

�

A

&
gluon production amplitude

Tolga Altinoluk E↵ect of non-eikonal corrections on two particle correlations 6/35

Prod. Amp. M ∝ scalar background propagator → eikonal expansion (in powers of L+/k+)

eikonal order: standard Wilson line / higher orders: new operators (decorated Wilson lines)

[TA, Dumitru - arXiv:1512.00279] → corrections to the Lipatov vertex.

from pA to pp: expand the standard & decorated Wilson lines to first order in the background field.

Dilute target limit and the modified Lipatov vertex

[ T.A., A. Dumitru - 2015 ]

• summing up all the NEik and NNEik terms in the dilute target limit, one gets

M /


(k � q)i

(k � q)2
� k i

k2

�⇢
1 + i

k2

2k+
x+ � 1

2

✓
k2

2k+
x+

◆2�

• O(1) term ! eikonal Lipatov vertex.

k � q

Li(k, q)

q

k

1

Li (k , q) =
(k � q)i

(k � q)2
� k i

k2

• we get NEik and NNEik corrections to the Lipatov vertex.

• the form suggests exponentiation. However, we do not know the corrections beyond NNEik accuracy!
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the form of the corrections suggests exponentiation.
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Subeikonal corrections in the CGC

[Agostini, TA, Armesto - arXiv:1902.04483]

Dilute target limit and the modified Lipatov vertex

[ P. Agostini, T.A., N. Armesto - 2019 ]

• calculate the diagrams by keeping the phase e ik�x+
which is taken to be 1 in the eikonal limit.

2

II. DERIVATION OF THE NON-EIKONAL LIPATOV VERTEX

As usually done in the CGC, we describe a high energy p-A collision by a right moving dilute projectile which
interacts with a left moving dense target described by a random and intense (O(1/g)) classical gluon field Aµ(x).
The simplest setup to derive the non-eikonal Lipatov vertex is considering the emission of a gluon from a projectile
massless quark in the process of a single scattering with the target (an analogous calculation leading to the same

conclusions on the non-eikonal corrections holds for a projectile gluon). In light cone coordinates a± = (a0 ± a3)/
p

2
and in the light cone gauge (n · A = A+ = 0, n = (0, 1, 0?) in (+,�,�) coordinates), this field can be written as

Aµ(x) ⇡ �µ��(x+)A�(x?), (1)

since the transverse component of the gluon field is not altered by the large Lorentz � factor, the x� dependence
disappears due to the time dilatation and the target is shrinked to x+ = 0 forming a shock-wave. However, in some
applications these suppressed terms may be sizeable. For this reason, in this note we will relax the infinite boost
approximation, in order to calculate the corresponding non-eikonal corrections to the usual Lipatov vertex computed
at O(g2).

To proceed, we analyze gluon production in p-A collisions in the quark initiated channel and compute the Lipatov
vertex, which is an e�ective vertex that takes into account all the real contributions to gluon production. For that
one needs to sum the amplitudes where the gluon is emitted before, during and after the interaction with the field as
shown in Fig. 1.

A B C

FIG. 1: Diagrams that contribute to the computation of the Lipatov vertex. The black dot represents the Lipatov vertex which
is the sum of all real diagrams for gluon production shown on the right hand side of the equation.

Our setup is such that the right moving quark with momentum p+k�q is generated by some function J(p+k�q) =
J(p+ + k+ � q+) at x+

0 = �1 and (x�
0 , x0?) = 0, and then interacts with the classical gluon field Aµ(x) generated

by one scattering source located at x1, picking up a momentum q. However, since we are interested in non-eikonal
corrections, we consider Aµ(x) with an x+ dependence which has a finite support instead of treating it as a shockwave
at x+ = 0, but we still assume that there is no dependence on x�. That is, the new form of Eq. (1) is

Aµ(x) ⇡ �µ�Aµ(x+, x?), (2)

or, in momentum space,

Aµ(q) ⇡ �µ� 2⇡�(q+)A�(q�, q?). (3)

Furthermore, we assume that the outgoing quark has a large momentum p+ compared to all other momenta in the
process. The general strategy in this case is to keep the leading terms in +-momenta in the numerator algebra, while
taking the full phase corrections coming from the integration of the denominators, see below, as done in the Furry
approximation and its non-abelian generalization [75].

We start by computing diagram A where the gluon is emitted with momentum k before the quark interaction with
the target field as shown in Fig. 2. Using the Feynman rules, we find that the amplitude for fixed gluon and final
quark momenta is

iMA =ū(p)(�ig�µta)

Z
d4q

(2⇡)4
Aa

µ(q)eiqx1
i(/p � /q)

(p � q)2 + i✏
(�ig��tb)✏b�� (k)

⇥ i(/p + /k � /q)

(p + k � q)2 + i✏
ei(p+k�q)x0J(p + k � q), (4)

with ta the SU(Nc) generators in the fundamental representation.
Since p+ is the largest momentum in our problem, we approximate /p � /q ⇡ /p and /p + /k � /q ⇡ /p and write

iMA ⇡ ū(p)ei(p+k)x0g2tatb
Z

d4q

(2⇡)4

/A
a
(q)/p/✏

b�(k)/p

[(p � q)2 + i✏][(p + k � q)2 + i✏]
eiq(x1�x0)J(p+ + k+ � q+). (5)

The total amplitude reads

i(MA + MB + MC ) /
Z

d2q

(2⇡)2
Li (k , q)e ik�x+

1 A�
a (k�, q)e�iq·x1

with Li (k , q) is the standard Lipatov vertex

Li (k , q) =
(k � q)i

(k � q)2
� k i

k2

and the non-eikonal Lipatov vertex being

Li
NE(k , q; x+) =


(k � q)i

(k � q)2
� k i

k2

�
e ik�x+

k� = k2

2k+

[ U. A. Wiedemann - 2000 / Y. Mehtar-Tani, C. A. Salgado, K. Tywoniuk - 2011]
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[ U. A. Wiedemann - 2000 / Y. Mehtar-Tani, C. A. Salgado, K. Tywoniuk - 2011]
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k ≡ (k+, k)

k− = k2/2k+

Double inclusive cross section with Non-Eik Lipatov vertex

dσ

d2k1dη1d2k2η2

∣∣∣∣
NE

dilute

∝
∫

q1q2

{[
f (k1, q1, k2, q2) + GNE

2 (k−1 , k
−
2 ; L+) g(k1, q1, k2, q2)

]
+ (k2 → −k2)

}

all non-eikonal effects are encoded in

GNE
2 (k−1 , k

−
2 ; L+) =

{
2(

k−1 − k−2
)
L+

sin

[(
k−1 − k−2

)

2
L+

]}2

GNE
2 (k−1 , k

−
2 ; L+) is not symmetric under (k2 → −k2)

⇒non-eikonal corrections seem to be breaking the accidental symmetry!!
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odd-harmonics from the non-eikonal corrections?

[ P. Agostini, T.A., N. Armesto - in preparation]

Can we generate non-zero odd harmonics from the non-eikonal corrections?
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Figure 2: Two particle azimuthal harmonics generated in the non-eikonal Glasma graph approximation, using the definition eq. (19).

The values were calculated using µT = 0.4 GeV, µP = 0.2 GeV and pref
T = 1 GeV at di↵erent center of mass energies and gluon

pseudorapidities. The symbols without lines indicate the HBT contributions.

where we have used µT = 0.4 GeV, µP = 0.2 GeV and ⌘1 = ⌘2 = 1.5. The dashed lines are our results for a Dirac
delta in µ2(k1,k2), and we observe that the shape of vn(pT ) is very abrupt and unrealistic for small pT . This is
what we should expect since µ2(k1,k2) / (2⇡)2�(2)(k1 � k2) comes from assuming translational invariance and this
is only valid for large |k1 � k2| or Bp, but in our case we are using small values for both |k1 � k2| and Bp. In order

to deal with this problem we make the substitution (2⇡)2�(2)(k1 � k2) ! 2⇡Bp exp
�
� Bp

2 (k1 � k2)
2
�

in the HBT
term eq. (A.10) since this is the dominant contribution. The corresponding results can be seen in the continuous
lines of fig. 4 and fig. 5 and they are smoother.

Writing eq. (22) as

C2(k
�
1 , k�

2 ) =

2
4
p

2e⌘1 sin
⇣

k1�k2e�⌘
p

2
e�⌘1L+

⌘

(k1 � k2e�⌘) L+

3
5

2

, (23)

we can study the dependence of the cross section with respect to the di↵erence in rapidity between the produced

7

Vn∆(k1, k2) =

∫ π
0 N(k1, k2,∆φ) cos(n∆φ) d∆φ∫ π

0 N(k1, k2,∆φ) d∆φ

vn(pT ) =
Vn∆(pT , p

ref
T )√

Vn∆(prefT , prefT )

• L+ = 6 fm in the rest frame and we scale it with
the γ factor for different energies.
• µT = 0.4 GeV and µP = 0.2 GeV (these are the
values that maximize v3).
• η1 = η2 & preft = 1 GeV.

Non-eikonal effects alone can not explain the odd-harmonics HOWEVER there is a contribution
originating from these effects for certain kinematic region.
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Summary

We have covered the recent advances from NLO observables/evolution to
non-eikonal corrections.

The field is progressing well and we would like to keep it that way.

Recent works that study the relation between TMDs and the CGC: helpful for
communication between two communities.

Subeikonal studies might be also important for EIC since it will not probe very
high energies.

Apologies from the people whose works have not been presented due to
constraint on time!
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