Flow harmonics and mean p_T correlations in 5.02 TeV Pb+Pb and p+Pb collisions with the ATLAS detector

Klaudia Burka for the ATLAS Collaboration

AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

Flow harmonics and mean p_T correlations

Pressure gradients in QGP lead to azimuthal anisotropy

Pressure gradients in QGP lead to variation in the [p_T]

As a consequence, its expected that, event-by-event azimuthal flow harmonics should be correlated with the mean p_T , $[p_T]$, of the event.

ALICE measured that the spectra of charged particles become harder when the azimuthal asymmetry in an event increases

Measurement of flow harmonics and mean p_T correlations

The new method to measure the relationship is proposed:

→ study the p_T - v_n correlations via a modified Pearson correlation coefficient (P. Bozek, PRC 93 (2016) 044908)

0.3

Variances of [p_T] and v_n{2}² contain additional terms due to limited multiplicities → replaced by better "dynamical"
 detector independent measurement

Measurement details

Define three sub-events:

 \diamond v_n² measurement in sub-events A and C:

$$v_n^2 = \langle \cos\left(n\left[\phi_a - \phi_c\right]\right) \rangle$$

 \diamond Mean event p_T measured in sub-event B:

$$[p_{\mathrm{T}}] = \frac{1}{N_b} \sum_b p_{\mathrm{T},b}$$

- ♦ Multiplicity used to estimate "event activity" classes
- ♦ Rapidity gaps used to suppress non-flow

Scope of the analysis

- ♦ Measurement of correlation of [p_T] with v₂, v₃ and v₄ in 5.02 TeV Pb+Pb (22µb⁻¹) as a functions of N_{ch} and N_{part}
- Correlation of [p_T] with v₂ in 5.02 TeV p+Pb (28nb⁻¹) as a function of N_{ch}
 New at this conference!
 - \bullet For each of above the covariances and dynamical v_n variances and c_k are also obtained
- \diamond Measurements performed for complementary p_T intervals for each system:

p+PbPb+Pb"hydrodynamical" region (main result):0.3 - 2 GeV0.5 - 2 GeVincluding higher p_T for energy loss sector:0.3 - 5 GeV0.5 - 5 GeVlow p_T and low multiplicity:0.5 - 2 GeV1 - 2/5 GeV

♦ Final results are presented as a function of charged particle multiplicity, N_{ch}, of p_T = 0.5-5GeV and |η|<2.5, with detector effects unfolded</p>

Pb+Pb: cov(v₂) rapidly changes from negative to positive values in peripheral events, after reaching maximum decreases

Dynamical "ingredients" of $\rho(v_2, [p_T])$: c_k , Var_{dyn}

ATLAS-CONF-2018-008

 $c_k = \langle \frac{1}{N_{pair}} \sum_i \sum_{j \neq i} (p_{\mathrm{T},i} - \langle [p_{\mathrm{T}}] \rangle) (p_{\mathrm{T},j} - \langle [p_{\mathrm{T}}] \rangle) \rangle$ **pPb**

- c_k decreases with increasing N_{ch} and significantly depends on p_T interval
- ♦ Var(v_n)_{dyn}(N_{ch}) dependence is similar to v_n(N_{ch}) in Pb+Pb
- ♦ A weak increase of Var(v_n)_{dyn}(N_{ch}) with N_{ch} is observed in p+Pb

$$Var(v_n \{2\}^2)_{dyn} = v_n \{2\}^4 - v_n \{4\}^4$$

$v_n - p_T$ correlations: $\rho(v_2, [p_T])$:

ATLAS-CONF-2018-008

 \diamond Positive ho for all v_n in mid-central & central events

 $ightarrow \rho$ increases with collision centrality starting from negative values at N_{part} < 40

- ightarrow In the most central collisions ho decreases with N_{part}
- ♦ Reasonable agreement with the theory prediction

$v_n - p_T$ correlations: $\rho(v_3, [p_T]) \& \rho(v_4, [p_T])$

ATLAS-CONF-2018-008

 \diamond Positive ho for all v_n in mid-central & central events

- \diamond A weaker N_{part} dependence for v₃ as compared to v₂
- \diamond Non-monotonic dependence for v₄
- $\diamond\,$ For higher order v_n the $ho\,$ correlation is lower than for v₂

$v_n - p_T$ correlations: $\rho(v_2, [p_T])$ in p+Pb collsions

pPb

New at this conference!

- \diamond **p+Pb:** negative values of ρ
- ♦ No apparent dependence on N_{ch} → constant within uncertainties
- Similar ρ for 0.3-2/0.5-2 GeV
- p magnitude for larger max p_T
 is smaller

$v_n - p_T$ correlations: $\rho(v_2, [p_T])$ in p+Pb collsions

p+Pb and Pb+Pb comparison:

- Correlation in peripheral Pb+Pb and p+Pb events is negative \rightarrow insight into the small system initial stage
 - The N_{ch} dependence of ρ is different for two collision systems

150

200

Summary

- ATLAS obtained quantitiative estimate of correlation strenght between v_n and [p_T] in 5.02 TeV Pb+Pb and p+Pb collisions using the modified Pearsons coefficient ρ
 - Found significant values of ρ for harmonics v_2 , v_3 and v_4 in Pb+Pb and for v_2 in p+Pb collisions
 - For p+Pb and peripheral Pb+Pb collisions the p for v_2 is negative
 - In other centralities the Pb+Pb ρ for v₂ is dominant
 - The correlation for Pb+Pb v_3 is much weaker than for v_2 , a weak N_{part} dependence of the ρ for v_3 is observed
 - The ρ for v₄ shows non-monotonic behaviour with N_{part}
- The hydrodynamic model can qualitatively predict that behaviour
- The ρ results provide a quantitative and experimentaly unbiased measure of a connection between anisotropic and radial flows

Thank you for your attention!

This work was supported in part by the National Science Centre, Poland, grant no. 2016/23/B/ST2/00702 and by PL-Grid Infrastructure

Measurement details

- ♦ Variances of $[p_T]$ and $v_n{2}^2$ contain additional terms due to limited multiplicities
 - They can be replaced by better "dynamical" estimators

$$R = \frac{cov(v_n\{2\}^2, [p_T])}{\sqrt{var(v_n\{2\}^2)}\sqrt{var([p_T])}} \longrightarrow \rho = \frac{cov(v_n\{2\}^2, [p_T])}{\sqrt{var(v_n\{2\}^2)}\sqrt{var(v_n\{2\}^2)}\sqrt{var(v_n\{2\}^2)}}$$

$$var(v_n \{2\}^2)$$

$$EPJ. C74 (2014) 3157$$

$$var(v_n^2)_{dyn} = v_n \{2\}^4 - v_n \{4\}^4$$

$$= \langle corr_n \{4\} \rangle - \langle corr_n \{2\} \rangle^2$$

$$\langle corr_n \{4\} \rangle = \left\langle \frac{(Q_{n,a}^2 - Q_{2n,a})(Q_{n,c}^2 - Q_{2n,c})^*}{S_a S_c} \right\rangle$$

$$Q_{n,a} = \sum_a w_a e^{in\phi_a} S_a = \left(\sum_a w_a\right)^2 - \sum_a w_a^2$$

$$\langle corr_n \{2\} \rangle = \langle q_{n,a} q_{n,c}^* \rangle$$

$$q_{n,a} = \frac{1}{\sum_a w_a} \sum_a w_a e^{in\phi_a}$$
As in sym

$$\operatorname{PRC 72}(2005) 044902$$

$$\operatorname{c}_{k} = \left\langle \frac{1}{(\sum_{b} w_{b})^{2} - \sum_{b} w_{b}^{2}} \sum_{b} \sum_{b' \neq b} w_{b}(p_{\mathrm{T},b} - \langle [p_{\mathrm{T}}] \rangle) w_{b'}(p_{\mathrm{T},b'} - \langle [p_{\mathrm{T}}] \rangle) \right\rangle$$

As in symmetric-cumulants

ATLAS detector $\rightarrow v_n$ measurement

ATLAS detector

