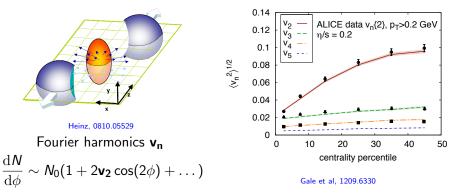

Proton shape fluctuations

Heikki Mäntysaari

University of Jyväskylä, Department of Physics Finland

What is the origin of correlations in small systems?

Large long-range correlations in p + p and p + Pb


CMS, JEHP 09 (2010) 091

CMS, PLB 724 (2013) 213

Long range in rapidity, origin from early times, but what?

See also talks by Mace, Gaidosova, Broniowski

Hydro transforms initial spatial anisotropy \Rightarrow momentum anisotropy.

Also non-trivial proton geometry affecting p+p and p+A measurements?

A fundamental question

How are quarks and gluons distributed spatially? How do the positions fluctuate?


```
particlezoo.net
```

Practical applications to for example

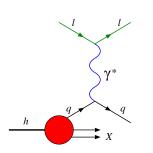
Collective phenomena in p + A and p + p Mäntysaari, Schenke, Shen, Tribedy, Heinz,

Singer, Welsh, Moreland, Bernhard, Ke, Bass, Albacete, Petersen, Soto-Ontoso

Exclusive scattering processes Bendova, Krelina, Goncalves, Cepila, Contreras, Takaki; Blaizot, Traini;

H.M, Schenke

Elastic p + p and *hollowness* effect Albacete, Soto-Ontoso


1. Proton shape fluctuations & diffraction

Diffraction

- Scattering with no exchange of net color charge
- Experimental signature: rapidity gap in the detector
- pQCD: at least two-gluon exchange

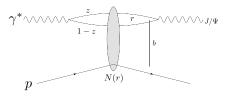
Bendova, Krelina, Goncalves,Cepila, Contreras, Takaki; Blaizot, Traini; Mäntysaari, Schenke

Photon as a simple probe of the proton structure

 $\begin{array}{c} \ell \\ \ell \\ Q \\ Q \\ P \\ T = (P' - P)^2 \end{array} \end{pmatrix} J/\Psi$

Deep Inelastic Scattering

- $e + p \rightarrow e + X$
- $\sigma \sim$ total (gluon)density
- No t, integrated over geometry


Diffractive vector meson production

- $e + p \rightarrow e + p + J/\Psi$
- Can measure total momentum transfer
 - Fourier conjugate to impact parameter
 - Access to spatial density profile

Diffractive vector meson production at high energy

High energy factorization:

- $\gamma^* \rightarrow q\bar{q}$ splitting, wave function $\Psi^{\gamma}(r, Q^2, z)$
- qq̄ dipole scatters elastically: N(r, x, b)
- $q\bar{q} \rightarrow J/\Psi$, wave function $\Psi^{V}(r, Q^{2}, z)$

Diffractive scattering amplitude

$$\mathcal{A}^{\gamma^* p \to V p} \sim \int \mathrm{d}^2 b \mathrm{d} z \mathrm{d}^2 r \Psi^{\gamma *} \Psi^{V}(r, Q^2, z) \mathbf{e}^{-\mathbf{i} \mathbf{b} \cdot \Delta} N(r, x, b)$$

- N(r, x, b): dipole-proton scattering amplitude
- Impact parameter is the Fourier conjugate to the momentum transfer $(-t \approx \Delta^2) \rightarrow$ access to the spatial structure

Proton shape from coherent diffraction

Coherent cross section, Good, Walker, PRD 120, 1960

Average interaction of states that diagonalize the scattering matrix

- These states are qq̄ dipoles with fixed size r, probing fixed target configuration Ω
- Target remains in the same quantum state

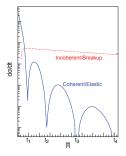
Coherent cross section

$$\frac{\mathrm{d}\sigma^{\gamma^*A \to V\!A}}{\mathrm{d}t} \sim |\langle \mathcal{A}^{\gamma^*A \to V\!A} \rangle_{\Omega}|^2$$

 Cross section probes average b dependence of the scattering amplitude = target geometry

$$\langle \mathcal{A}^{\gamma^* p \to V p} \rangle_{\Omega} \sim \int \mathrm{d}^2 \mathbf{b} \mathrm{d}z \mathrm{d}^2 \mathbf{r} \Psi^{\gamma *} \Psi^V(|\mathbf{r}|, z, Q^2) \mathbf{e}^{-\mathbf{i}\mathbf{b}\cdot\boldsymbol{\Delta}} \langle N(|\mathbf{r}|, x, \mathbf{b}) \rangle_{\Omega}$$

Incoherent diffraction = target dissociation


Incoherent cross section

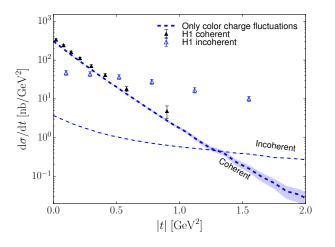
- Target final state $|\mathbf{f}
 angle
 eq$ initial state $|\mathbf{i}
 angle$
- No net color charge transfer
- Rapidity gap between J/Ψ and target remnants

$$egin{split} \sigma_{ ext{incoherent}} &\sim \sum_{oldsymbol{f}
eq i} \left| \langle oldsymbol{f} | \mathcal{A} | i
angle
ight|^2 \ &= \sum_{oldsymbol{f}} \langle i | \mathcal{A} | oldsymbol{f}
angle^\dagger \langle oldsymbol{f} | \mathcal{A} | i
angle - \langle i | \mathcal{A} | i
angle^\dagger \langle i | \mathcal{A} | i
angle \end{split}$$

Average over initial states:

$$\sigma_{\rm incoherent} \sim \langle |\mathcal{A}|^2 \rangle_{\Omega} - |\langle \mathcal{A} \rangle_{\Omega}|^2$$

Incoherent cross section = variance of $\mathcal{A}^{\gamma^* \mathcal{A} \rightarrow \mathcal{V} \mathcal{A}}$


• Amount of event-by-event fluctuations in target configurations Ω Miettinen, Pumplin, PRD 18, 1978, Caldwell, Kowalski, Phys.Rev. C81 (2010) 025203

Heikki Mäntysaari (JYU)

Proton shape fluctuations

Proton shape from diffraction: $\gamma + p \rightarrow J/\Psi + p$

HERA data with only color charge fluctuations ($x \sim 10^{-3}$)

Round CGC proton: Color charges +Yang-Mills

H.M, B. Schenke, 1607.01711, H1: 1304.5162

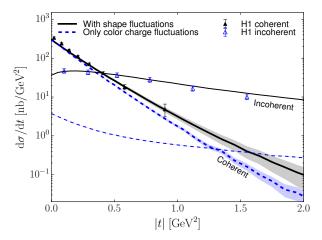
Simple constituent quark inspired picture:

- Sample quark positions from a Gaussian distribution (width B_{qc})
- Small-x gluons are located around the valence quarks (width B_q).
- Combination of B_{ac} and B_{a} sets the degree of geometric fluctuations

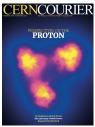
Now proton = 3 overlapping hot spots.

$$T_{\text{proton}}(b) = \sum_{i=1}^{3} T_q(b-b_i) \qquad T_q(b) \sim e^{-b^2/(2B_q)}$$

+ density fluctuations for each hot spot


H.M, Schenke, 1607.01711, 1603.04349, also more complicated geometries

Similar setup e.g. in Bendova, Cepila, Contreras; Cepila, Contreras, Krelina, Takaki; Traini, Blaizot


Heikki Mäntysaari (JYU)

Proton shape fluctuations

Constraining proton fluctuations: $\gamma + p \rightarrow J/\Psi + p$

Round

HERA data requires large event-by-event fluctuations

H.M, B. Schenke, 1607.01711

Approach 1: parametrize number of hot spots

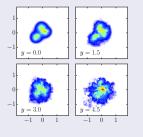
Small-x gluon emissions increase the number of hot spots

Cepila, Contreras, Tapia Takaki, 1608.07559

$$N_{hs}(x) \sim x^{p_1}(1+p_2\sqrt{x})$$

Approach 2: Solve small-x evolution equations

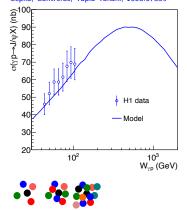
Evolve proton structure by solving


• BK evolution with impact parameter

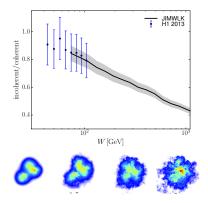
Berger, Stasto, 1106.5740, Cepila, Contreras, Matas, 1812.02548

JIMWLK evolution

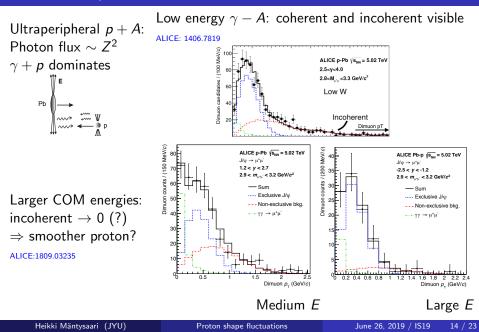
Schlichting, Schenke, 1407.8458, H.M., Schenke, 1806.06783


Fit HERA F_2 and exlusive data. Difficulty: regulating confinement effects

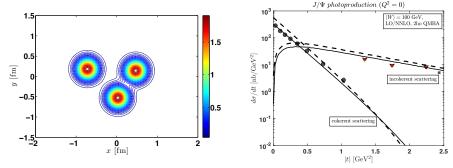
Towards small x: $\gamma + p \rightarrow J/\Psi + p^*$


Increasing # of hot spots w energy: Smoother proton, less fluctuations

Cepila, Contreras, Tapia Takaki, 1608.07559

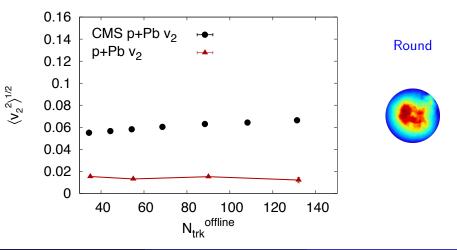


JIMWLK evolution event-by-event Includes also growing RMS size


H.M., Schenke, 1806.06783

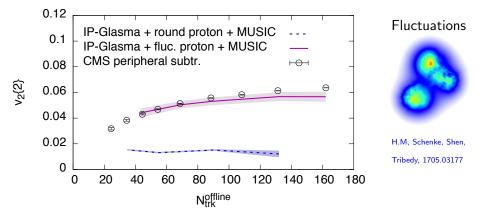
Exclusive J/Ψ production at small x at the LHC

Quark position correlations included in Traini, Blaizot, 1804.06110 Less free parameters, still good description of the HERA data

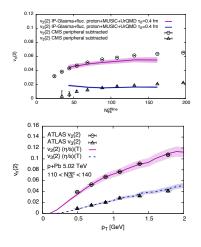


Traini, Blaizot, 1804.06110

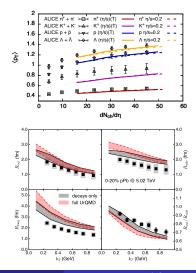
Traini, Blaizot, 1804.06110


Implications on heavy ion phenomenology: p+A

Round protons: hydro simulations can not describe v_2 in p + Pb collisions IP-Glasma, Schenke, Venugopalan, 1405.3605: need eccentric protons

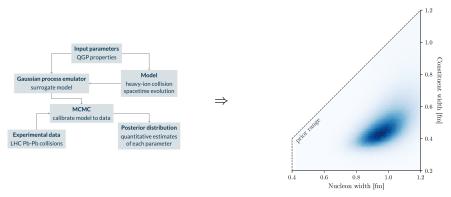

Implications on heavy ion phenomenology: p+A

Hydro + fluctuations from HERA J/Ψ data: success



Implications on heavy ion phenomenology: p+A

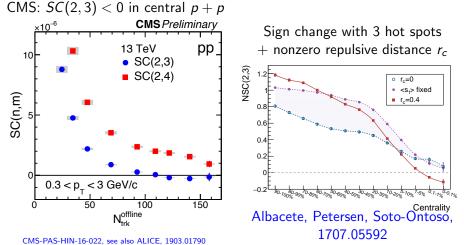
Hydro + fluctuations from HERA J/Ψ data: success


H.M, Schenke, Shen, Tribedy, 1705.03177

2. Other approaches to proton shape fluctuations

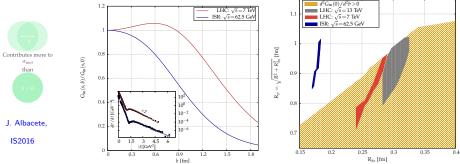
Fluctuations from p + A data

Extract proton fluctuations from hydro simulations of p+Pb and Pb+Pb Apply Bayesian methodology



Find also large fluctuations in the proton, but slightly different: Larger proton, bigger hot spots. But energy deposit $\neq p$ density profile

Moreland, Bernhard, Ke, Bass, QM2017 and 1704.04486, Moreland, Bernhard, Bass, 1808.02106, talk by Bass today


20 / 23

CMS: in central p + p correlation between v_2 and v_3 becomes negative Explained: fluctuating hot spots + short range repulsive correlations

Short range correlations and the Hollowness effect

Hollowness effect seen in elastic p+p scattering at LHC energies:

With short range repulsive correlations, can constrain

- Proton size R_p
- Hot spots size R_{hs}

Albacete, Soto-Ontoso, 1605.09176

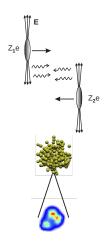
Conclusions

Strong hints from HERA and LHC data that

- Proton geometry has large event-by-event fluctuations
- Fluctuations evolve in x
- Multi dimensional event-by-event picture of the proton
 - Input from (diffractive) DIS, applications on heavy ion (or p+p) phenomenology
 - Or vice versa...
- New interesting data coming
 - Ultraperipheral collisions at the LHC

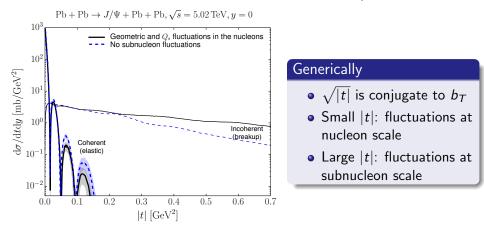
See also M. Walczak, Tue 17:40, ALICE, ATLAS, CMS, LHCb summaries on Mon

• Electron Ion Collider See also J. H. Lee, Wed 18:10


BACKUPS

Ultra Peripheral heavy ion Collisions (UPC): access to photonuclear reactions

• At $|b_T| > 2R_A$ one nucleus acts as a photon source Two sources of fluctuations:


- Nucleon positions from Woods-Saxon
- Constituent quark structure for each nucleon

Exclusive J/Ψ production: probe both components

Accessing fluctuations at different scales

LHC: Access nuclear gluon at very small x, midrapidity $x_p \approx 6 \cdot 10^{-4}$

LHC: see nucleon scale fluctuations in Pb

H.M, Schenke, 1703.09256; Cepila, Contreras, Krelina, 1711.01855:

ALICE UPC data (1406.7819) seems to prefer subnucleon fluctuations

Heikki Mäntysaari (JYU)

Proton shape fluctuations

26 / 23