HYDRO ATTRACTORS

Michal P. Heller (AEI — / NCBJ —)

aei.mpg.de/GQFI

Based on I503.075 I4 with Spaliński, works by many people including some of you (for a partial review, see I707.02282 with Florkowski and Spaliński) and I907.xxxxx with Jefferson, Spaliński and Svensson

See also the upcoming talks by Noronha (today at 2 PM), Almaalol (today at 3:40 PM), Denicol (today at 5 PM) and a poster by Shi

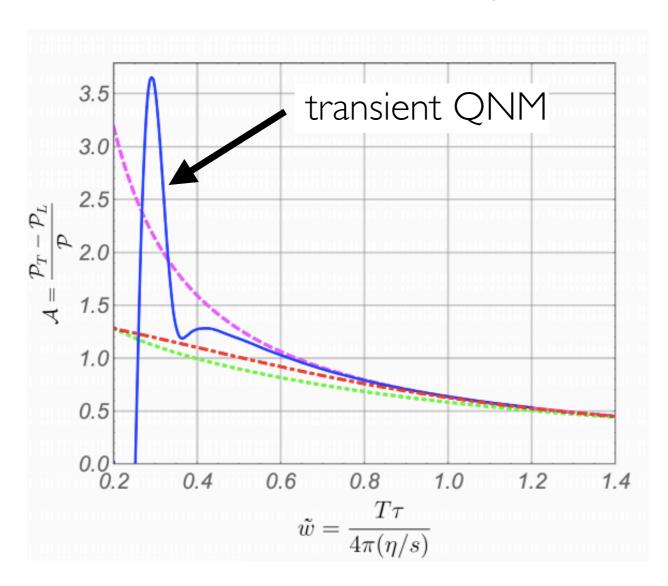
Introduction

```
(Relativistic) = a mean for modelling QCD evolution for some hydro(dynamics) in HIC = observables over a certain time frame
```

In an ideal world with full theoretical control over QCD one would not NEED to solve hydro eqns etc — we would have the prediction anyway

Since we do not, we should at least understand to the best of our abilities what hydro is, when it works and how to construct hydro eqns

Last decade: — progress on understanding the emergence of hydro regime in microscopic models ranging from holographic QFTs to kinetic theory


hydro attractors = a surprising spin-off of these studies having to do with a discovery that hydro works much better than expected

Hydro far from equilibrium

see 1609.02820 by Romatschke for a viewpoint

Ab initio studies in holography and later studies in other models show that viscous hydro can work even when deviations from local equilibrium are large:

0906.4426, 1011.3562 by Chesler & Yaffe; 1103.3452 with Janik & Witaszczyk

sample n-eq states in:

N=4 SYM (holography)

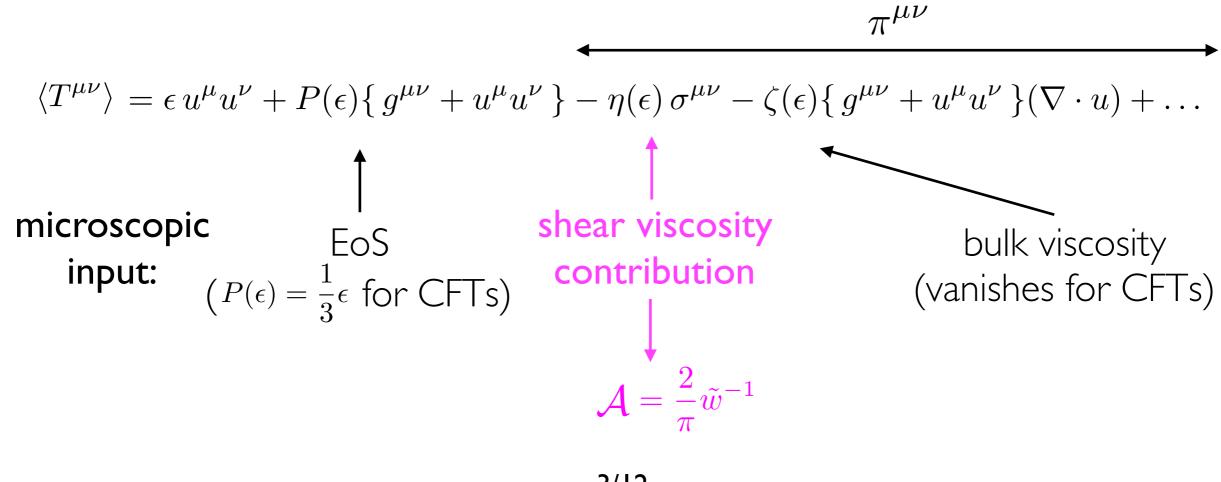
EKT with $\eta/s = 0.624$

RTA with $\eta/s = 0.624$

viscous hydro prediction: $\mathcal{A} = \frac{2}{\pi} \tilde{w}^{-1}$

$$\mathcal{A} = \frac{2}{\pi} \tilde{w}^{-1}$$

plot from 1609.04803v2 with Kurkela, Spalinski & Svensson


C.f. a textbook definition of hydro

hydrodynamics is

an EFT of the slow (?) evolution of conserved currents in collective media close to equilibrium (?)

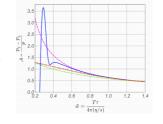
DOFs: always local energy density ϵ and local flow velocity u^{μ} $(u_{\nu}u^{\nu}=-1)$

EOMs: conservation eqns $\nabla_{\mu}\langle T^{\mu\nu}\rangle = 0$ for $\langle T^{\mu\nu}\rangle$ expanded in gradients

Hydro theories

The crucial subtlety: $\nabla_{\mu} \Big(\epsilon u^{\mu} u^{\nu} + P(\epsilon) \{ g^{\mu\nu} + u^{\mu} u^{\nu} \} \Big) - \eta(\epsilon) \sigma^{\mu\nu} + \dots \Big) = 0$ does not have a well-posed initial value problem \longrightarrow hydrodynamic theories

Overall idea: make $\pi^{\mu\nu}$ obey an independent PDE ensuring its \mathbf{n} to $-\eta\,\sigma^{\mu\nu}$


$$(\tau_{\pi}u^{\alpha}\mathcal{D}_{\alpha}+1)\left[\pi^{\mu\nu}-(-\eta\,\sigma^{\mu\nu})\right]=0 \longrightarrow \pi^{\mu\nu}=-\eta\,\sigma^{\mu\nu}-\tau_{\pi}\,u^{\alpha}\mathcal{D}_{\alpha}\,\pi^{\mu\nu}-\tau_{\pi}\,u^{\alpha}\mathcal{D}_{\alpha}\,(\eta\,\sigma^{\mu\nu})$$
decay timescale

Müller 1967, Israel 1976, Israel & Stewart 1976

New incarnation: 0712.2451 by Baier, Romatschke, Son, Starinets & Stephanov

$$\pi^{\mu\nu} = -\eta \sigma^{\mu\nu} - \tau_{\pi} u^{\alpha} \mathcal{D}_{\alpha} \pi^{\mu\nu} + \lambda_{1} \pi^{\langle \mu}{}_{\alpha} \pi^{\nu \rangle \alpha} + \lambda_{2} \pi^{\langle \mu}{}_{\alpha} \Omega^{\nu \rangle \alpha} + \lambda_{3} \Omega^{\langle \mu}{}_{\alpha} \Omega^{\nu \rangle \alpha}$$

Hydro theories = hydro + transients; interesting to redo

in BRSSS

The first (BRSSS) hydro attractor 1503.07514 with Spaliński

conservation (always the same)

$$\frac{\tau}{w}\frac{dw}{d\tau} = \frac{2}{3} + \frac{1}{18}\mathcal{A}$$

$$\pi^{\mu\nu} = -\eta \sigma^{\mu\nu} - \tau_{\pi} u^{\alpha} \mathcal{D}_{\alpha} \pi^{\mu\nu} +$$

$$+ \lambda_{1} \pi^{\langle \mu}{}_{\alpha} \pi^{\nu \rangle \alpha} + \lambda_{2} \pi^{\langle \mu}{}_{\alpha} \Omega^{\nu \rangle \alpha} + \lambda_{3} \Omega^{\langle \mu}{}_{\alpha} \Omega^{\nu \rangle \alpha}$$

$$+ \lambda_{1} \pi^{\langle \mu}{}_{\alpha} \pi^{\nu \rangle \alpha} + \lambda_{2} \pi^{\langle \mu}{}_{\alpha} \Omega^{\nu \rangle \alpha} + \lambda_{3} \Omega^{\langle \mu}{}_{\alpha} \Omega^{\nu \rangle \alpha}$$

$$+ \lambda_{1} \pi^{\langle \mu}{}_{\alpha} \pi^{\nu \rangle \alpha} + \lambda_{2} \pi^{\langle \mu}{}_{\alpha} \Omega^{\nu \rangle \alpha} + \lambda_{3} \Omega^{\langle \mu}{}_{\alpha} \Omega^{\nu \rangle \alpha}$$

$$+ \lambda_{1} \pi^{\langle \mu}{}_{\alpha} \pi^{\nu \rangle \alpha} + \lambda_{2} \pi^{\langle \mu}{}_{\alpha} \Omega^{\nu \rangle \alpha} + \lambda_{3} \Omega^{\langle \mu}{}_{\alpha} \Omega^{\nu \rangle \alpha}$$

$$+ \lambda_{1} \pi^{\langle \mu}{}_{\alpha} \pi^{\nu \rangle \alpha} + \lambda_{2} \pi^{\langle \mu}{}_{\alpha} \Omega^{\nu \rangle \alpha} + \lambda_{3} \Omega^{\langle \mu}{}_{\alpha} \Omega^{\nu \rangle \alpha}$$

$$+ \lambda_{1} \pi^{\langle \mu}{}_{\alpha} \pi^{\nu \rangle \alpha} + \lambda_{2} \pi^{\langle \mu}{}_{\alpha} \Omega^{\nu \rangle \alpha} + \lambda_{3} \Omega^{\langle \mu}{}_{\alpha} \Omega^{\nu \rangle \alpha}$$

$$+ \lambda_{1} \pi^{\langle \mu}{}_{\alpha} \pi^{\nu \rangle \alpha} + \lambda_{2} \pi^{\langle \mu}{}_{\alpha} \Omega^{\nu \rangle \alpha} + \lambda_{3} \Omega^{\langle \mu}{}_{\alpha} \Omega^{\nu \rangle \alpha}$$

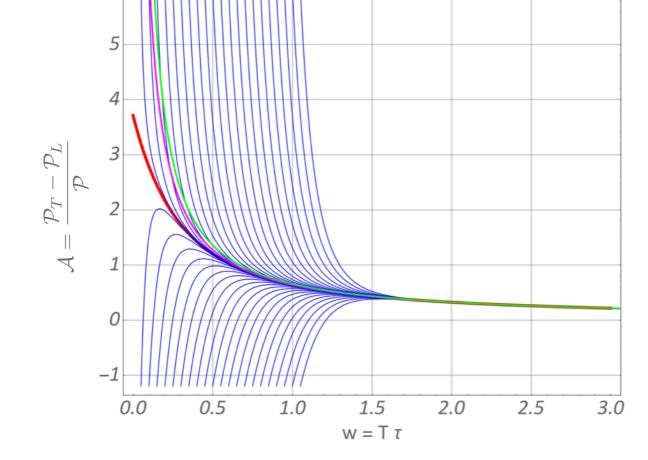
$$+ \lambda_{1} \pi^{\langle \mu}{}_{\alpha} \pi^{\nu \rangle \alpha} + \lambda_{2} \pi^{\langle \mu}{}_{\alpha} \Omega^{\nu \rangle \alpha} + \lambda_{3} \Omega^{\langle \mu}{}_{\alpha} \Omega^{\nu \rangle \alpha}$$

$$+ \lambda_{1} \pi^{\langle \mu}{}_{\alpha} \pi^{\nu \rangle \alpha} + \lambda_{2} \pi^{\langle \mu}{}_{\alpha} \Omega^{\nu \rangle \alpha} + \lambda_{3} \Omega^{\langle \mu}{}_{\alpha} \Omega^{\nu \rangle \alpha}$$

$$+ \lambda_{1} \pi^{\langle \mu}{}_{\alpha} \pi^{\nu \rangle \alpha} + \lambda_{2} \pi^{\langle \mu}{}_{\alpha} \Omega^{\nu \rangle \alpha} + \lambda_{3} \Omega^{\langle \mu}{}_{\alpha} \Omega^{\nu \rangle \alpha}$$

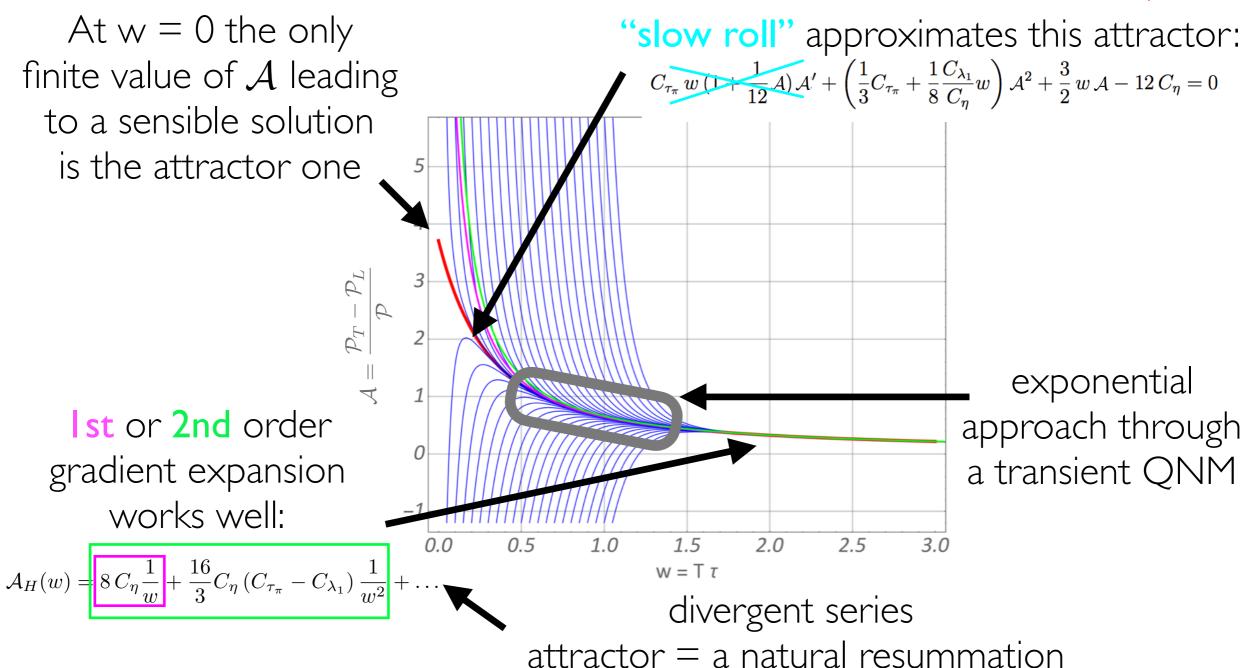
$$+ \lambda_{1} \pi^{\langle \mu}{}_{\alpha} \pi^{\nu \rangle \alpha} + \lambda_{2} \pi^{\langle \mu}{}_{\alpha} \Omega^{\nu \rangle \alpha} + \lambda_{3} \Omega^{\langle \mu}{}_{\alpha} \Omega^{\nu \rangle \alpha}$$

$$+ \lambda_{1} \pi^{\langle \mu}{}_{\alpha} \pi^{\nu \rangle \alpha} + \lambda_{2} \pi^{\langle \mu}{}_{\alpha} \Omega^{\nu \rangle \alpha} + \lambda_{3} \Omega^{\langle \mu}{}_{\alpha} \Omega^{\nu \rangle \alpha}$$


$$+ \lambda_{1} \pi^{\langle \mu}{}_{\alpha} \pi^{\nu \rangle \alpha} + \lambda_{2} \pi^{\langle \mu}{}_{\alpha} \Omega^{\nu \rangle \alpha} + \lambda_{3} \Omega^{\langle \mu}{}_{\alpha} \Omega^{\nu \rangle \alpha}$$

$$+ \lambda_{1} \pi^{\langle \mu}{}_{\alpha} \pi^{\nu \rangle \alpha} + \lambda_{2} \pi^{\langle \mu}{}_{\alpha} \Omega^{\nu \rangle \alpha} + \lambda_{3} \Omega^{\langle \mu}{}_{\alpha} \Omega^{\nu \rangle \alpha}$$

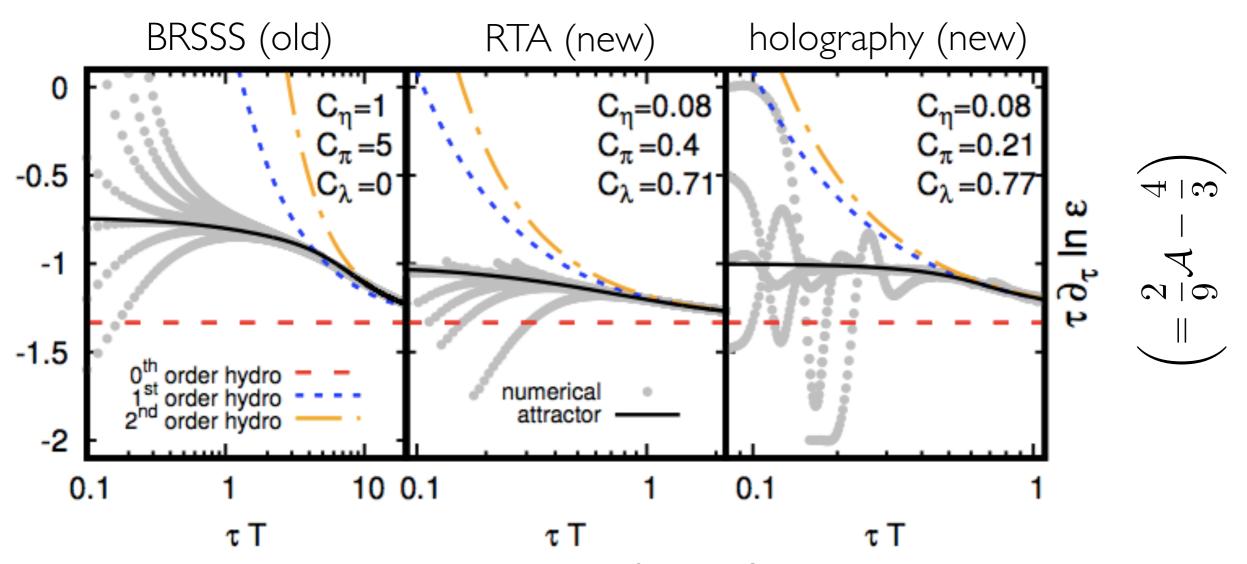
$$+ \lambda_{1} \pi^{\langle \mu}{}_{\alpha} \pi^{\nu \rangle \alpha} + \lambda_{2} \pi^{\langle \mu}{}_{\alpha} \Pi^{\nu \rangle \alpha} + \lambda_{3} \Omega^{\langle \mu}{}_{\alpha} \Omega^{\nu \rangle \alpha}$$


$$+ \lambda_{1} \pi^{\langle \mu}{}_{\alpha} \pi^{\nu \rangle \alpha} + \lambda_{2} \pi^{\langle \mu}{}_{\alpha} \Pi^{\nu \rangle \alpha} + \lambda_{3} \Omega^{\langle \mu}{}_{\alpha} \Pi^{\nu \rangle \alpha} + \lambda_{3} \Pi^{\langle \mu}{}_{\alpha} \Pi^{$$

The attractor:

The inner workings of the BRSSS attractor

1503.07514 with Spaliński

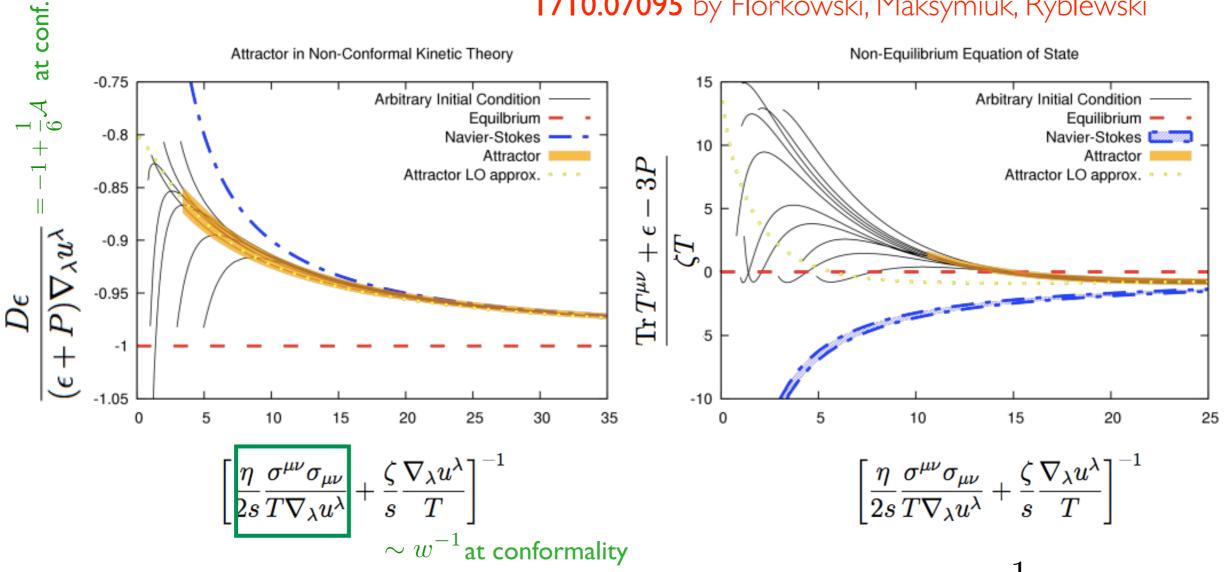


Attractors in hydrodynamics include also I5II.06358 (HJSW), I709.06644 (DNMR&aHydro), I7II.01657 (DNMR), I80I.I0I73 (aHydro), I804.0477I (MIS) and I808.07038 (aHydro)

Attractors beyond BRSSS: conformal bif

1704.08699 by Romatschke (figure adapted from arXiv)

Idea: use ~slow roll approximation to generate attractors in other theories

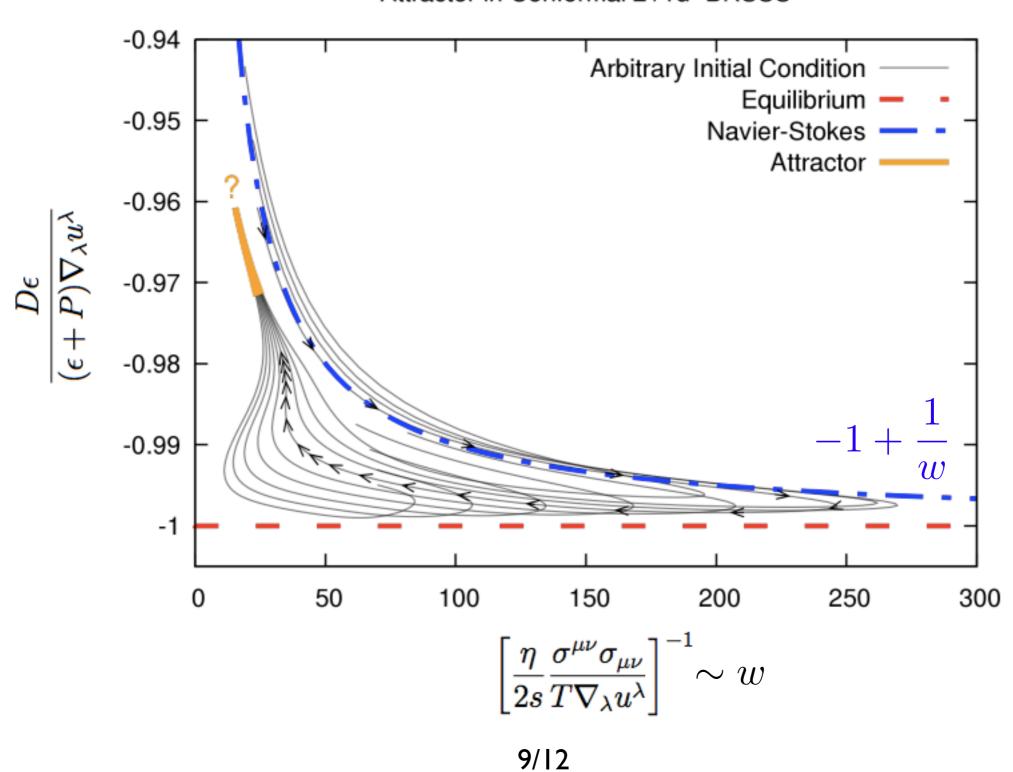


Note: centre and right are projections from infinitely-dimensional phase space

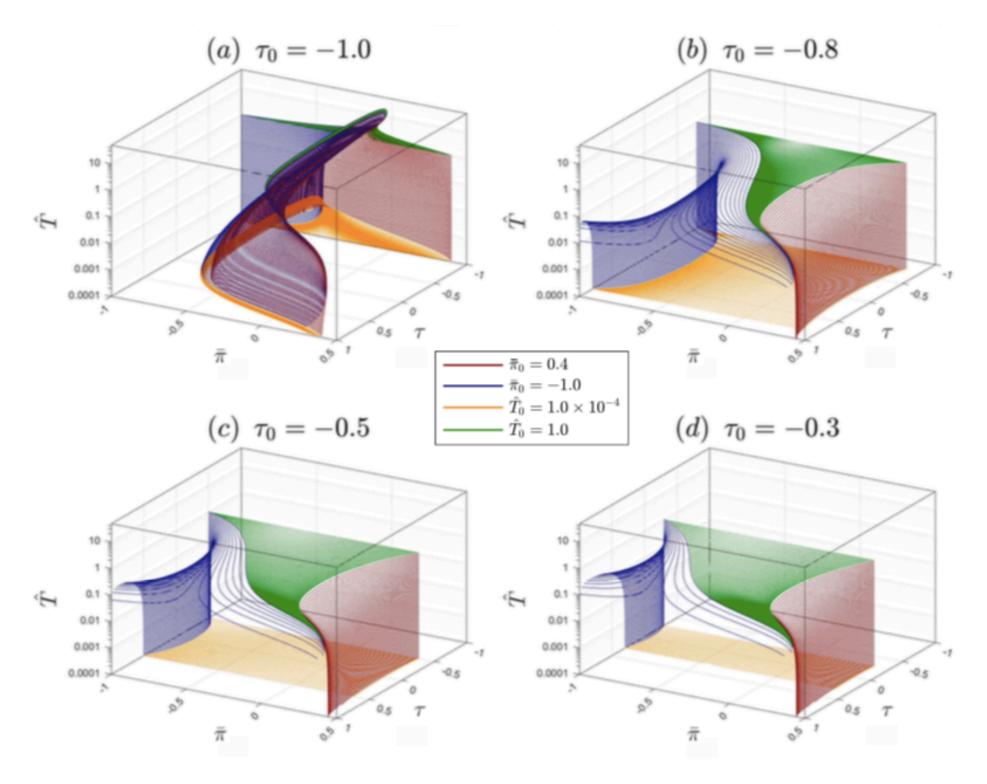
Attractors in holography include also I708.01921 & I805.11689 by Spaliński, as well as I712.02772' & I810.02314* by Casalderrey-Solana, Gushterov', Herzog* & Meiring

Attractors beyond BRSSS: non-conformal bif

1710.03234 by Romatschke (figure adapted from arXiv)1710.07095 by Florkowski, Maksymiuk, Ryblewski

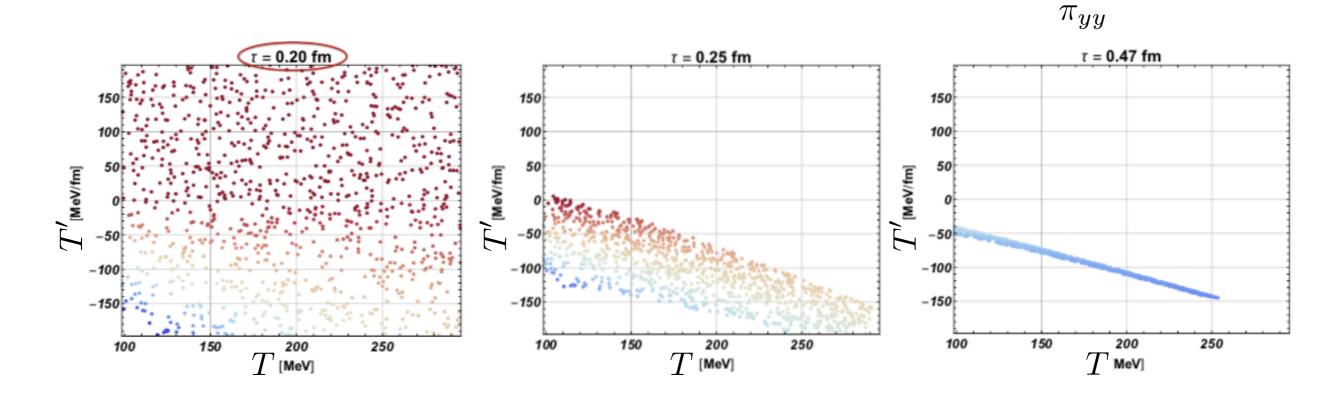

Results for RTA kinetic theory for massive particles and $au_{rel} \sim \frac{1}{T}$

Attractors in kinetic theory include also I7I2.03856 + I904.08677 by Blaizot & Yan, I809.0I200 + I903.03I45* by Strickland (+ Tantary*), I90I.08632 by Behtash, Kamata, Martinez & Shi,


Attractors beyond bif: (1+2)D BRSSS

1710.03234 by Romatschke (figure adapted from arXiv)

Attractor in Conformal 2+1d BRSSS


Attractors beyond pure bif: the Gubser flow 1711.01745 by Behtash, Cruz-Camacho & Martinez (figure adapted from arXiv)

Attractors as dimensionality reduction

1907.xxxxx with Jefferson, Spaliński & Svensson

In more general situations we may not find w and \mathcal{A} , but we always have phase space variables which we can use. For bif in BRSSS: (τ, T, T')

A new look at attractors: fix a set of initial conditions in phase space; expansion + dissipation drives it to become lower dimensional; the attractor is the locus where the dimensionality reduction occurred the most.

Vision: use ML techniques to tackle the existence of attractors beyond (1+0)D

Outlook

define far from equilibrium hydro in a class of expanding plasma setups have become an interesting research field on its own

hydro attractors

what are the conditions for their existence, e.g. should we expect them in full QCD or outside expanding plasmas?

if they turn out generic, can we observe them?