Ultra-peripheral Collisions

Janet Seger

Creighton University

Office of Jun Science

June 24-28, 2019

Ultraperipheral Collisions

- Large impact parameter $(b > R_1 + R_2)$
 - \rightarrow no nuclear overlap
 - \rightarrow no "collision"
- \rightarrow electromagnetic interactions dominate

 Experimentally: very low multiplicity events with small momentum transfer, rapidity gaps

RHIC and the LHC: high luminosity photon colliders

- Relativistic heavy ions are intense source of quasi-real photons (Weizsäcker-Williams)
 - Photon flux from each nucleus

$$N(k,b) = \frac{Z^2 \alpha}{\pi^2} \frac{k}{\left(\hbar c\right)^2} \frac{1}{\gamma^2} \left[K_1^2 \left(\frac{kb}{\gamma \hbar c}\right) + \frac{1}{\gamma^2} K_0^2 \left(\frac{kb}{\gamma \hbar c}\right) \right]$$

 Z² dependence → any incoherent emission is dramatically suppressed

$$E_{\gamma,\max} \approx \frac{\gamma \hbar c}{R}$$

~80 GeV for Pb at LHC ~3 GeV for Au at RHIC

- Typical p_T and virtuality constrained by size of emitting nucleus
 - Q ~ 1/R ~ 0.06 GeV (Pb) or 0.28 GeV (p)
- Photon beam is ~ parallel to ion beam, transversely polarized

 $b > R_1 + R_2$

Interactions in Ultraperipheral Collisions

- γ+γ Photons from the two nuclei can interact with each other pure QED
- γ+N Photons from one nucleus can interact with other nucleus – involves QCD, probes the nucleus, nPDFs, shadowing, saturation
- γ+N? Some interesting results in peripheral collisions may be explained by these same photon-induced processes – probes nuclear medium effects?

^{γ+γ} Photon-photon collisions

• Purely electromagnetic process

^{γ+γ} Lepton Pair Production

- Basic QED process
 - allows validation of EPA approach
 - Flux amplified by Z⁴ over pp
 - Background for other measurements (quarkonia, light-by-light)
 - Provides baseline for more central collisions
- Kinematic distributions and overall rates generally well described by STARLIGHT generator

(S. R. Klein, J. Nystrand, S. Seger, Y. Gorbunov, J. Butterworth, Comp. Phys. Comm, 212 (2017)258.)

ATLAS $\gamma\gamma \rightarrow \mu\mu$ ATLAS-CONF-2016-025

CMS $\gamma\gamma \rightarrow ee$

^{γ+γ} Tail at high acoplanarity

^{γ+γ} Tail at high acoplanarity

 Inclusion of soft photons via Sudakhov formula provides a long tail

^{γ+γ} Light by Light scattering

Textbook quantum physics that had nevertheless not been directly observed

Cross sections and distributions consistent with SM expectations

_{y+y} Axion-like particle search

- Exclusive diphoton final-state from resonant CP-odd axion-like particles
 - LbyL, QED and CEP considered as background in this analysis,
- No evidence for this in the 2photon signal
- \rightarrow place new limits on the coupling constant

CMS 1810.04602

YHN Photoproduction of vector mesons

- Has been extensively studied at HERA, RHIC, LHC
- Factorize into
 - photon emission (pure QED) and
 - interactions with nuclear target (includes QCD)

 Allows probe of nucleus via QCD to learn about shadowing, saturation effects, nPDFs

Photoproduction of vector mesons

- Coherent interaction: Photon interacts with entire nucleus
 - Nucleus generally remains intact
 - Small momentum transfer: p_T ~ ħ/R_A ~ 15 MeV
- Incoherent interaction: Photon can interact with individual nucleons
 - Nucleus generally breaks
 - Momentum transfer is bigger: p_T ~ ħ/R_A ~ 100 MeV

^{$\gamma+N$} Heavy Vector Mesons: J/ ψ , Y

$$\frac{\mathrm{d}\sigma^{\gamma^{\star}\mathrm{A}\to J/\psi\,\mathrm{A}}}{\mathrm{d}t} \propto \left(xG_{\mathrm{A}}(x,Q^{2})\right)^{2}$$

- 2-gluon exchange
- Sensitive probe of nuclear gluon distributions
- For vector mesons,

$$x\simeq rac{m_{J/\psi}e^{-y}}{\sqrt{s}}$$
 $Q^2=M_{J/\psi}^2/4$

- Measurements at different rapidities sample different values of W and x
- Additional soft photons can leave nuclei in excited states
 - Decay via forward neutron emission
 - RELDIS PRC 60(4)

^{γ+N} Coherent J/ψ Cross Sections

- Complementary measurements tell a consistent story
- Data shows effects of moderate shadowing
- As statistics improve, sensitive to variations in models

14/36

J. Seger Creighto

^{γ+N} Upsilon in p+Pb at 5.02 TeV

Measure cross section in W range not covered at HERA

^{γ+N} Upsilon in p+Pb at 5.02 TeV

Measure cross section in W range not covered at HERA

Eur. Phys. J. C 79 (2019) 277

Fit parameters of power-law dependent cross section consistent with HERA results, disfavors LO calc

J. Seger

^{γ+N} Coherent dσ/dt distribution determined by nuclear form factor

- Fourier transform gives distribution in transverse plane
- Location of diffractive dips sensitive to saturation

V. Goncalves, et al. Phys. Lett. B791 (2019) 299-304

^{$\gamma+N$} Diffraction in coherent $\rho d\sigma/dt$

 $t \approx -p_T^2$

 $Au + Au \rightarrow \rho + Au + Au + XnXn$, $\sqrt{s_{NN}}$ =200 GeV

Diffractive dip around $|t| \approx 0.02 \text{ GeV}^2$ is correctly predicted by the dipole MS and CCK models J. Seger

^{$\gamma+N$} Diffraction in coherent J/ ψ d σ /dt

t≈ - p_τ²

Model comparisons:

- **STARLIGHT:** Klein, Nystrand, CPC 212 (2017) 258-268
 - Vector meson dominance
 - Glauber approach
 - Includes photon p_T
- MS: Mäntysaari, Schenke, Phys.Lett. B772 (2017) 832-838
 - Dipole approach with IPsat amplitude
 - Scaled to XnXn using STARLIGHT
- CCK: Cepila, Contreras, Krelina, Phys.Rev. C97 (2018) no.2, 024901
 - Hot spot model for nucleons, dipole approach
 - Scaled to XnXn using STARLIGHT

^{$\gamma+N$} Incoherent cross section \rightarrow fluctuations?

See talk by Mäntysaari

$$\sigma_{ ext{incoherent}} \sim \sum_{f \neq i} |\langle f | \mathcal{A} | i \rangle|^2$$

= $\sum_{f} \langle i | \mathcal{A} | f \rangle^{\dagger} \langle f | \mathcal{A} | i \rangle - \langle i | \mathcal{A} | i \rangle^{\dagger} \langle i | \mathcal{A} | i \rangle$

Average over initial states: $\sigma_{\text{incoherent}} \sim \langle |\mathcal{A}|^2 \rangle_{\Omega} - |\langle \mathcal{A} \rangle_{\Omega}|^2$

Incoherent cross section = variance of $\mathcal{A}^{\gamma^* A \rightarrow V A}$

Miettinen, Pumplin, PRD 18, 1978, Caldwell, Kowalski, Phys.Rev. C81 (2010) 025203

Models with fluctuations describe trends in $\gamma p \rightarrow J/\psi p$ data

See talk by Mäntysaari

Increasing # of hot spots w energy: Smoother proton, less fluctuations

JIMWLK evolution event-by-event Includes also growing RMS size

H.M., Schenke, 1806.06783

^{γ+N} Can we see this effect in p+Pb UPCs?

See talk by Mäntysaari

Increasing energy

$$W_{\gamma A} = \sqrt{2E_{beam}M_V e^{-y}}$$

 As CM energy increases, incoherent contribution (related to fluctuations) decreases

_{y+N} Hard scattering in photo-nuclear events

Photo-nuclear events selected via

- Large summed rapidity gap and 0 neutrons on photon-going side
- Small summed rapidity gap and >0 neutrons on Pb-going side

γ+N

Hard scattering: Photonuclear di-jets in 5.02 TeV Pb+Pb

J. Seger

- Jet selection:
 - Anti- $k_{\rm T}$, R = 0.4, $|\eta| < 4.4$
 - $p_{\rm T}^{\rm lead}$ > 20 GeV, $p_{\rm T}^{\rm jets}$ > 15 GeV
- Shape qualitatively described by Pythia 6 with photon flux scaled via Starlight
- Samples PDFs directly, but will need to do the detector unfolding

_{$\gamma+N$} Hard scattering: v₂ in photo-nuclear events

- Significant v₂ in events selected by photo-nuclear criteria
 - Less than in pp and pPb

Y+M? Can photon-induced processes probe the nuclear medium formed in hadronic collisions?

- When nuclei overlap, hadronic interactions dominate
- But...

Anomalous low-p_T enhancement in J/ψ in **γ+∧?** peripheral AA collisions

Not explained by hadronic interactions

Shape of low p_T excess matches that expected from photonuclear production – can be fit with the same Starlight template as used for UPCs

10

p, (GeV/c)

1904.1165

arXiv:

STAR,

Au+Au 60-80%

U+U 60-80%

U+U 40-60%

1

p+p baseline uncertainty

60-80% N_{coll} uncertainty 40-60% N_{coll} uncertainty 20-40% N_{coll} uncertainty

Au+Au 40-60% Au+Au 20-40%

ALI-PREL-148086

10⁻¹

 $_{\gamma+N?}$ Models used to describe UPC data and modified to account for nuclear overlap region qualitatively reproduce the J/ ψ data

^{y+N?} Excess also seen in di-lepton pairs

Even more interesting: peak broadens with $\gamma+N$? increasing centrality

• Add additional k_{T} : modifications qualitatively consistent with rescattering of the muons passing through hot matter produced in the collision

Even more interesting: peak broadens with increasing centrality

Add additional k_T: modifications qualitatively consistent with rescattering of the muons passing through hot matter produced in the collision

Even more interesting: peak broadens with $\gamma+N$? increasing centrality

 Add additional k_τ: modifications qualitatively consistent with rescattering of the muons passing through hot matter produced in the collision

Qualitative agreement obtained by adding a kick due to pair interacting with residual magnetic field

$\gamma + N?$ Or, a less exotic explanation Zha et al. 1812.02820

• Impact parameter and pair p_T are coupled in calculation based on classical external field approach

M. Vidović et al., Phys. Rev. C 47, 2308 (1993).

Creates broadening of same scale as seen in STAR & ATLAS data

 \rightarrow no need for re-scattering or kick from magnetic fields

Can provide a baseline for whether additional effects are needed

γ+N? What does it mean?

- How can there be coherent emission in a hadronic collision?
- Is the photon source smaller than the entire nucleus (hot spots, spectators)?
- Do the leptons traverse the nuclear medium?
- Can they be a novel probe of the QGP?

What is coming up?

- 10x more data from 2018 heavy ion run at LHC
 - Many of these statistics-limited analyses will be much improved
- dAu and Rb/ZR isotope data at RHIC
- Hopefully more theoretical guidance particularly regarding coherent interactions in peripheral collisions
- Better understanding of hard scattering data

Thank you for your attention

