Deep Inelastic Scattering in the Valence Regime

Cynthia Keppel Thomas Jefferson National Accelerator Facility

Why is the valence regime interesting?

- Partonic structure in the valence region <u>defines</u> a hadron
 - Baryon number, charge, flavor content, total spin, ...
- Keen discriminator of nucleon structure models
- "Valence regime" at large x, low Q^2 evolves to low x, high Q^2
 - Intersection of nuclear and particle physics
- New generation of experiments at JLab focused on high x

Present status: large uncertainties on pdfs at large x

Nucleon Structure Example: F₂ⁿ/F₂^p (neutron/proton) ratio at Large x

• SU(6)-symmetric wave function of the proton in the quark model:

$$p\uparrow\rangle = \frac{1}{\sqrt{18}} \left(3u\uparrow [ud]_{S=0} + u\uparrow [ud]_{S=1} - \sqrt{2}u \downarrow [ud]_{S=1} - \sqrt{2}d\uparrow [uu]_{S=1} - 2d\downarrow [uu]_{S=1} \right)$$

- SU(6) spin/flavor symmetry in u,d
 In this model: d/u = 1/2, F₂ⁿ/F₂^p = 2/3 for x -> 1
- But, N and Δ would be degenerate in mass....
- SU(6) symmetry is broken: N- Δ Mass Splitting
 - Mechanism produces mass splitting between S=1 and S=0 diquark spectator.
 - symmetric states are raised, antisymmetric states are lowered (~300 MeV).
 - S=1 suppressed => d/u = 0, $F_2^n/F_2^p = 1/4$, for x -> 1
- pQCD: helicity conservation $(q\uparrow\uparrow p) => d/u = 2/(9+1) = 1/5$, $F_2^n/F_2^p = 3/7$ for $x \to 1$
- Dyson-Schwinger Eq.: Contains finite size S=0 and S=1 diquarks

- d/u = 0.28, $F_2^n/F_2^p = 0.49$ for x -> 1

There are

more!

Multiple predictions for large x

$$|p\uparrow\rangle = \frac{1}{\sqrt{2}} |u\uparrow(ud)_{S=0}\rangle + \frac{1}{\sqrt{18}} |u\uparrow(ud)_{S=1}\rangle - \frac{1}{3} |u\downarrow(ud)_{S=1}\rangle$$
$$-\frac{1}{3} |d\uparrow(uu)_{S=1}\rangle - \frac{\sqrt{2}}{3} |d\downarrow(uu)_{S=1}\rangle$$

Nucleon Model	F_2^n/F_2^p	d/u
SU(6)	2/3	1/2
Valence Quark	1/4	0
DSE contact interaction	0.41	0.18
DSE realistic interaction	0.49	0.28
pQCD	3/7	1/5

A Longstanding Problem! Numerous Review Articles:

- N. Isgur, PR**D 59** (1999)
- S Brodsky et al NP **B441** (1995)
- W. Melnitchouk and A. Thomas PL B377 (1996)
- R.J. Holt and C. D. Roberts, Rev. Mod. Phys. 82 (2010)
- I. Cloet et al, Few Body Syst. 46 (2009) 1.

A measurement is needed...

....but.... deuteron nuclear effects are an obstacle!

Jefferson

F_2^n/F_2^p (and, hence, d/u) essentially unknown at large x:

- Conflicting fundamental theory pictures

- F₂ⁿ data inconclusive due to uncertainties in deuterium nuclear corrections

- Translates directly to large uncertainties on d(x), g(x) parton distribution functions

Why is the valence regime interesting?

- Partonic structure in the valence region <u>defines</u> a hadron
 - Baryon number, charge, flavor content, total spin, ...
- "Valence regime" at large x, low Q² evolves to low x, high Q²
 - Intersection of nuclear and particle physics
- Keen discriminator of nucleon structure models
- New generation of experiments at JLab focused on high x

TDIS to access nucleon valence structure

"BONuS" Experiment at Jefferson Lab – use fixed target Tagged DIS to create an effective <u>free neutron</u> target

The BONuS approach:

use low mass radial TPC detector / target in magnetic field to TAG "spectator" proton at (very) low momenta (~65 MeV/c) and large angles (> 90° in lab)difficult but doable

The technique works!

BONUS effective neutron target via TDIS *achieved!*

Phys.Rev. C92 (2015) no.1, 015211 Phys.Rev. C91 (2015) no.5, 055206 Phys. Rev. C89 (2014) 045206 – editor's suggestion Phys. Rev. Lett. 108 (2012) 199902 Nucl. Instrum. Meth. A592 (2008) 273-286

- Not quite high enough
 x, Q²
- Nonetheless still powerful as input for global PDF fits...

EMC effect in deuterium – correction for (nuclear) PDFs $F_2^{p}/(F_2^{n} + F_2^{p})$ with F_2^{n} from BONUS

<u>S.I. Alekhin</u>, <u>S.A.</u> <u>Kulagin</u>, <u>R. Petti</u> Phys. Rev. D 96, 054005 (2017)

"The recent direct measurement of the deuteron nuclear correction by the BONuS experiment substantially reduces this uncertainty by constraining the normalization of the overall nuclear corrections." E12-06-113 "BONUS12": Larger x and higher Q²

High Impact

BONUSI2 RTPC

RTPC UNDER CONSTRUCTION

Preparing for Fall 2020 run!

F₂^p & F₂^d Structure Functions in Hall C

JLab12 Hall C commissioning experiment aims to reduce uncertainties in F_2^p and F_2^d structure functions at large x and high Q

Jefferson Lab

achieved by E00-116 @ 6 GeV)

E12-10-002: High Precision Measurement of the F₂ Structure Function on p,D

21°

0.2

Χ

0.3 0.4

0.6

0.7

х

0.8

0.5

1.1

6

0.2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 x

- Fix energy and angle
- Scan in momentum •
- Effective scan in x ٠

21°

......

Stringent check on spectrometer acceptance

Preliminary Results: Structure Functions (and CJ fit)

CTEQ-Jefferson Lab "CJ" PDF Fits

Jefferson Lab

CTEQ-based PDF fit optimized for larger x, lower Q²

- Necessary for experiments at Jefferson Lab, neutrino experiments, spin structure,...
- Valence regime increasingly important for lattice comparisons
- Uses data previously subject to kinematic cuts (SLAC and JLab largely)
- Incorporates higher twist, target mass corrections
- Allow d/u to go to a constant
- Need accurate deuteron nuclear corrections for DIS data

http://lhapdf.hepforge.org/lhapdf5/pdfsets

20

Current Data Constraints on d(x) at Large x: *The whole is greater than the sum of the parts.*

d(x)

D0, CDF W asymmetries

- Direct sensitivity to d(x)
 - High W, Q
 - Small data set

"BONuS" tagged neutron target

Deep inelastic deuterium

- Large body of data from multiple experiments
- Range in x and Q²
- Requires deuteron nuclear corrections

- Nearly modelindependent *neutron* data
- Data obtained in 6 GeV
 JLab era at low W, Q

Preliminary Results: PDF uncertainties

Initial studies adding new data to CJ pdf fit... error reduction, but d(x) still largely determined by FNAL W asymetry data

Will add BNL data

Or, a nuclear physicists approach to the problem....

JLab Hall A HRS Spectrometer

- Problem:
 - The deuteron experiments present free nucleon extraction complications.
- *Solution:* Add another nucleon!
- ³H/³He ratio: minimizes nuclear physics uncertainties

Deep Inelastic Scattering from A=3 Nuclei

$$R(^{3}\text{He}) = \frac{F_{2}^{^{3}\text{He}}}{2F_{2}^{p} + F_{2}^{n}}$$
,

$$R(^{3}\mathrm{H}) = \frac{F_{2}^{^{3}\mathrm{H}}}{F_{2}^{^{p}} + 2F_{2}^{^{n}}}$$

- Mirror symmetry of A=3 nuclei
 - Extract F₂ⁿ/F₂^p from ratio of measured ³He/³H structure functions

$$\frac{F_2^n}{F_2^p} = \frac{2\mathcal{R} - F_2^{^3He}/F_2^{^3H}}{2F_2^{^3He}/F_2^{^3H} - \mathcal{R}}$$

R = SUPER ratio of "EMC ratios" for ³He and ³H

- Relies only on <u>difference</u> in nuclear effects in ³H, ³He
- Calculated to within 1%
- Most systematic and theoretical uncertainties cancel

Hall A Tritium Target first in over 3 decades!!

Lab	Year	Quantity (kCi)	Thickness (g/cm²)	Current (μA)	Current <i>x</i> thickness (μA-g/cm²)
Stanford	1963	25	0.8	0.5	0.4
MIT-Bates	1982	180	0.3	20	6.0
Saskatoon	1985	3	0.02	30	0.6
JLab	2017	1	0.08	20	1.6

JLab Luminosity ~ 2.0 x 10³⁶ tritons/cm²/s

Kinematic Coverage of MARATHON

* DIS with 10.6 GeV electron beam on ³H, ³He and ²H targets. The electron scattering angle ranged between 17 and 36 deg.

JLab MARATHON preliminary results

This is the actual (preliminary) data!

Still working on systematic uncertainties

Use ratio of nuclear effects in ³H, ³He to get....

Polarized predictions for d/u structure at large x

Proton Wavefunction (Spin and Flavor Symmetric)

$$\left| \begin{array}{c} p \uparrow \end{array} \right\rangle = \frac{1}{\sqrt{2}} \left| u \uparrow (ud)_{S=0} \right\rangle + \frac{1}{\sqrt{18}} \left| u \uparrow (ud)_{S=1} \right\rangle - \frac{1}{3} \left| u \downarrow (ud)_{S=1} \right\rangle \\ - \frac{1}{3} \left| d \uparrow (uu)_{S=1} \right\rangle - \frac{\sqrt{2}}{3} \left| d \downarrow (uu)_{S=1} \right\rangle \end{array}$$

Model	F_{2}^{n}/F_{2}^{p}	d/u	Δ u/u	$\Delta d/d$	A_1^n	A_1^{p}
SU(6) = SU3 f a vor + SU2 spin	2/3	1/2	2/3	-1/3	0	5/9
Valence Quark + Hyperfne	1/4	0	1	-1/3	1	1
pQCD + HHC	3/7	1/5	1	1	1	1
DSE-1 (realistic)	0.49	0.28	0.65	-0.26	0.17	0.59
DSE-2 (contact)	0.41	0.18	0.88	-0.33	0.34	0.88

Lepton scattering spin structure experiments (mostly inclusive):

JLab's focus is high precision large x and low to²intermediate Q values

Experiment	Ref.	Target	Analysis	W (GeV)	x_{Bj}	$Q^2 \; ({\rm GeV^2})$
E80 (SLAC)	[101]	р	A_1	2.1 to 2.6	0.2 to 0.33	1.4 to 2.7
E130 (SLAC)	[102]	р	A_1	2.1 to 4.0	0.1 to 0.5	1.0 to 4.1
EMC (CERN)	[103]	р	A_1	5.9 to 15.2	1.5×10^{-2} to 0.47	3.5 to 29.5
SMC (CERN)	[250]	p, d	A_1	7.7 to 16.1	10^{-4} to 0.482	0.02 to 57
E142 (SLAC)	[244]	³ He	A_1, A_2	2.7 to 5.5	3.6×10^{-2} to 0.47	1.1 to 5.5
E143 (SLAC)	[245]	p, d	A_1, A_2	1.1 to 6.4	3.1×10^{-2} to 0.75	0.45 to 9.5
E154 (SLAC)	[246, 247]	³ He	A_1, A_2	3.5 to 8.4	1.7×10^{-2} to 0.57	1.2 to 15.0
E155/x (SLAC)	[248, 249]	p, d	A_1, A_2	3.5 to 9.0	$1.5 imes 10^{-2}$ to 0.75	1.2 to 34.7
HERMES (DESY)	[253, 254]	р, ³ Не	A_1	2.1 to 6.2	2.1×10^{-2} to 0.85	0.8 to 20
E94010 (JLab)	[256]	³ He	g_1, g_2	1.0 to 2.4	1.9×10^{-2} to 1.0	0.019 to 1.2
EG1a (JLab)	[257]	p, d	A_1	1.0 to 2.1	5.9×10^{-2} to 1.0	0.15 to 1.8
RSS (JLab)	[258, 259]	p, d	A_1, A_2	1.0 to 1.9	0.3 to 1.0	0.8 to 1.4
COMPASS	[251]	p, d	A_1	7.0 to 15.5	4.6×10^{-3} to 0.6	1.1 to 62.1
(CERN) DIS						
COMPASS	[280]	p, d	A_1	5.2 to 19.1	4×10^{-5} to 4×10^{-2}	0.001 to 1.
(CERN) low- Q^2						
EG1b (JLab)	[260, 261,	p, d	A_1	1.0 to 3.1	2.5×10^{-2} to 1.0	0.05 to 4.2
	262, 263]					
E99-117 (JLab)	[264]	³ He	A_1, A_2	2.0 to 2.5	0.33 to 0.60	2.7 to 4.8
E99-107 (JLab)	[265]	³ He	g_1, g_2	2.0 to 2.5	0.16 to 0.20	0.57 to 1.34
E01-012 (JLab)	[266, 267]	³ He	g_1, g_2	1.0 to 1.8	0.33 to 1.0	1.2 to 3.3
E97-110 (JLab)	[268]	³ He	g_1, g_2	1.0 to 2.6	2.8×10^{-3} to 1.0	0.006 to 0.3
EG4 (JLab)	[269]	p, n	g_1	1.0 to 2.4	7.0×10^{-3} to 1.0	0.003 to 0.84
SANE (JLab)	[271]	р	A_1, A_2	1.4 to 2.8	0.3 to 0.85	2.5 to 6.5
EG1dvcs (JLab)	[270]	р	A_1	1.0 to 3.1	6.9×10^{-2} to 0.63	0.61 to 5.8
E06-014 (JLab)	[272, 273]	³ He	g_1, g_2	1.0 to 2.9	0.25 to 1.0	1.9 to 6.9
E06-010/011	[278]	³ He	single	2.4 to 2.9	0.16 to 0.35	1.4 to 2.7
(JLab)			spin asy.			
E07-013 (JLab)	[72]	³ He	single	1.7 to 2.9	0.16 to 0.65	1.1 to 4.0
			spin asy.			
E08-027 (JLab)	[309]	р	g_1, g_2	1. to 2.1	3.0×10^{-3} to 1.0	0.02 to 0.4

Measurements and Projections for A₁^p

JLab E12-06-109, S. Kuhn, D. Crabb, A. Deur, V. Dharmawardane, T. Forest, K. Griffioen, M. Holtrop, Y. Prok, et al.

C. D. Roberts, R. Holt, S. Schmidt, Phys. Lett. B 727 (2013) pp. 249-254₃₁

Measurements and Projections for A₁ⁿ

2019 Hall C at JLab

JLab E12-06-110, X. Zheng, J.-P. Chen, Z.-E. Meziani, G. Cates et al. JLab E12-06-122, B. Wojtsekhowski, G. Cates, N. Liyanage, Z.-E. Meziani, G. Rosner, X. Zheng, et al.

Measurements and Projections for A₁ⁿ

Combined results from Hall C (neutron) and Hall B (proton): polarized pdfs

2019 Hall C at JLab

JLab E12-06-110, X. Zheng, J.-P. Chen, Z.-E. Meziani, G. Cates et al. JLab E12-06-122, B. Wojtsekhowski, G. Cates, N. Liyanage, Z.-E. Meziani, G. Rosner, X. Zheng, et al.

Measuring polarized structure functions: A₁ⁿ

Polarization (%)

REQUIRES:

- High beam polarization
- High target polarization
- High electron current
- Part of a broad JLab12 program!

³He target

Measuring polarized structure functions: A₁ⁿ

Current status:

- Design complete, components on hand/ordered
- Target cell filling and characterization ongoing
- Hall C installation to start July 2019

Photos courtesy of G. Cates, UVA

Probing the Valence Regime: Summary

- New generation of experiments at JLab at 12 GeV will access the regime where valence quarks dominate
- First experiments <u>HAVE RUN!</u> (
 - Hall C F2p,d
 - Hall A $^{3}H/^{3}He$
- More experiments <u>FALL 2019!</u> 0.
 - Hall C A1n
 - Hall B BONuS
- More to follow (PVDIS, A1p, g2n....)
- Dedicated theory efforts also underway (CJ, JAM,..)
- Also SeaQuest Drell-Yan experiment E906 at FNAL focused on high x sea
- Also also W-asymmetry data from RHIC

Expect large improvements in our understanding of the valence regime in the next 1-2 years!

- Mesonic Structure (pi,k PDFs)
- Semi-Inclusive DIS
 - Generalized PDFs

- Transvers Momentum Dependent Parton Distributions
- JLab12 broad program... dark matter searches (4 and counting), glueballs/exotic searches (Hall D), parity violation to study neutron skin, standard model tests, short range correlations, superfast quarks (x>1), EMC effect, proton radius,.....<u>more!</u>...
- Proposed Electron Ion Collider

Thank You!

Jefferson Lab Hall A

rson Lab

Jefferson Lab Hall C

