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Focus: Probing the Inner Workings of QGP

1. Hydro has been very phenomenologically successful.

2. Studying the inner workings of QGP lies beyond hydro.
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Hydro vs Non-hydro Modes

I Two trivial statements:

1. QFTs contain hydrodynamics.

2. QFTs go beyond hydrodynamics in different ways.

I Examples:

x Hydrodynamic

pole

Dk2+...

AdS/CFT

Non-hydodynamic

poles ω ~2πT(1+/- i)n

x

x

x

x

cf. Saso’s talk

xDk2+...

QGP

??
the analytic structure of Gαβ,γδR (ω, ~k) = −i

∫
d4xe ik·xθ(x0)〈[Tαβ(x),Tγδ(0)]〉
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Strategy to Probe Inner Workings of QGP

Decreasing R ∼ 1/k enhances non-hydro contributions.
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Strategy to Probe Inner Workings of QGP

GR(τ, k) ∼ chyde
−Dk2τ + non-hydro terms

Decreasing R ∼ 1/k enhances non-hydro contributions.
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An Illustration Using A
Conformal Kinetic Transport (CKT)
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Hydro Is Hydro

x Hydrodynamic
pole

Dk2+...

hydro

Romatschke, Eur. Phys. J. C 76, no. 6, 352 (2016) [arXiv:1512.02641];

Kurkela and Wiedemann, arXiv:1712.04376.

The Israel-Stewart (IS) hydro

DΠµν + 4
3
Πµν∇αuα = 1

τπ
(Πµν + 2ησµν) .
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IS Hydro Is Not Only Hydro

x Hydrodynamic
pole

Dk2+...

Israel-Stewart hydro

Non-hydrodynamic
pole ω ��-i�τπ

x

Romatschke, Eur. Phys. J. C 76, no. 6, 352 (2016) [arXiv:1512.02641];

Kurkela and Wiedemann, arXiv:1712.04376.

The Israel-Stewart (IS) hydro

DΠµν + 4
3
Πµν∇αuα = 1

τπ
(Πµν + 2ησµν) .
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Kinetic Transport in ITA Is Not Less Hydro

x Hydrodynamic
pole

Dk2+...

Kinetic Transport

Non-hydrodynamic
cut at 1�τπIm ω=-

Romatschke, Eur. Phys. J. C 76, no. 6, 352 (2016) [arXiv:1512.02641]; Kurkela and Wiedemann, arXiv:1712.04376.

With the same transport coefficients and τπ calculated in the CKT,

1. The CKT and IS hydro have the same hydro pole.

2. IS non-hydro pole is replaced by a branch cut in CKT.
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Pin Down Sensitivity to Non-hydro Modes

x identical hydro pole

x

xDk2+...

CKTIS hydro

How much difference can this make?

/τπ1

The approach to answer this question:

CKTIS hydro

τπ

τ0

τs
τ
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Proof of Sensitivity to Non-hydro Modes

Ideal hydro

τ
s
=0.15 R

τ
s
=0.55 R

τ
s
=0.75 R

τ
s
=0.95 R

CKT vs IS Hydro

Full transport
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Sensitivity to non-hydro modes is more pronounced in
small systems.

Kurkela, Wiedemann and BW, arXiv:1805.04081.
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Interpretation of Sensitivity to Non-hydro Modes

xDk2+...

x

CKT or IS hydro

GR(τ, k) ∼ chyd e−Dk2τ︸ ︷︷ ︸
reduced for small R

+ cnon−hyd e−
τ
τπ︸ ︷︷ ︸

enhanced for small ε

Non-hydro modes are enhanced in small or dilute systems ⇔
small γ̂ = R/lmfp with lmfp mean free path.
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Flow PURELY from Non-hydro modes at γ̂ → 0

From mode-mode coupling due to one final-state scattering

dE⊥
dηdφ

=
1

2π

dE⊥
dη

∣∣∣
γ̂=0,εn=0

1− 0.210 γ̂ − 0.212 γ̂ε2︸ ︷︷ ︸
v2

2 cos(2φ− 2ψ2)

−0.140 γ̂ε3︸ ︷︷ ︸
v3

2 cos(3φ− 3ψ3)

+0.063 γ̂ε2
2︸ ︷︷ ︸

v4

2 cos(4φ− 4ψ2) + 0.015 γ̂ε2
2

+0.112 γ̂ε2
3︸ ︷︷ ︸

v6

2 cos(6φ− 6ψ3) + 0.043 γ̂ε2
3

+0.088 γ̂ε2ε3︸ ︷︷ ︸
v5

2 cos(5φ− 3ψ3 − 2ψ2)

 .

Kurkela, Wiedemann and BW, Phys. Lett. B 783, 274 (2018), [arXiv:1803.02072].
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Physical picture for flow in small systems

Flow is a signature for final-state interactions, not for hydro!

See also: Borghini & Gombeaud, Eur. Phys. J. C 71 (2011) 1612; He, Edmonds, Lin, Liu, Molnar & Wang, Phys. Lett. B 753 (2016) 506.
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From Free-streaming to Ideal Hydro

Ideal hydro

τ
s
=0.15 R

τ
s
=0.55 R

τ
s
=0.75 R

τ
s
=0.95 R

CKT vs IS Hydro

single hit

Full transport
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Non-hydro modes are more efficient to build up v2 in
small systems!

Kurkela, Wiedemann and BW, arXiv:1805.04081.
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Hydro vs Non-hydro
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Qualification of Being a Fluid

Criteria:

hydro-like ⇔ Q < 0.1

in terms of ”fluid quality”

Q(t, r) =

√
(Tkin−Thyd)

µν
(Tkin−Thyd)

µν

(Tid)µν(Tid)µν
.

Kurkela, Wiedemann and BW, arXiv:1905.05139.

Up to 2nd order in gradient expansion,

Tµν
hyd = (ε+ p) uµ uν + p gµν + Πµνhyd

Πµνhyd = −2ησµν + 2τΠ η

[
<Dσµν> +

1

3
σµν∇αuα

]
+ λ1σ

<µ
α σν>λ

σµν =

{
1

2
[∆µα∇αuν+∆να∇αuµ]−1

3
∆µν∇αuα

}
Baier, Romatschke, Son, Starinets and Stephanov, JHEP 0804, 100 (2008).
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How Much ”Fluid” is CKT?

Kurkela, Wiedemann and BW, arXiv:1905.05139.
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Fluid vs Non-fluid in Our Numerical Results
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Confronting Data
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Measurement of Opacity
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Kin.Th. ceos=0.9,
η
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=
3

4π
ϵ2uncertainty: GGMLO

v2from 5.02 TeV PbPb, ALICE

GGMLO: Giacalone, Guerrero-Rodrguez, Luzum, Marquet & Ollitrault, arXiv:1902.07168.

1. Definition: γ̂ ≡ γR(ε0τ0/R)
1
4 = 0.11

η/s

(
R

dE⊥
dηs

πfwork (γ̂)

) 1
4

2. Conformal scaling property: v2
ε2

∣∣∣
γ̂<1
∝
(
R〈p⊥〉 dNdηs

) 1
4
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Confronting AA Data
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Kinetic Transport

^

(v2 gives a loose constraint on 4π η
s
∈ (2, 4).)

Flow in (central) AA collisions is of hydro origin.

For details, cf. Urs’ Talk
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Confronting pA Data
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^

Flow in pA collisions mostly has a non-hydro origin
because bulk matter is mostly not hydro-like.

For details, cf. Urs’ Talk
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Conclusions

1. Probing inner workings of QGP ⇔ going beyond hydrodynamics.

2. The strategy to do so is as follows:
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Conclusions

3. The CKT implements the same hydro as IS hydro with a physically
motivated non-hydro sector. And we find
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And for small systems: v2
ε2

∣∣∣
γ̂<1
∝ γ̂ ∝

(
R〈p⊥〉 dNdηs

) 1
4

4. The strategy provides a general approach & implementation in all theories
beyond hydro is most welcome.
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Backup Slides
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Implementation in QFT
QFT has richer structures than kinetic theory. In two-point function, one has

Re k+

Im k+

2p+
p2

2p+
p-

p2
2p+
p-

the original contour

the steepest descent path
C1

C2

C3
l1

l2

saddle points

Re k+

Im k+

-2p+
p2

2p+
p-

p2
2p+
p-

the original contour

the steepest descent path
C1

C2

C3
l1

l2

saddle points

Kovchegov & BW, JHEP 1803, 157 & 178 (2018).

v2 can be calculated using the framework in these papers (working in progress).

Bin Wu Transport & QGP


