Heavy flavor in small systems

Experimental overview

Zhenyu Chen (陈震宇) Stony Brook University & BNL Initial Stages 2019

Heavy Flavor in different colliding systems

p+p pQCD Vacuum Reference

p+A Cold Nuclear Matter Effect A+A Hot Medium Effects + CNM

Heavy Flavor in different colliding systems

Heavy Flavor in p+A crucial for initial state

- nPDFs, CGC ...
- Interplay with other CNM effect

Heavy Flavor in different colliding systems

Heavy Flavor in p+A crucial for initial state

- nPDFs, CGC ...
- Interplay with other CNM effect

Selected HF production results in p+A

Heavy Flavor in different colliding systems

Heavy Flavor in p+A crucial for initial state

- nPDFs, CGC ...
- Interplay with other CNM effect

Selected HF production results in p+A HF flow in small system – hot medium effect?

Open Charm: D meson

Suppressed at forward, no suppression at backward Consistent with nPDF and CGC Potential to constrain nPDF models with precise data

Schmidt, Mon. 11:45

Open Charm: D meson

arXiv: 1906.03425

Similar results for D⁺, D⁰, D^{*}, even D_s^+

Open Charm: D meson

Faggin, Tue. 15:20

Open Charm: Λ_{c}

Forward-backward ratio described by nPDF models

Schmidt, Mon. 11:45

Open Charm: Λ_{c}

Forward-backward ratio described by nPDF models Λ_c^+/D^0 ratio at mid-rapidity similar to pp, higher than MC

Schmidt, Mon. 11:45 Faggin, Tue. 15:20

CNM effects mainly affect production at forward rapidity Described by various models

Limited CNM effects in p+AlBig change at low p_T with target size

Limited CNM effects in p+Al Big change at low p_T with target size Little/no change with projectile size

Limited CNM effects in p+Al Big change at low p_T with target size Little/no change with projectile size Evolution of CNM effects with system size

Lim, Mon. 14:30

Zhenyu Chen - IS2019

Bottomonium: Y

Suppression stronger at forward y and low p_T

Bottomonium: Y

Suppression stronger at forward y and low p_T Hint of over-estimation of backward R_{pA}

Bottomonium: Y

Suppression stronger at forward y and low p_T Hint of over-estimation of backward R_{pA} **Possible final state effect?**

Bottomonium: excited Υ

CNM effects cancel out

Bottomonium: excited Υ

CNM effects cancel out Y excited states more suppressed than pp Indication of final state effects from (cold) co-mover

Bottomonium: excited Υ

CNM effects cancel out Y excited states more suppressed than pp Indication of final state effects from (cold) co-mover Could there be hot medium effect?

Collectivity in small systems

Strong evidences of medium effects in light flavor sector How about Heavy Flavor?

Xu, Wed. 16:50

Heavy flavor lepton v_2 in pPb

Non-zero v₂ for heavy flavor leptons Smaller than charged hadrons

Heavy flavor lepton v_2 in pPb

Non-zero v₂ for heavy flavor leptons Smaller than charged hadrons Indication of extension to low multiplicity

$D^0 v_2$ in pPb

$D^0 v_2$ in pPb

PRL 121.082301 (2018)

Significant D⁰ v₂ Smaller than light flavors with NCQ scaling

$D^0 v_2$ in pPb

Significant D⁰ v₂ Smaller than light flavors with NCQ scaling Less medium interaction than in PbPb?

Zhenyu Chen - IS2019

Strong evidence of HF transport in QGP in A+A when combine v_2 and R_{AA} results

Strong evidence of HF transport in QGP in A+A when combine v₂ and R_{AA} results Same in p+A?

Zhenyu Chen - IS2019

Transport models assuming QGP disfavored by $\rm R_{pA}$ No large medium modification observed

Transport models assuming QGP disfavored by R_{pA} No large medium modification observed Flow purely from coalescence? Check J/ψ!!

$J/\psi v_2$ in pPb

CMS pPb 8.16TeV $\Box K_s^0$ Prompt J/ψ $185 \le N_{trk}^{offline} < 250$ Prompt D⁰ $\circ \Lambda$ 0.2 \bigcirc 0 \bigcirc \bigcirc Θ \bigcirc v^{sub} 2 0.1 0.0 0 2 6 8 4 $p_{_{T}}$ (GeV)

Surprisingly large v₂, compatible with D⁰ Charm quark flow confirmed

$J/\psi v_2$ in pPb

PLB 791 (2019) 172

Surprisingly large v₂, compatible with D⁰ Charm quark flow confirmed Hint of un-expected NCQ scaling at low KE_T/n_q Where does the flow come from?!

 $J/\psi v_2$ in PbPb

Transport model assuming QGP describe R_{AA} Large regeneration in A+A

$J/\psi v_2$ in PbPb

Transport model assuming QGP describe R_{AA} Large regeneration in A+A Collective flow from regenerated J/ψ High p_T v₂ not well understood

Zhenyu Chen - IS2019

 $J/\psi v_2$ in pPb

JHEP 03 (2019) 015

Same model describe R_{pA}

 $J/\psi v_2$ in pPb

JHEP 03 (2019) 015

Same model describe R_{pA} Small regeneration - small hot medium effect

 $J/\psi v_2$ in pPb

Same model describe R_{pA} Small regeneration - small hot medium effect Disfavored by v₂ in p+A

Zhenyu Chen - IS2019

Alternative CGC model describe R_{pA} and v_2 Predicting Upsilon v_2 same as J/ψ Interesting to see open Heavy Flavor hadron results

Zhenyu Chen - IS2019

$c/b \rightarrow \mu v_2 \text{ in } pp$

Open a new gate for b flow in small system Indicate ~0 v₂ for b quark

$c/b \rightarrow \mu v_2 \text{ in } pp$

Open a new gate for b flow in small system Indicate ~0 v₂ for b quark CGC: not applicable at this p_T range Hydro: early formation time & small system size?

$c/b \rightarrow \mu v_2 \text{ in } pp$

Open a new gate for b flow in small system Indicate ~0 v₂ for b quark CGC: not applicable at this p_T range Hydro: early formation time & small system size? Detail study of b hadron v₂ needed (esp. low p_T)

$c/b \rightarrow \mu v_2$ in pp

How to understand the large flow of $c \rightarrow \mu$ in pp?

Summary & Outlook

Heavy Flavor production in small systems

- CNM effects describe major results
- Indication of final state effect for excited Quarkonium

Flow of Heavy Flavor quarks

- Transport in QGP model dis-favored
- Color Glass Condensate model favored
- Constraints and puzzles from pp c/b $\rightarrow \mu$ v₂

Summary & Outlook

Huge amount of small system data expected-detailed R_{pA}, flow for c & b

• LHC: Run 3&4 with detector upgrades

RHIC small system scan proposals – CNM & hot medium effect evolution

- Symmetric collisions arXiv.1904.10415 (O+O proposed in STAR BUR)
- Asymmetric collisions PRC 99 (2019) 044904

Thank you!!

Why showing my cats in physics conference?! Simply because they are too cute!!

Charmonium

Model with only shadowing effects touch upper limit Additional nuclear absorption favored

CMS Lambda_c ratio

HF flow in AA & pA

Open Beauty: B⁺

Good agreement with non-prompt J/psi and nPDF models

Survival of initial state flow

See also: PRC 92, 054906 (2015)

51

Fireball parameters

CGC v2 vs Qs

