Hydro in small systems: How small can a QGP be?

Wojciech Broniowski

Jan Kochanowski U., Kielce & Inst. of Nuclear Physics, Cracow, Poland

> Research with Piotr Bożek and Enrique Ruiz-Arriola, Maciej Rybczyński

> > Initial Stages 2019 Columbia U., June 24–28, 2019

• More remarks on light-heavy collisions

• see Monday talks by Schlichting, Mohapatra, Collab. reviews, parallel sessions

- Collisions with polarized light targets
- Collisions with light clustered nuclei

Remarks

イロト イポト イヨト イヨト

Shape – flow transmutation

Any (copious) rescattering will do (hydro, transport)!

IS 2019 4 / 37

- Emission from a fast moving element of fluid
- Collimation of hadrons (increasing with mass)

Multi-particle correlations in the azimuth are used in the cumulant or other methods to extract the flow coefficients with reduced the non-flow contamination (from jets, resonance decays, ...)

[Borghini, Ollitrault 2001]

Hydro without hydro

Approximately $v_n = \kappa_n \epsilon_n$, (n = 2, 3)

• κ_n depend on the collision energy, multiplicity, viscosity \dots

Au+Au@200 GeV [Niemi, Denicol, Holopainen, Huovinen 2012] cf. talk by Behera on Tuesday

WB

IS 2019 6 / 37

Hydro without hydro

Approximately $v_n = \kappa_n \epsilon_n$, (n = 2, 3)

• κ_n depend on the collision energy, multiplicity, viscosity ...

 $T_f = 150$ MeV (left) and 170 MeV (right) [Nagle, Adare, Beckman, Koblesky, Orjuela Koop, McGlinchey, Romatschke, Carlson, Lynn, McCumber, PRL 113 (2014) 112301]

• cf. talk by Behera on Tuesday

WB

Approximately $v_n = \kappa_n \epsilon_n$, (n = 2, 3)

• κ_n depend on the collision energy, multiplicity, viscosity . . .

Allows us to construct response-independent coefficients, e.g.,

 $v_n\{4\}/v_n\{2\} \simeq \epsilon_n\{4\}/\epsilon_n\{2\}$

which probe the geometry-fluctuation interplay (more geometry $\rightarrow v_n\{4\}/v_n\{2\}$ goes up)

[Bożek WB, Ruiz Arriola, Rybczyński, 2014,

Giacalone, Noronha-Hostler, Ollitrault, 2017]

• cf. talk by Behera on Tuesday

Ridge

Together with the transverse-longitudinal factorization, the near-side ridge indicates collectivity

understanding of the ridges \rightarrow

Factorization of the transverse and longitudinal distributions

left-moving participants strings right-moving participants

Factorization of the transverse and longitudinal distributions

Approximate (up to fluctuations) alignment of F and B event planes Collimation of flow at very distant longitudinal separations \Rightarrow ridges!

IS 2019 8 / 37

Surfers - the near-side ridge

Collimated even if separated by a mile! Something had to create the wave!

IS 2019 9 / 37

Realizations

←

Glasma tubes:

AMPT (HIJING, Lund model) [Wu et al. 2018]:

string breaking crucial \rightarrow

(日) (周) (日) (日)

Torque (decorrelation) in p-Pb

• String breaking essential to describe torque in p-Pb

• cf. Huang on Monday, Bożek and Qin on Tuesday

Not covered at IS19: longitudinal fluctuations

 a_{nm} coefficients [Bzdak, Teaney, 2012, Jia, Radhakrishnan, Zhou, 2016, Monnai, Schenke, PLB 752 (2016) 317, PB, WB, Olszewski, Phys.Rev. C92 (2015) 054913, ATLAS]

p-A, how small?

-

イロト イヨト イヨト イ

Sample transverse-plane configuration of centers of the participant nucleons in a p+Pb collision from GLISSANDO

5% of collisions have more than 18 participants, rms ~ 1.5 fm – quite large!

Size reflects the NN inelasticity profile Most central values of N_w in p-Pb would fall into the 60-70% or 70-80% centrality class in Pb+Pb Pb+Pb: c=60-70% $\equiv 22 \le N_w \le 40$, c=70-80% $\equiv 11 \le N_w \le 21$

Hydro evolution of the p-Pb fireball

Not so small!

isotherms at freeze-out $T_f = 150 \text{ MeV}$ (for two sections in the transverse plane)

- evolution lasts about 4 fm/c shorter but more rapid than in Pb+Pb
- $\bullet\ {\rm strong\ gradients} \to {\rm essential\ role\ of\ viscosity}$

IS 2019 14 / 37

Mass hierarchy in p-A

[PB, WB, Torrieri, PRL 111 (2013) 172303]

Harmonic flow in p-A

see experimental talks!

[PB, WB, PRC 88 (2013) 014903]

Hydro in small systems

Interferometry

Hydro in small systems

IS 2019 17 / 37

Can we distinguish approaches by the initial condition?

[Bzdak, Schenke, Tribedy, Venugopalan, Phys.Rev. C87 (2013) 064906]

d-A, ³He-Au

イロト イヨト イヨト イヨト

[pioneered by Bożek 2012]

intrinsic dumbbell shape with large deformation: rms $\simeq 2~{\rm fm}$

initial entropy density in a d-Pb collision with $N_{\rm part}=24$

Resulting large elliptic flow confirmed with the later RHIC analysis (geometry + fluctuations)

WB

IS 2019 20 / 37

[pioneered by Bożek 2012]

intrinsic dumbbell shape with large deformation: rms $\simeq 2~{\rm fm}$

initial entropy density in a *d*-Pb collision with $N_{\text{part}} = 24$

Resulting large elliptic flow confirmed with the later RHIC analysis (geometry + fluctuations)

WB

IS 2019 20 / 37

Ridge in ³He-Au at RHIC

• see talks by Mace, Zajc, poster by Nagle

WB

IS 2019 22 / 37

Controlling the geometry: A – polarized d collisions

Polarized d+A collisions

Admixture of the D-wave allows us to control the geometry! Small but measurable effect

[PB, WB, PRL 121 (2018) 202301]

∃ >

<u>Ellipticity of the fireball relative to polarization axis</u>

GLISSANDO:

0.4 0.6 0.8 ∈₂{Φ_P}

25 / 37

Predictions

 $v_2 \simeq k\epsilon_2, \ k \sim 0.2$

For j = 1 nuclei the *tensor polarization* is

$$P_{zz} = n(1) + n(-1) - 2n(0)$$
$$v_2\{\Phi_P\} \simeq k \epsilon_2^{j_3 = \pm 1} \{\Phi_P\} P_{zz}, \quad -1.5 \le P_{zz} \le 0.7$$
$$-0.5\% \le v_2\{\Phi_P\} \le 1\%$$

One-particle distribution – can be measured precisely! Random fluctuations cancel Single spin asymmetry $\sim \sin(\phi - \Phi_P)$ innocuous

WB

NA61@SPS, AFTER@LHC – difficulty in injecting a polarized gas target into the Pb beam

see talks by Schmidt, Di Nezza

2.76A TeV Pb beam on a fixed target $\rightarrow \sqrt{s_{NN}}=72$ GeV, at LHCb $-2.3 < \eta_{\rm CM} < 0.7$

[C. Barschel, Ph.D. thesis, (2014)
R. Aaij et al. (LHCb), JINST 9, P12005 (2014), arXiv:1410.0149]

Quadrupole moment:

$$Q_2 = \left\langle r^2 \sqrt{\frac{16\pi}{5}} Y_{20}(\Omega) \right\rangle = \left\langle 3z^2 - r^2 \right\rangle$$

$$\epsilon_2\{\Phi_P\}\sim -\frac{3Q_2}{4Z\langle r^2\rangle}$$

(with the approx. that neutrons follow protons)

Wigner-Eckart theorem (\hat{Q}_2 is a rank-2 tensor):

 $\langle jj_3|\hat{Q}_{20}|jj_3\rangle = \langle jj_320|jj_3\rangle\langle j||\hat{Q}_2||j\rangle$

The lowest possible j is 1 (no effect for ³He or tritium, where $j = \frac{1}{2}$)

Estimates based on nuclear data

	j	j_3	$\langle r^2 angle_{ m ch}^{1/2}$ [fm]	$Q_2 \; [fm^2]$	$-rac{3Q_2}{4Z\langle r^2 angle}$ [%]
d	1	± 1	2.1421(88)	0.2860(15)	-5.6
		0		$\times (-2)$	$\times (-2)$
⁷ Li	$\frac{3}{2}$	$\pm \frac{3}{2}$	2.444(42)	-4.03(4)	19
	_	$\pm \frac{\overline{1}}{2}$		$\times (-1)$	$\times (-1)$
9Be	$\frac{3}{2}$	$\pm \frac{3}{2}$	2.519(12)	5.29(4)	-17
	_	$\pm \frac{1}{2}$		$\times (-1)$	$\times (-1)$
^{10}B	± 3	± 3	2.428(50)	8.47(6)	-25
		± 2		$\times 0$	0
		± 1		$\times (-3/5)$	$\times (-3/5)$
		0		$\times (-4/5)$	$\times (-4/5)$

$$v_{2}\{\Phi_{P}\} \simeq -k \frac{3Q_{2}}{4Z(\langle r^{2} \rangle + \frac{3}{2} \langle b^{2} \rangle)} \frac{3j_{3}^{2} - j(j+1)}{j(2j-1)} P$$

Light clustered nuclei

< 行い

$^{12}\text{C-A}$ – role of α clusters

"Futurology" from [WB, Ruiz Arriola, PRL 112 (2014) 112501] Nuclear structure from ultra-relativistic collisions!

Probe to what degree $^{12}\mathrm{C}$ is made of three $\alpha '\mathrm{s}$

Specific features of the $^{12}\mathrm{C}$ collisions with a "wall" of Pb or Au:

The cluster plane parallel or perpendicular to the transverse plane:

higher multiplicity higher triangularity lower ellipticity higher ellipticity

12 C - 197 Au, $\sqrt{s_{NN}}=200$ GeV

[PB, WB, Ruiz Arriola, Rybczyński. PRC90 (2014) no.6, 064902] \rightarrow effects of geometric arrangement for most central $v_n\{4\}/v_n\{2\}$ a good response-invariant probe (recall $v_n \simeq \kappa \epsilon_n$, n = 2, 3)) [see also Giacalone, Noronha-Hostler, Ollitrault, PRC95 (2017) 054910]

light - 208 Pb, $\sqrt{s_{NN}} = 17$ GeV (SPS)

IS 2019 33 / 37

Idea picked up in [Lim, Carlson, Loizides, Lonardoni, Lynn, Nagle, Orjuela Koop, Ouellette, PRC 99 (2019) 044904] with exp. prospects

two α clusters and the neutron

Summary

≣⇒

イロト イヨト イヨト イ

- Shape-flow transmutation in small systems
- Much to see in longitudinal fluctuations
- Polarized deuteron controlled geometry
- Clustered small nuclei insight into nuclear structure from harmonic flow

Loizides at QM2015

2

C. Loizides / Nuclear Physics A 956 (2016)

Observable or effect	PbPb	pPb (at high mult.)	pp (at high mult.)
Low $p_{\rm T}$ spectra ("radial flow")	yes	yes	yes
Intermed. $p_{\rm T}$ ("recombination")	yes	yes	yes
Particle ratios	GC level	GC level except Ω	GC level except Ω
Statistical model	$\gamma_s^{\rm GC} = 1, 10-30\%$	$\gamma_s^{ m GC} \approx 1, 20-40\%$	$\gamma_s^{\rm C} < 1, 20-40\%^2$
HBT radii $(R(k_{\rm T}), R(\sqrt[3]{N_{\rm ch}}))$	$R_{\rm out}/R_{\rm side} \approx 1^{-3}$	$R_{\rm out}/R_{\rm side} \stackrel{<}{_{\sim}} 1$	$R_{\rm out}/R_{\rm side} \stackrel{<}{_{\sim}} 1$
Azimuthal anisotropy (v_n)	$v_1 - v_7$	$v_1 - v_5$	<i>v</i> ₂ , <i>v</i> ₃
(from two part. correlations)			
Characteristic mass dependence	$v_2, v_3 4$	v_2, v_3	<i>v</i> ₂
Directed flow (from spectators)	yes	no	no
Higher order cumulants	" $4 \approx 6 \approx 8 \approx LYZ$ "	" $4 \approx 6 \approx 8 \approx LYZ$ "	"4 ≈ 6" ⁵
(mainly $v_2\{n\}, n \ge 4$)	+higher harmonics	+higher harmonics	
Weak η dependence	yes	yes	not measured
Factorization breaking	yes $(n = 2, 3)$	yes $(n = 2, 3)$	not measured
Event-by-event v_n distributions	n = 2 - 4	not measured	not measured
Event plane and v_n correlations	yes	not measured	not measured
Direct photons at low $p_{\rm T}$	yes	not measured	not measured 6
Jet quenching	yes	not observed 7	not measured 8
Heavy flavor anisotropy	ves	hint ⁹	not measured

▲ ■ シ へ ペ IS 2019 37 / 37

イロト イヨト イヨト イ