Heavy flavor in small systems
Experimental overview

Zhenyu Chen (陈震宇)
Stony Brook University & BNL
Initial Stages 2019
Probing initial state with heavy flavor

Heavy Flavor in different colliding systems

- $p+p$
 - pQCD
 - Vacuum Reference

- $p+A$
 - Cold Nuclear Matter Effect

- $A+A$
 - Hot Medium Effects
 - + CNM

Zhenyu Chen - IS2019
Probing initial state with heavy flavor

Heavy Flavor in different colliding systems

- **p+p**
 - pQCD
 - Vacuum Reference

- **p+A**
 - Cold Nuclear Matter Effect

- **A+A**
 - Hot Medium Effects
 - + CNM

Heavy Flavor in p+A crucial for initial state
- nPDFs, CGC ...
- Interplay with other CNM effect
Probing initial state with heavy flavor

Heavy Flavor in different colliding systems

- $p+p$
 - pQCD
 - Vacuum Reference
- $p+A$
 - Cold Nuclear Matter Effect
- $A+A$
 - Hot Medium Effects + CNM

Heavy Flavor in $p+A$ crucial for initial state
- nPDFs, CGC …
- Interplay with other CNM effect

Selected HF production results in $p+A$

Zhenyu Chen - IS2019
Probing initial state with heavy flavor

Heavy Flavor in different colliding systems

- **p+p**
 - pQCD
 - Vacuum Reference

- **p+A**
 - Cold Nuclear Matter Effect + Hot Medium Effects?

- **A+A**
 - Hot Medium Effects + CNM

Heavy Flavor in p+A crucial for initial state
- nPDFs, CGC …
- Interplay with other CNM effect

Selected HF production results in p+A

HF flow in small system – hot medium effect?
Open Charm: D meson

Suppressed at forward, no suppression at backward
Consistent with nPDF and CGC
Potential to constrain nPDF models with precise data

Schmidt, Mon. 11:45
Open Charm: D meson

Similar results for D^+, D^0, D^*, even D_s^+
Open Charm: D meson

Similar results for D^+, D^0, D^*, even D_s^+

Combined results compatible with various models

arXiv: 1906.03425
Open Charm: Λ_c

Forward-backward ratio described by nPDF models

Schmidt, Mon. 11:45
Open Charm: Λ_c

Forward-backward ratio described by nPDF models
Λ_c^+/D^0 ratio at mid-rapidity similar to pp, higher than MC
Charmonium: J/ψ

CNM effects mainly affect production at forward rapidity
Described by various models
Charmonium: J/ψ

Limited CNM effects in p+Al
Big change at low p_T with target size
Charmonium: J/ψ

Limited CNM effects in p+Al
Big change at low p_T with target size
Little/no change with projectile size
Charmonium: J/ψ

Limited CNM effects in p+Al
Big change at low p_T with target size
Little/no change with projectile size

Evolution of CNM effects with system size

Lim, Mon. 14:30
Suppression stronger at forward y and low p_T
Bottomonium: Υ

Suppression stronger at forward y and low p_T

Hint of over-estimation of backward R_{pA}

Hayashi, Tue. 15:00
Suppression stronger at forward y and low p_T

Hint of over-estimation of backward R_{pA}

Possible final state effect?
Bottomonium: excited Υ

CNM effects cancel out
Bottomonium: excited Υ

CNM effects cancel out

Υ excited states more suppressed than pp

Indication of **final state effects** from (cold) co-mover
Bottomonium: excited γ

CNM effects cancel out

γ excited states more suppressed than pp

Indication of final state effects from (cold) co-mover

Could there be hot medium effect?

Zhenyu Chen - IS2019
Collectivity in small systems

Strong evidences of medium effects in light flavor sector

How about Heavy Flavor?

Xu, Wed. 16:50
Heavy flavor lepton v_2 in pPb

Non-zero v_2 for heavy flavor leptons
Smaller than charged hadrons
Heavy flavor lepton v_2 in pPb

Non-zero v_2 for heavy flavor leptons
Smaller than charged hadrons
Indication of extension to low multiplicity
$D^0 v_2$ in pPb

Preliminary CMS pPb 8.16TeV

Significant $D^0 v_2$

CMS

PRL 121.082301 (2018)

PbPb 5.02TeV

Centrality 30-50%

185 $\leq N_{\text{trk}}^{\text{offline}} < 250$

$|y| < 1$

Polynomial fits to K (GeV/c)

T_{p}

$0 2 4 6 8$

p_T (GeV/c)

$0.0 0.1 0.2$

$V_{2\text{sub}}$

Zhenyu Chen - IS2019
D⁰ v₂ in pPb

Significant D⁰ v₂
Smaller than light flavors with NCQ scaling
D0 v_2 in pPb

Significant D0 v_2
Smaller than light flavors with NCQ scaling
Less medium interaction than in PbPb?
Strong evidence of HF transport in QGP in A+A when combine v_2 and R_{AA} results
Strong evidence of HF transport in QGP in A+A when combine v_2 and R_{AA} results

Same in p+A?
Transport models assuming QGP disfavored by R_{pA}
No large medium modification observed
Transport models assuming QGP disfavored by R_{pA}
No large medium modification observed
Flow purely from coalescence? Check J/ψ!!
Surprisingly large v_2, compatible with D^0 Charm quark flow confirmed
J/ψ v$_2$ in pPb

Surprisingly large v$_2$, compatible with D0

Charm quark flow confirmed

Hint of unexpected NCQ scaling at low KE$_T$/n$_q$

Where does the flow come from?!
Transport model assuming QGP describe R_{AA}
Large regeneration in A+A
\(J/\psi \, v_2 \) in PbPb

Transport model assuming QGP describe \(R_{AA} \)

Large regeneration in A+A

Collective flow from regenerated \(J/\psi \)

High \(p_T \) \(v_2 \) not well understood
J/ψ \(v_2 \) in pPb

Same model describe \(R_{pA} \)
J/ψ v_2 in pPb

Same model describe R_{pA}
Small regeneration - small hot medium effect
J/\Psi \, \nu_2 \, \text{in pPb}

Same model describe R_{pA}
Small regeneration - small hot medium effect
Disfavored by ν_2 in p+A
J/\psi \ \nu_2 \ in \ pPb

Alternative CGC model describe R_{pA} and ν_2

Predicting Upsilon ν_2 same as J/\psi

Interesting to see open Heavy Flavor hadron results

Zhenyu Chen - IS2019
c/b → μ ν₂ in pp

Open a new gate for b flow in small system
Indicate ~0 ν₂ for b quark
c/b → μ v_2 in pp

Open a new gate for b flow in small system
Indicate ~ 0 v_2 for b quark
CGC: not applicable at this p_T range
Hydro: early formation time & small system size?

Hill, Wed. 14:20
Open a new gate for b flow in small system
Indicate ~ 0 v_2 for b quark
CGC: not applicable at this p_T range
Hydro: early formation time & small system size?
Detail study of b hadron v_2 needed (esp. low p_T)

Zhenyu Chen - IS2019
How to understand the large flow of $c\rightarrow\mu$ in pp?
Summary & Outlook

Heavy Flavor production in small systems
- CNM effects describe major results
- Indication of final state effect for excited Quarkonium

Flow of Heavy Flavor quarks
- Transport in QGP model dis-favored
- Color Glass Condensate model favored
- Constraints and puzzles from pp c/b→μ v₂
Summary & Outlook

Huge amount of small system data expected—detailed R_{pA}, flow for c & b

- LHC: Run 3&4 with detector upgrades
- RHIC: sPHENIX + upgraded STAR

RHIC small system scan proposals – CNM & hot medium effect evolution

- Symmetric collisions - arXiv.1904.10415 (O+O proposed in STAR BUR)
- Asymmetric collisions – PRC 99 (2019) 044904
Thank you!!

Why showing my cats in physics conference?!

Simply because they are too cute!!
Back up
Charmonium

Model with only shadowing effects touch upper limit
Additional nuclear absorption favored
CMS Lambda_c ratio

PbPb 44 µb⁻¹, pp 38 nb⁻¹ (5.02 TeV)

CMS

|y| < 1.0

PbPb

Data: Cent. 0-100%

pp

Data

PYTHIA8

PYTHIA8 + CR

EPJC78 (2018) 348

arXiv:1902.08889

Zhenyu Chen - IS2019
HF flow in AA & pA

ALICE Preliminary
30–50% Pb–Pb, $\sqrt{s_{NN}} = 5.02$ TeV
- Prompt D^0, D^+, D^{*+} average, $|y|<0.8$
- $v_2 \{SP, |\Delta \eta|>0.9\}$
- J/ψ, $2.5<y<4$
- $v_2 \{SP, |\Delta \eta|>1\}$ JHEP 02 (2019) 012
- π^+, $|y|<0.5$
- $v_2 \{SP, |\Delta \eta|>2\}$ JHEP 1809 (2018) 006
- charged particles, $|\eta|<0.8$
- $v_2 \{SP, |\Delta \eta|>2\}$ JHEP 07 (2018) 103

CMS

185 $\leq N_{\text{trk}}^{\text{offline}} < 250$

Zhenyu Chen - IS2019
Open Beauty: B^+

Good agreement with non-prompt J/ψ and nPDF models

PRD 99 052011 (2019)
Survival of initial state flow

See also:
PRC 92, 054906 (2015)

arXiv.1906.01422

Zhenyu Chen - IS2019
Fireball parameters

- **pPb @ 8.16 TeV -4.46<y<-2.96**

 - T[GeV] vs. time[fm/c]
 - Lines denote different collision percentages:
 - 2 - 10%
 - 10 - 20%
 - 20 - 40%
 - 40 - 60%
 - 60 - 80%
 - 80 - 100%

- **Fireball Radius**

 - Radius y (elliptic fireball)
 - Radius x (elliptic fireball)
 - Radius r (round fireball)

Zhenyu Chen - IS2019
CGC v2 vs Qs

$B_p = 6 \text{ GeV}^{-2}$

$\Delta = 0.5 \text{ GeV}$