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Dual Descriptions of Deep Inelastic Scattering at small-z

Bjorken frame Dipole frame

Bjorken frame

Po(2,Q%) =) equ [folw, Q%) + fa(x, Q)]

Dipole frame [Mueller, 01]
2y € fQ Sy (2)
PeQ) =3 s [ QP [1 = 5 (@)

472 e

m Bjorken: the partonic picture of a hadron is manifest. Saturation shows up
as a limit on the occupation number of quarks and gluons.

m Dipole: the partonic picture is no longer manifest. Saturation appears as the
unitarity limit for Dipole amplitude. Geometrical scaling: [Golec-Biernat,

Stasto, Kwiecinski; 01, Munier, Peschanski, 03]
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Wilson Lines in Color Glass Condensate Formalism

We use Wilson line to represent the multiple scattering between the fast moving
quark and target background gluon fields.

Tl — >
Uz )=Pexp (—ig [ dzT A~ (z 1 ,z1)) é .. é .. é e é
A A A A

The Wilson loop (color dipole) in McLerran-Venugopalan (MV) model

N%(TrU(:u)UT(yL)} eH (zL v,)? é é é é

m Dipole amplitude S® then produces the quark kr spectrum via Fourier
transform

__dN A’z d%y ., ik (wy—yy) L "
Flko) = - _/ G v <TrU(,m)U (yL)>.

m How about Quadrupole i~ (TrUUTUUT) # - (TrUUT) - (TeUUT)?
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A Tale of Two Gluon Distributions

Two gauge invariant gluon definitions: [R. Boussarie, Tuesday] [Bomhof, Mulders
and Pijlman, 06]; [Dominguez, Marquet, Xiao and Yuan, 11]

1. Weizsacker Williams gluon distribution: conventional gluon distributions
d§™dg

G k1 )=2 [ ——
WW( J.) / (27T)3P+

II. Color Dipole gluon distributions: not probability density

eizPJrg*7¢kl»gJ_Tr<P|F+i(§77EJ_)MH]TFH(O)M[H |P).

aGpp(z, k1) = 2/%&’“”& kL T(PIFY (e e U (0| P).
2 ET ;!
L =
T - k ! AP
m : B n
ul-l U+

m Modified Universality for Gluon Distributions: X = Do Not Appear. /= Apppear.

Inclusive | Single Inc | DIS dijet | ~ +jet | dijetin pA
IGWW X X \/ X \/
zGpp v v X v v

Gauge links can generates different p7 behaviors. Also see [Gelis and Tanji, 19].

In large N, limit and dilute-dense scatterings, generalized universality for small-x gluon.

Complementary physics missions in measurements in pA and eA collisions.
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A Tale of Two Gluon Distributions
I. Weizsacker Williams gluon distribution

_ 2N, d*R, d* R iq-(Ry—R')
Qas (2m)? (2m)?

N% <Tr [10:U(R.)| U (RY) [i0,U(RL)] UT(RL)>

:L’wa(fﬂ, kJ_)

IL. Color Dipole gluon distribution:

2N dR dQRL qu (RL R/)

wGDP(ﬂC, kJ_)

1
(VRL ‘le) ~ (T [URHUT(R)])
(& x
m Quadrupole = Weizsacker Williams gluon; Dipole = Color Dipole gluon.
m Analytical results in MV model exhibit different pr behavior.

m In eA and pA collisions, small-z processes are probing either DP or QP or both
at leading N. approximation. More detail see [R. Boussarie, Tuesday].

m Generalized universality in large N, in eA and pA collisions for Wilson lines
[F. Dominguez, C. Marquet, A. Stasto and BX, 12]
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Forward hadron production in pA collisions

Forward hadron in pA [Dumitru, Jalilian-Marian, 02] [T. Altinoluk, Monday]

L ,
/ projectile: 1~ %6“’ ~1 valence
{':} target: z; ~ PLov e gluon
’ Vs
Dilute-dense factorization at forward rapidity

daféﬁhx dz
Ppodyn ) prQf(pr)}—(]fL)Dh/q( ) + @pg(2p) F (k1) Dpyg(2)
T f

“+ oo

= U(xi) =Pexp {z’gg/

— 00

dz™ TCAC_(x+,:JcJ_)} ,

2
Flky) /d x, d? yi— etk (e~ yL)S( )(CULJ/L)-

m Dense gluons at low-z in the nucleus target is descrlbed by F (k) and F(k,).
m The universality at higher order. Only need dipole amplitudes at leading N..
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NLO hadron productions in pA collisions: An Odyssey

Dilute-Dense factorizations: large x proton or v* — as dilute probe:

ki
. _ + ;
[quark] (zp,0,0) —————— — - @y hadon) Tp = \/g e ~ 1 dilute
ek % E % M ki
* [gluon) —
P — e TA = 78 Y <« 1 dense
nucleus] pt S

m LO [Dumitru, Jalilian-Marian, 02]: probing 2Gpp(z, k1 ) at small-z.
m NLO Cutoff[Dumitru, Hayashigaki, Jalilian-Marian, 06; Altinoluk, Kovner 11]
m NLO Complete NLO in DR: [Chirilli, BX and Yuan, 12].

W 1. soft, collinear to the target nucleus; rapidity divergence = BK evolution for UGD
F (k). Subtraction scheme is not Unique but highly constrained.
2. collinear to the initial quark; = DGLAP evolution for PDFs. M S scheme.
3. collinear to the final quark. = DGLAP evolution for FFs, M S scheme.
The importance of subtraction: systematic resummation of large logarithms.
(s In1/z4), which allows us to have H ~ O(c ). Interesting recent
development: RG approach and threshold resummation.

oEm

Py, ~0
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NLO hadron productions in pA collisions: An Odyssey

Tty [GeV 7]

Tty [GeV 7]

SOLO (Saturation physics at One Loop Order) results [Stasto, Xiao, Zaslavsky, 13;
Watanabe, Xiao, Yuan, Zaslavsky, 15]

reBK Ajep = 0.01

[===100)

= +NLO
==L+ Ly
® BRAHMS

pulGev]

107!

1eBK A2cp, = 0.01

[=110)

p1lGeV]
1eBK A2y, = 0.01

=10
E=+NLO
L L
® ATLAS

Agree with RHIC and LHC data in
low p; < Qs region where pQCD
does not apply.

SOLO (1.0 and 2.0) break down in the
large p; > Qs region(k; > Qs).
Towards a more complete framework.
[Altinoluk, Armesto, Beuf, Kovner
and Lublinsky, 14; Kang, Vitev and
Xing, 14; Ducloue, Lappi and Zhu,

16, 17; Iancu, Mueller and
Triantafyllopoulos, 16]

Threshold resummation (Sudakov
type)! Approach kinematical
threshold at high & .

(&s In(1 — zp) < 0). [Xiao, Yuan,
18; work in process]
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Threshold resummation in the saturation formalism

[Xiao, Yuan, 18; numerical work in process]

m The objective is to identify large logarithms In(1 — x,,) and In k3 /Q? in the
large k. region (k1 >> Q) near threshold at fixed rapidity. In fact, these two
types of logs seem to always appear together in our calculation and
soft-collinear effective theory (SCET) in almost identical pattern.

m Many different threshold resummation formalism. We find remarkable
similarities between the threshold resummation in pA collisions in the small-z
formalism and threshold resummation in SCET|[Becher, Neubert, 06].

m The forward threshold jet function A(u?, u?, z) satisfies an almost identical
RGE equation. The solution helps to resum threshold logs.

dA 2, 2, 2as N,
()u‘ My Z) _ - QsiNe [11’12 +BO} A(,LLQHLLE,Z)
dlnp T

)

z—2z

+204ch /z dz' A(N27/J'gvz) - A(szﬂgazl)
™ 0

(Bo—=vE)Vu,b |
Solution: A(p?, 2,z =1n E) =& T ey
T Tvus, ]
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Collectivity (correlation) is everywhere!

Pb+Pb p+Pb +p

Vs = 5.02 TeV. Vsn = 5,02 TeV. Vs = 13 TeV

Wy
i
L
il

cms PPLBIETY o e
r T " > 016f Gpp eI Tev  ATLAS Preliminary |
n Pmmpuw o K 185 < N < 250 4 p¥Pb (5502 Tev
® Prompt D° oA
021 s ° © 3 q i
) iy
oo
= a® B g Y o 1) 4
01 Oo .* .. - L] L
Oo * + 1] 0.08F &
IS ® Po+Pb 2018, 173 06"
=R + 0.04F Vo = 5.02 TeV, Onxn g. 4
g 00k L2520
o. i . § photo-nuclear, 20 < N < 60
\ | | | L AP A ER
10 20 (] 10 20 0 2.0 . 2 4 GeV) 6 8 B 2 3 4 ° °
P (GeV) pr (GeV) s (GvV) P, (GeV) p, [GeV]

m Collectivity is used to describe the particle correlation. It is observed in both
large and small systems and for light and heavy hadrons!

m [Song, Shen, Heinz, 11];[Shen, Heinz, Huovinen, Song, 11]

m New exciting results for b — p and ¢ — p as well as UPC in PbPb collisions.
[J. Jia, Monday; K. Gajdosova; B. Seidlitz, Wednesday]
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Where does the collectivity come from? Final state vs Initial state.

PPb @ 8.16 TeV mid-rapidity high-mulfiplicity

+—e— ALICE J1W -4.46<y<-2.96
LICE Jw 2.08<y<3.53

0.18EP*AU {5, =200 GeV 0-5%  (a) wna \-“.: BRSNS (®) ovh \:I,,N-m;n e © ‘ T ASE

0,465 o-v.0ma PHENIX

0142 o1

0.12] B
= o1

0.08]

006 o

004 4

0.02F # . u g

L s hanidean AT b L
05 1 152 25 3 05 1 15 2 25 3 05 1 15 2 25 3 o 2 4 ° 8 1o
p,(GeVrc) P (GeVic) p,(GeVic) prlGeV]
[PHENIX, 19] [Du and Rapp, 18]

m Geometry + final state evolution (Hydro + freeze-out) explain data well.

On the other hand, CGC alone has trouble to describe the PHENIX data.

m Final state effect may not be the full story. For example, v2 of heavy mesons.
[Du, Rapp, 18]

Experimental review on heavy flavor in small systems: [Z. Chen, Thursday]

m Mechanism to generate correlations in CGC. [Lappi, 15; Dumitru, McLerran,
Skokov, 15; Lappi, Schenke, Schlichting, Venugopalan, 16; Dusling, Mace,
Venugopalan, 17; Fukushima, Hidaka, 17; Mace, Skokov, Tribedy,
Venugopalan, 18; Davy, Marquet, Shi, Xiao, Zhang, 18]
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Correlations in CGC

Correlations between uncorrelated incoming quarks (gluons) are generated due to
quadrupole as IV, corrections. [Lappi, 15; Lappi, Schenke, Schlichting, Venugopalan,
16; Dusling, Mace, Venugopalan, 17; Davy, Marquet, Shi, Xiao, Zhang, 18]

—_—

&N . By ik
e = /dZTIL(ll,,,QLeftk]L riigmikaima
1 .
XNz (tr [V(zl)V(:EZ)T} tr [V (x3)V (24)'])
1 1
where N2 (tr [V(zl)V(mz)T] tr [V(zg)V(T4)“]> # ~ (tr [V(ml)V(mg)“D (tr [V(;IJg)V(.’L‘;I)T}>
: Ly e 1 & g }
Z Loty |, T2 / dé/ e L2 a(-02?)
A(2 Jo Jo
: d>N _ dN dN :
m Atleading N, T (dgku) (dzku ), there are no correlations.

m The correlations only come in as higher order V. corrections as shown above.

Fierz identity
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Elliptic flow of ./ in CGC

J /1 productions together with a light quark reference

va[J/Y] = Vaa(J /1), ref) v2ref]

Q Q
0.05F B, =6GeV?
g g
Q Q
q q q q
o) o (NAZ)

va (k)

BT ) (D CJ ¢

® [Zhang, Marquet, Qin, Wei, Xiao, 19] The same CGC model calculations with
the additional g — QQ splitting to produce heavy quarkonia at small k.

m Predictions for Upsilon vo. Preliminary results show that D and B mesons have
similar vz at low k7. Please stay tuned.

ki (GeV)
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DIS dijet

[F. Dominguez, C. Marquet, BX and F. Yuan, 11]
I ki
(a) (0) (c)

do A= aa+X N 62/ 32z &2 d%v A2 e—ile(rfz')
dP.S. et [(2m)2 (2m)2 (2m)2 (27)2

Xe*““u_-(b*b') ZT/)}(ZE - b)1/1T($/ 7 b/)
[1+ 5% @530, a') = S0 (w,0) = S0, 2')]

il

(010[0[0]010[0; 9]0

[00]0100]0]

i

—u; u; ﬁ <Tr[8i U(v)} Ut(v’) [[‘)j U(v’)] Ut (v))zg =>Operator Def

m eA collision is golden channel for the Weizsacker Williams gluon at small-x.

m Due to linearly polarized gluon distribution at small-z[Metz, Zhou, 11], there
can be the analog of elliptic flow v2 as well. [Dumitru, Lappi, Skokov, 15]
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Can we measure Wigner distributions?

Wby k)
Wigner distributions
[, ok
K 2
fCxky) Sfxby)

distributions (TMDs) distributions
semi-inclusive processes
Jd'k; S,
2 LY
f(x)

parton densities
inclusive and semi-inclusive processes

Quasiprobability W(x,p)

P(x) P(p)

m Wigner distributions ingeniously encode all quantum information of how
partons are distributed inside hadrons. [Ji, 03; Belitsky, Ji, Yuan, 03]

m Small-z gluon < gluon Wigner distributions? [Ji, 03] [A. Dumitru, Tuesday]

m TMDs and GPDs can be studied and measured in various processes. In
condense matter, Wigner distribution of photons can be measured.

m Can we measure the gluon Wigner distribution at small-z? Yes, we can!
m GTMD (Fourier transform of Wigner) [Meissner, Metz and Schlegel, 09]
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The exact connection between dipole amplitude and Wigner distribution

[Hatta, Xiao, Yuan, 16] Def. of gluon Wigner distribution:

L e~ d? PAL e i)
aWy (z,qL3by) = /(;T)S]Ei / (27r)§e PreT e by
X <P+A F“(b +£>F“<5 —%)’P—%>,

Def. of GTMD [Meissner, Metz and Schlegel, 09]

2G(x,q1, A1) = /d2bLefiA'bJ-:ngT(at,(jl;gL).

= With dipole like gauge link [b. = +(R. + R/ ),r. =R, — R\ 1=

«(RL+R')

2N. [ d*R,d’R, giaL(RL-F/ )ik
Qs (2m)4

< (Vru Vi) 5 (T [0 (RO UT (D))

m This provides the 3D quasiprobabilistic distribution (z, b, , k) of small-x
gluon.

zGop(T,qL,AL) =

T
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Probing 3D Tomography of Proton at small-z

Diffractive back-to-back dijet productions in DIS [Altinoluk, Armesto, Beuf and
Rezaeian, 15]; [Hatta, Xiao, Yuan, 16]; [Mantysaari, Mueller, and Schenke, 19]

— y:().() vo = 0.10, vy = 2.87%
n70 15,0, = 1.89%

CGC, [r| =0.35 fm, |b| = 0.35 fm
0 1 2 3 4 5 6
v 6(r,b)

Measure final state proton recoil A | as well as dijet momentum k1 and ko .
We can approximately access |xGpp(x, g1, A )|? in the back-to-back limit in which
qL =Py =1(koy —k11)>AL.

Cross-Sections are positive-definite, although Wigner distributions may not be.

Dipole amplitude can have elliptic part N'(r, b) = vg [1 + 2v2 cos 20(r, b)].

WW Wigner (WWW) distribution can be also defined and measured.

Gluon OAM [Ji, Yuan, Zhao, 16; Hatta, Nakagawa, Yuan, Zhao, 16, Bhatttacharya, Metz,
Zhou, 17]; UPC at the LHC [Hagiwara, Hatta, Pasechnik, Tasevsky, Teryaev, 17]
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Summary

32 3 -
A % % A 4 A 4
D\ipole (]5P gluon\) Qua&rupole fWW glﬁon)

m Complementary study of eA and pA collisions can provide us more important
information on the universal building blocks of small-z physics: dipole and
quadrupole.

m This universality has many applications in pA and e A collisional systems.
(Dilute-dense) For example, probing of WW and Wigner distribution, etc.

m The same universality implies that initial state interactions (CGC) can generate
sufficient amount of collectivity for heavy mesons.

m Maybe the elliptic flow of Y'(bb) or other heavy mesons (B) at the LHC can be
a clear signal for CGC initial state effects.
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