

5th International Conference on the Initial Stages in High-Energy Nuclear Collisions IS2019 Columbia University, New York City, June 28th 2019

(LH)

Néstor Armesto IGFAE, Universidade de Santiago de Compostela and Theoretical Physics Department, CERN nestor.armesto@usc.es

Unión Europea

Fondo Europeo de Desarrollo Regional "Una manera de hacer Europa"

Contents:

I. Proposals.

2. Partonic structure of the nucleus.

3. New dynamics at small x.

4. Pre-equilibrium dynamics and small systems.

5. Summary.

References:

- 1812.06772 (HL-LHC with ions);
- Future Circular Collider:Vol. 1 Physics opportunities, CERN-ACC-2018-0056 (Eur. Phys. J. C79 (2019) no.6, 474), and 1605.01389;
- 1901.09076 (diffraction in ep and eA);
- LHeC CDR, 1206.2913;
- 2018 LHeC and FCC-eh workshop, https://indico.cern.ch/event/698368/;
- LHeC talks at DIS 2019, https:// indico.cern.ch/event/749003/.
- Fixed target program at the HL-LHC, 1807.00603.

Talks by J. Lajoie and E. Sichtermann.

Contents:

I. Proposals.

2. Partonic structure of the nucleus.

3. New dynamics at small x.

4. Pre-equilibrium dynamics and small systems.

5. Summary.

<u>Warnings</u>:

- Although the focus was asked to be on what goes beyond LS4, I will also be talking about the perspectives at Runs 3 and 4.
- This is a personal review, my apologies to those who find their work misrepresented.
- I am not giving a full review of the heavy-ion topics at energies higher that LHC, just focus on those aspects that I find more closely related to initial stages.
- Even with these restrictions, it is too much material...

pp/pA/AA colliders:

FCC parameters for PbPb and pPb collisions:

	Unit	FCC Injection	FCC C	ollision
Operation mode		Pb	Pb–Pb	p–Pb
Beam energy	[TeV]	270	4100	50
$\sqrt{s_{ m NN}}$	[TeV]	-	39.4	62.8
No. of bunches per LHC injection	-	518	518	518
No. of bunches in the FCC	-	2072	2072	2072
No. of particles per bunch	$[10^8]$	2.0	2.0	164
Transv. norm. emittance	$[\mu m]$	1.5	1.5	3.75
Number of IPs in collision	-	-	1	1
Crossing-angle	$[\mu rad]$	-		0
Initial luminosity	$[10^{27} \mathrm{cm}^{-2} \mathrm{s}^{-1}]$	-	24.5	2052
Peak luminosity	$[10^{27} \text{cm}^{-2} \text{s}^{-1}]$	-	57.8	9918
Integrated luminosity per fill	$[\mu b^{-1}]$	-	553	158630
Average luminosity	$[\mu b^{-1}]$	-	92	20736
Time in collision	[h]	-	3	6
Assumed turnaround time	[h]	-	1.65	1.65
Integrated luminosity/run	$[nb^{-1}]$	-	33	8000

• FCC-hh as representative:

other ideas around like

→ HE-LHC (16 T magnets): 27 TeV pp.

→ 6 T magnets in the FCC tunnel: 37.5 TeV pp.

M. Benedikt at FCC Week 2019

parameter	FCC-hh		FCC- hh-6T	HE-LHC	HL- LHC	LHC
collision energy cms [TeV]	100		37.5	27	14	14
dipole field [T]	16		6	16	8.33	8.33
beam current [A]	0.5		0.6	1.1	1.1	0.58
synchr. rad. power/ring [kW]	2400		57	101	7.3	3.6
peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	5	30	10 (lev.)	16	5 (lev.)	1
events/bunch crossing	170	1000	~300	460	132	27
stored energy/beam [GJ]	1	8.4	3.75	1.4	0.7	0.36

pp/pA/AA colliders:

FCC parameters for PbPb and pPb collisions:

	Unit	FCC Injection	FCC C	ollision
Operation mode		Pb	Pb–Pb	p–Pb
Beam energy	[TeV]	270	4100	50
$\sqrt{s_{ m NN}}$	[TeV]	-	39.4	62.8
No. of bunches per LHC injection	-	518	518	518
No. of bunches in the FCC	-	2072	2072	2072
No. of particles per bunch	$[10^8]$	2.0	2.0	164
Transv. norm. emittance	$[\mu m]$	1.5	1.5	3.75
Number of IPs in collision	-	-	1	1
Crossing-angle	$[\mu rad]$	-		0
Initial luminosity	$[10^{27} \text{cm}^{-2} \text{s}^{-1}]$	-	24.5	2052
Peak luminosity	$[10^{27} \mathrm{cm}^{-2} \mathrm{s}^{-1}]$	-	57.8	9918
Integrated luminosity per fill	$[\mu b^{-1}]$	-	553	158630
Average luminosity	$[\mu b^{-1}]$	-	92	20736
Time in collision	[h]	-	3	6
Assumed turnaround time	[h]	-	1.65	1.65
Integrated luminosity/run	$[nb^{-1}]$	-	33	8000

vs LHC: 5.5 (PbPb) and 8.8 (pPb)

vs LHC (total): PbPb: ~1 (Run2); ~4 (Run3); ~4 (Run4) pPb: 50-400 (2 weeks)

• FCC-hh as representative:

other ideas around like

- → HE-LHC (16 T magnets): 27 TeV pp.
- → 6 T magnets in the FCC tunnel: 37.5 TeV pp.
- M. Benedikt at FCC Week 2019

parameter	FCC-hh		FCC- hh-6T	HE-LHC	HL- LHC	LHC
collision energy cms [TeV]	1	100	37.5	27	14	14
dipole field [T]	16		6	16	8.33	8.33
beam current [A]	0.5		0.6	1.1	1.1	0.58
synchr. rad. power/ring [kW]	2400		57	101	7.3	3.6
peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	5	30	10 (lev.)	16	5 (lev.)	1
events/bunch crossing	170	1000	~300	460	132	27
stored energy/beam [GJ]	1	8.4	3.75	1.4	0.7	0.36

pp/pA/AA colliders:

FCC parameters for PbPb and pPb collisions:

• FCC-hh as representative:

other ideas around like

- → HE-LHC (16 T magnets): 27 TeV pp.
- → 6 T magnets in the FCC tunnel: 37.5 TeV pp.
- M. Benedikt at FCC Week 2019

parameter	FCC-hh		FCC- hh-6T	HE-LHC	HL- LHC	LHC
collision energy cms [TeV]	100		37.5	27	14	14
dipole field [T]	16		6	16	8.33	8.33
beam current [A]	0.5		0.6	1.1	1.1	0.58
synchr. rad. power/ring [kW]	2400		57	101	7.3	3.6
peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	5	30	10 (lev.)	16	5 (lev.)	1
events/bunch crossing	170	1000	~300	460	132	27
stored energy/beam [GJ]	8.4		3.75	1.4	0.7	0.36

Timelines...

1812 06772			
		116	

Year	Systems, $\sqrt{s_{NN}}$	Time	
2021	Pb-Pb 5.5 TeV	3 weeks	$2.3 \mathrm{nb}^{-1}$
	pp 5.5 TeV	1 week	3 pb^{-1} (ALICE), 300 pb^{-1} (ATLAS, CMS), 25 pb^{-1} (LHCb)
2022	Pb-Ph 5.5 TeV	5 weeks	$3.9 \mathrm{nb}^{-1}$
	0–0, p–0	1 week	$500 \mu \mathrm{b}^{-1}$ and $200 \mu \mathrm{b}^{-1}$
2023	p–Pb 8.8 TeV	3 weeks	0.6 pb ⁻¹ (ATLAS, CMS), 0.3 pb ⁻¹ (ALICE, LHCb)
	pp o.o Te v	few days	1.5 pb^{-1} (ALICE), 100 pb^{-1} (ATLAS, CMS, LHCb)
2027	Pb-Pb 5.5 TeV	5 weeks	$3.8 {\rm nb}^{-1}$
	pp 5.5 TeV	1 week	3 pb^{-1} (ALICE), 300 pb^{-1} (ATLAS, CMS), 25 pb^{-1} (LHCb)
2028	p–Pb 8.8 TeV	3 weeks	0.6 pb^{-1} (ATLAS, CMS), 0.3 pb^{-1} (ALICE, LHCb)
	pp 8.8 Ie v	few days	1.5 pb^{-1} (ALICE), 100 pb^{-1} (ATLAS, CMS, LHCb)
2029	Pb-Pb 5.5 TeV	4 weeks	$3 \mathrm{nb}^{-1}$
Run-5	Intermediate AA	11 weeks	e.g. Ar–Ar 3–9 pb^{-1} (optimal species to be defined)
	pp reference	1 week	

N. Armesto, 28.06.2019 - CERN perspective: 1. Proposals.

ep/eA colliders:

N.Armesto, 28.06.2019 - CERN perspective: 1. Proposals.

ep/eA colliders:

Spreader 38m	Recombiner 38m Injector	Parameter [unit]	LHeC CDR	ep at HL-LHC	ep at HE-LHC	FCC-he
DE Componention	Linaci 1008m DE Componestion	$E_p \; [\text{TeV}]$	7	7	13.5	50
RF Compensation		$E_e \; [\text{GeV}]$	60	60	60	60
+ Doglegs	+ Doglegs	\sqrt{s} [TeV]	1.3	1.3	1.7	3.5
+ Matching 96m + Matching 120m	Bunch spacing [ns]	25	25	25	25	
A == 1 2 5 21 42 ==		Protons per bunch $[10^{11}]$	1.7	2.2	2.5	1
Arc1,3,5 3142m Arc2,4,6 3142m		$\gamma \varepsilon_p \ [\mu m]$	3.7	2	2.5	2.2
		Electrons per bunch 10^9]	1	2.3	3.0	3.0
Recombiner 38m	Dump	Electron current [mA]	6.4	15	20	20
+ Matching 20m Spreader 38m Dypass		IP beta function β_p^* [cm]	10	7	10	15
Linac	2 1008m IP Line 196m	Hourglass factor \dot{H}_{geom}	0.9	0.9	0.9	0.9
60 GeV e ⁻ (energy		Pinch factor H_{b-b}	1.3	1.3	1.3	1.3
		Proton filling H_{coll}	0.8	0.8	0.8	0.8
1•		Luminosity $[10^{33} \text{ cm}^{-2} \text{s}^{-1}]$	1	8	12	15
ecovery lin	ac) against					

parameter [unit]	LHeC (HL-LHC)	eA at HE-LHC	FCC-he
$E_{\rm Pb}$ [PeV]	0.574	1.03	4.1
E_e [GeV] CERN-ACC-2017-0019	60	60	60
$\sqrt{s_{eN}}$ electron-nucleon [TeV]	0.8	1.1	2.2
bunch spacing [ns]	50	50	100
no. of bunches	1200	1200	2072
ions per bunch $[10^8]$	1.8	1.8	1.8
$\gamma \epsilon_A \ [\mu m]$	1.5	1.0	0.9
electrons per bunch $[10^9]$	4.67	6.2	12.5
electron current [mA]	15	20	20
IP beta function β_A^* [cm]	7	10	15
hourglass factor H_{geom}	0.9	0.9	0.9
pinch factor H_{b-b}	1.3	1.3	1.3
bunch filling H_{coll}	0.8	0.8	0.8
luminosity $[10^{32} cm^{-2} s^{-1}]$	7	18	54
Integrated lumi, in 10 y. (fb ⁻¹) ~~	6	15	45

recovery linac) against the (HL/HE-)LHC/FCC hadron beams: eA to run either concurrently with pA/AA or in dedicated mode.

> eD at LHeC: L_{eN=}AL_{eA}~5×10³² cm⁻²s⁻¹

See M.Wing's talk for PEPIC and VHEeP, and 1812.08110.

N.Armesto, 28.06.2019 - CERN perspective: I. Proposals.

Timelines...

N.Armesto, 28.06.2019 - CERN perspective: I. Proposals.

Timelines...

 Extension of several orders of magnitude in x and Q² w.r.t.
 existing DIS data.

• DIS versus hh:

➔ pA/AA covers largest range in kinematics.

→ DIS offers:

➤ A clean experimental environment low multiplicity, no pileup, fully constrained kinematics x,Q²;

 Extension of several orders of magnitude in x and Q² w.r.t.
 existing DIS data.

• DIS versus hh:

➔ pA/AA covers largest range in kinematics.

→ DIS offers:

➤ A clean experimental environment low multiplicity, no pileup, fully constrained kinematics x,Q²;

 Extension of several orders of magnitude in x and Q² w.r.t.
 existing DIS data.

• DIS versus hh:

➔ pA/AA covers largest range in kinematics.

→ DIS offers:

➤ A clean experimental environment low multiplicity, no pileup, fully constrained kinematics x,Q²;

- Extension of several orders of magnitude in x and Q² w.r.t.
 existing DIS data.
- DIS versus hh:
- → pA/AA covers largest range in kinematics.
- → DIS offers:

N. Armesto, 28.06.2019 - CERN perspective: 1. Proposals.

 Extension of several orders of magnitude in x and Q² w.r.t.
 existing DIS data.

• DIS versus hh:

➔ pA/AA covers largest range in kinematics.

→ DIS offers:

➤ A clean experimental environment low multiplicity, no pileup, fully constrained kinematics x,Q²;

Contents:

I. Proposals.

2. Partonic structure of the nucleus.

3. New dynamics at small x.

4. Pre-equilibrium dynamics and small systems.

5. Summary.

References:

- 1812.06772 (HL-LHC with ions);
- Future Circular Collider:Vol. 1 Physics opportunities, CERN-ACC-2018-0056 (Eur. Phys. J. C79 (2019) no.6, 474), and 1605.01389;
- 1901.09076 (diffraction in ep and eA);
- LHeC CDR, 1206.2913;
- 2018 LHeC and FCC-eh workshop, https://indico.cern.ch/event/698368/;
- LHeC talks at DIS 2019, https:// indico.cern.ch/event/749003/.
- Fixed target program at the HL-LHC, 1807.00603.

Talks by J. Lajoie and E. Sichtermann.

Status of nPDFs:

- Large uncertainties for x<0.01 and for large x glue (parametrisation biases); small impact of LHC data (large-x glue).
- Few data for any single A e.g. Pb (15 DIS+30 pPb+vA): Adependence of I.C. mandatory; flavour decomposition weakly constrained (~ isoscalarity).
- Impact parameter dependence modelled.

nPDFs @ HL-LHC (I):

W

1812.06772

- Inclusive W for s/u.
- W asymmetries for gluon (evolution).
- Low mass forward DY for sea and gluon.
- Dijets for glue.
- Z and γ at forward rapidity (glue).
- UPCs will also contribute: quarkonium, inclusive dijets (1902.05126).
- Top requires higher statistics: lighter ions in the 30's?

nPDFs @ HL-LHC (II):

1812.06772

- Inclusive W for s/u.
- W asymmetries for gluon (evolution).
- Low mass forward DY for sea and gluon.
- Dijets for glue.
- Z and γ at forward rapidity (glue).
- UPCs will also contribute: quarkonium, inclusive dijets (1902.05126).
- Top requires higher statistics: lighter ions in the 30's?

nPDFs @ HL-LHC (II):

1812.06772

nPDFs beyond HL-LHC:

N.Armesto, 28.06.2019 - CERN perspective: 2. Partonic structure of the nucleus.

 $Q=m_i$

original EPS09 uncert

after reweighting with

 $L_{int} = 8pb^{-1}, \sqrt{s} = 63TeV$

z range predominantly probed at $\sqrt{s} = 63 \text{Te}^3$

10.2

 10^{-1}

p+Pb pseudo data

10-3

nPDFs @ LHeC/FCC-eh:

H. Paukkunen at DIS18

 ePb pseudodata included in EPPSI6* global fits and HERAPDF DIS-only fits: large impact.

- HF separation \rightarrow glue.
- Missing: beauty, c-tagged CC
- for strange.

nPDFs @ LHeC/FCC-eh:

Beyond collinear factorization (I):

The extraction of 3D-structure (GPDs and TMDs and their evolution equations) is a huge undergoing program: scarcely known in the proton, mostly unknown in nuclei.
 Talks by R. Boussarie, A. Dumitru and J. H. Lee

Beyond collinear factorization (I):

The extraction of 3D-structure (GPDs and TMDs and their evolution equations) is a huge undergoing program: scarcely known in the proton, mostly unknown in nuclei.
 Talks by R. Boussarie, A. Dumitru and J. H. Lee

• LHeC/FCC-eh: large range of x and $Q^2 \Rightarrow$ evolution.

Beyond collinear factorization (II):

- Incoherent diffraction sensitive to fluctuations: hot spots? that determine the initial stage of HIC, the distribution of MPIs,... (Talk by H. Mantyssari)
- Exclusive dijet production sensitive to the gluon Wigner distribution, forward DDbar to gTMDs.
- UPCs, even for larger energies, but for photoproduction (1702.07705, 1902.01339).
- Also extensive studies in fixed target mode (1807.00603), main focus on spin.
- Diffractive PDFs on A never measured. (Talk by M.Walczak, pPb)

Diffractive plane at LHeC/FCC-eh

Contents:

I. Proposals.

2. Partonic structure of the nucleus.

3. New dynamics at small x. (Talks by T.Altinoluk, M. Sievert and B. Xiao)

4. Pre-equilibrium dynamics and small systems.

References:

- 1812.06772 (HL-LHC with ions);
- Future Circular Collider:Vol. 1 Physics opportunities, CERN-ACC-2018-0056 (Eur. Phys. J. C79 (2019) no.6, 474), and 1605.01389;
- 1901.09076 (diffraction in ep and eA);
- LHeC CDR, 1206.2913;
- 2018 LHeC and FCC-eh workshop, https://indico.cern.ch/event/698368/;
- LHeC talks at DIS 2019, https:// indico.cern.ch/event/749003/.
- Fixed target program at the HL-LHC, 1807.00603.

Talks by J. Lajoie and E. Sichtermann.

5. Summary.

Search in ep/eA:

• Saturation modifies evolution: tension between the description in DGLAP analyses of different inclusive observables (with different sensitivities to glue and sea, e.g. F_2 and F_L or σ_r^{HQ}), if enough lever arm in Q² at small x available. (1702.00839)

• High scales \rightarrow small x @ FCC-AA: e.g. tops in pPb sensitive to x ~ 0.02-0.2 at HL-LHC and 0.0002-0.2 at the FCC-hh (1501.05879).

Search in ep/eA:

• Saturation modifies evolution: tension between the description in DGLAP analyses of different inclusive observables (with different sensitivities to glue and sea, e.g. F_2 and F_L or σ_r^{HQ}), if enough lever arm in Q² at small x available. (1702.00839)

• High scales \rightarrow small x @ FCC-AA: e.g. tops in pPb sensitive to x ~ 0.02-0.2 at HL-LHC and 0.0002-0.2 at the FCC-hh (1501.05879).

Search in pA:

Single particle ²
 suppression increasing ^{1.5}
 with rapidity was ¹
 proposed as a signal ^{0.5}
 of saturation.

Suppression
 observed up to large
 transverse momenta.

Search for tensions
 between different
 observables in
 collinear factorisation.

dijet yield modification pPb/pp @ FCC, anti-k_T, R=0.5

Elastic VM production on p:

Linear,

to $(xg)^2$.

 Elastic J/ψ production may be a candidate to signal saturation effects at work.

Elastic VM production on p:

• Elastic J/ψ production may be a candidate to signal saturation effects at work.

Large uncertainties, e.g. charm mass (1402.4831). • UPCs are an alternative.

Elastic VM production on A:

- Saturation (approach to the black disk limit) affects both energy and t (impact parameter) dependences of coherent exclusive VM production: softer energy dependence, shrinking of diffractive peak.
- Saturation results in a larger diffractive over inclusive cross section (Nikolaev et al., Z.Phys.A351 (1995) 435): interplay between non-linear phenomena and survival probability.

Elastic VM production on A:

- Saturation (approach to the black disk limit) affects both energy and t (impact parameter) dependences of coherent exclusive VM production: softer energy dependence, shrinking of diffractive peak.
- Saturation results in a larger diffractive over inclusive cross section (Nikolaev et al., Z.Phys.A351 (1995) 435): interplay between non-linear phenomena and survival probability.

Correlations in eA/pA:

Correlations in eA/pA:

Contents:

I. Proposals.

2. Partonic structure of the nucleus.

3. New dynamics at small x.

4. Pre-equilibrium dynamics and small systems (talks by many people...).

5. Summary.

References:

- 1812.06772 (HL-LHC with ions);
- Future Circular Collider:Vol. 1 Physics opportunities, CERN-ACC-2018-0056 (Eur. Phys. J. C79 (2019) no.6, 474), and 1605.01389;
- 1901.09076 (diffraction in ep and eA);
- LHeC CDR, 1206.2913;
- 2018 LHeC and FCC-eh workshop, https://indico.cern.ch/event/698368/;
- LHeC talks at DIS 2019, https:// indico.cern.ch/event/749003/.
- Fixed target program at the HL-LHC, 1807.00603.

Talks by J. Lajoie and E. Sichtermann.

Pre-equilibrium dynamics:

Pre-equilibrium dynamics:

Pre-equilibrium dynamics:

Hard probes:

- Recent activity on the use of hard probes to study the initial stages of hadronic collisions (1902.03231, talk by C.Andres).
- Large energies and statistics (lighter ions at HL-LHC; FCC-AA) make boosted tops available (1711.03105).
 - Semi-leptonic decay of tt events produce jets that start interacting with the QGP only at later times

N.Armesto, 28.06.2019 - CERN perspective: 4. Pre-equilibrium dynamics and small systems.

Reconstructed

Hard probes:

- Recent activity on the use of hard probes to study the initial stages of hadronic collisions (1902.03231, talk by C.Andres).
- Large energies and statistics (lighter ions at HL-LHC; FCC-AA) make boosted tops available (1711.03105).
 - Reconstructed W Mass as a function of the top p_T:
 - Useful probe of the QGP density evolution
 - QGP tomography:
 - HE-LHC: Some discrimination between short vs long lived medium
 - ✓ FCC: able to scan entire QGP lifetime!

Lighter ions beyond LS4:

• There has been a proposal to collide lighter ions in Runs 5 to:

→ Get larger statistics: gains of factors 2 (Xe) to 10 (Ar), for e.g. top studies, Z+jet,...

→ Test size dependences of QGP properties and dynamics, without centrality definitions (strong biases in peripheral collisions and pA) → link to small systems. → Get rid of centrality dependence for nPDFs, ridge, etc., that introduce additional correlations.

See also M. Schaumann at FCC Week 2019 for lighter ions at FCC.

	¹⁶ O ⁸⁺	$^{40}{\rm Ar}^{18+}$	${}^{40}Ca^{20+}$	⁷⁸ Kr ³⁶⁺	129 Xe ⁵⁴⁺	$^{208}\text{Pb}^{82+}$
γ	3760.	3390.	3760.	3470.	3150.	2960.
√s _{NN} /TeV	7.	6.3	7.	6.46	5.86	5.52
$\sigma_{\rm had}/{\rm b}$	1.41	2.6	2.6	4.06	5.67	7.8
$\sigma_{\rm BFPP}/b$	2.36×10^{-5}	0.00688	0.0144	0.88	15.	280.
$\sigma_{\rm EMD}/b$	0.0738	1.24	1.57	12.2	51.8	220.
σ_{tot}/b	1.48	3.85	4.18	17.1	72.5	508.
N_b	6.24×10^{9}	1.85×10^{9}	1.58×10^{9}	6.53×10^8	3.56×10^{8}	$1.9 imes 10^8$
$\epsilon_{\rm xn}/\mu m$	2.	1.8	2.	1.85	1.67	1.58
$f_{\rm IBS}/({\rm m~Hz})$	0.0662	0.0894	0.105	0.13	0.144	0.167
W_b/MJ	68.9	45.9	43.6	32.5	26.5	21.5
$L_{\rm AA0}/{\rm cm}^{-2} s^{-1}$	$1.46 imes 10^{31}$	$1.29 imes 10^{30}$	9.38×10^{29}	1.61×10^{29}	4.76×10^{28}	1.36×10^{28}
$L_{\rm NN0}/{\rm cm}^{-2} s^{-1}$	3.75×10^{33}	$2.06 imes 10^{33}$	$1.5 imes 10^{33}$	$9.79 imes 10^{32}$	7.93×10^{32}	5.88×10^{32}
P _{BFPP} /W	0.0031	0.179	0.303	5.72	43.4	350.
P _{EMD1} /W	4.98	16.5	16.9	40.5	76.7	141.
τ_{L0}/h	16.4	21.3	23.	13.5	5.87	1.57
T _{opt} /h	9.04	10.3	10.7	8.23	5.42	2.8
$\langle L_{\rm AA} \rangle \ {\rm cm}^{-2} {\rm s}^{-1}$	8.99×10^{30}	8.34×10^{29}	6.17×10^{29}	9.46×10^{28}	2.23×10^{28}	$3.8 imes 10^{27}$
$\langle L_{\rm NN} \rangle \ {\rm cm}^{-2} {\rm s}^{-1}$	2.3×10^{33}	$1.33 imes 10^{33}$	9.87×10^{32}	5.76×10^{32}	3.71×10^{32}	1.64×10^{32}
$\int_{\text{month}} L_{AA} \text{dt/nb}^{-1}$	$1.17 imes 10^4$	1080.	799.	123.	28.9	4.92
$\int_{\text{month}} L_{\text{NN}} \text{dt/pb}^{-1}$	2980.	1730.	1280.	746.	481.	213.
R _{had} /kHz	2.07×10^4	3340.	2440.	653.	270.	106.
μ	1.64	0.266	0.194	0.0518	0.0215	0.00842
	-			_	· · ·	

1812.06772, p=1.5

Lighter ions beyond LS4:

- There has been a proposal to collide lighter ions in Runs 5 to:
- → Get larger statistics: gains of factors 2 (Xe) to 10 (Ar), for e.g. top studies, Z+jet,...
- → Test size dependences of QGP properties and dynamics, without centrality definitions (strong biases in peripheral collisions and pA) → link to small systems. → Get rid of centrality dependence for nPDFs, ridge, etc., that introduce additional correlations.

1812.06772

NNLOJET

Lighter ions beyond LS4:

- There has been a proposal to collide lighter ions in Runs 5 to:
- → Get larger statistics: gains of factors 2 (Xe) to 10 (Ar), for e.g. top studies, Z+jet,...
- → Test size dependences of QGP properties and dynamics, without centrality definitions (strong biases in peripheral collisions and pA) → link to small systems. → Get rid of centrality dependence for nPDFs, ridge, etc., that introduce additional correlations. 1812.06772

• We may have new detectors/experiments there: LHCb Upgrade II, new detector in IP2 (heavy-ion detector focused on thermal radiation, rare c,b hadrons, ultrasoft particles (1902.01211), or LHeC offering ep/eA at the same time as pp/pA/AA).

Announcements:

$\leftarrow \rightarrow C$ \triangleq https://conferences.lbl.gov/event/196/	A N O					
🗰 Apps 📀 Welcome 🎽 Gmail: correo elec 🎼 HEP - INSPIRE-H	IEP 🎼 find (rank junior or 🧕 arXiv.org e-Print a 🔍 CERN people CE 💷 Saúl Canosa- Nat 🖪 Google Calendar » 🛅 Other Bookmarks					
iCal export More -	US/Pacific 🗕 English 🗕 Login					
POETIC 2019						
16-21 September 2019 LBL-Hill US/Pacific timezone						
Overview	9th International Conference on Physics Opportunities at an ElecTron-Ion-Collider					
Scientific Programme	POETIC 9, the Ninth International Conference on the 'Physics Opportunities at an ElecTron-Ion					
Code of conduct	Collider', will take place at Lawrence Berkeley National Laboratory, Berkeley, USA, from Monday, September 16 to Saturday, September 21, 2010. The primary goal of the conference is to continue the					
Registration	advancement of the field of electron-ion collider physics.					
Call for Abstracts	The first three days, from Monday to Wednesday, we plan to arrange focus meetings on various aspects					
View my Abstracts Submit Abstract	of our program (in parallel). The formal POETIC workshop starts on Thursday and ends on Saturday.					
Timetable	The program will consist of invited and contributed talks. We strongly encourage the submission of abstracts. Postdocs and students are especially encouraged to attend the conference.					
Contribution List	Conference Topics:					
Author List	Structure of hadrong, (nuclear) narten distribution functions (DDEs nDDEs), transverse momentum					

Structure of hadrons: (nuclear) parton distribuition functions (PDFs nPDFs), transverse momentum dependent (TMDs) and generalized parton distributions (GPDs), Distribution Amplitudes (DAs), Double Distributions (DDs). QCD at high parton densities and small-x: saturation, evolution, Color Glass Condensate Fragmentation functions and Jet properties Complementarity and connections of EIC physics with p+p, p+A and A+A collisions: high-pt processes, diffraction, multi-parton interactions, quark-gluon plasma and colored probes in hot nuclear matter. Physics beyond the Standard Model and connections to other areas in physics.

Future DIS facilities: accelerator and detector developments.

• LHeC/FCC-eh 2019 Workshop, October 24th-25th 2019 in Chavannes-de-Bogis near CERN.

Committees

Logistics

- I have done an incomplete, **personal** overview of the future possibilities for initial stages at CERN: FCC as representative of AA colliders, ep/eA and fixed target programmes.
 - → Partonic structure of the nucleus, in the collinear framework and beyond.
 - \rightarrow New dynamics at small x.
 - → Pre-equilibrium and small systems.

- I have done an incomplete, **personal** overview of the future possibilities for initial stages at CERN: FCC as representative of AA colliders, ep/eA and fixed target programmes.
 - → Partonic structure of the nucleus, in the collinear framework and beyond.
 - \rightarrow New dynamics at small x.
 - → Pre-equilibrium and small systems.

2019 → LS4 (2030)		Beyond LHC	
HL-LHC (pp, PbPb, pPb, OO?)	No ions	PP pp & ep?	FCC-like machine (pp/
Eived target program		pp/pA/AA, lighter ions?	pA/AA & ep/
Fixed target program	ions:	pp/pA/AA, lighter ions?, & ep/eA?	

N.Armesto, 28.06.2019 - CERN perspective.

- I have done an incomplete, **personal** overview of the future possibilities for initial stages at CERN: FCC as representative of AA colliders, ep/eA and fixed target programmes.
 - → Partonic structure of the nucleus, in the collinear framework and beyond.
 - \rightarrow New dynamics at small x.
 - → Pre-equilibrium and small systems.

Timelines:

 Disclaimer: train timelines are written only to show how late trains arrive (Herwig Schopper);
 Warning: they may contain traces of politics.

2019 → LS4 (2030)		Beyond LHC	
HL-LHC (pp, PbPb, pPb, OO?)	No ions	PP pp & ep ?	FCC-like machine (pp/ pA/AA & ep/ eA)?
Fixed target program	lons?	pp/pA/AA, lighter ions?	
		pp/pA/AA, lighter ions?, & ep/eA?	

N.Armesto, 28.06.2019 - CERN perspective.

Many thanks to:
→ My HL-LHC, FCC-AA, LHeC/FCC-eh (and EIC) colleagues for discussions and the opportunity to work with them;
→ A. Dainese, M. Klein, G. Milhano, C. A. Salgado and M.Winn for comments;
→ The organisers for the invitation to provide this talk;
→ You all for your attention.

Timelines:
 → Disclaimer: train timelines are written only to show how late trains arrive (Herwig Schopper);
 → Warning: they may contain traces of politics.

2019 → LS4 (2030)		Beyond LHC	
HL-LHC (pp, PbPb, pPb, OO?)	No ions	No PP ions pp & ep?	
	lons?	pp/pA/AA, lighter ions?	pA/AA & ep/ eA)?
rixed target program		pp/pA/AA, lighter ions?, & ep/eA?	

N.Armesto, 28.06.2019 - CERN perspective.

Status of nPDFs:

SET		EPS09 JHEP 0904 (2009) 065	DSSZ PRD85 (2012) 074028	nCTEQ15 PRD93 (2016) 085037	KAI5 PRD93 (2016) 014036	EPPS16 EPJC77 (2017)163	nNNPDF1.0 EPJC79 (2019) 471
	eDIS	~	~	~	~	~	~
data	DY	✓	✓	✓	 ✓ 	✓	×
	π٥	 ✓ 		✓	×	✓	×
	vDIS	×	✓	×	×	✓	×
	pPb	×	×	×	×	✓	×
# data		929	1579	740	1479	1811	451
order		NLO NLO		NLO	NNLO	NLO	NNLO
proton PDF		CTEQ6.I MSTW2008		~CTEQ6.I	JR09	CTI4NLO	NNPDF3.I
mass scheme		ZM-VFNS	ZM-VFNS GM-VFNS		ZM-VFNS	GM-VFNS	FONLL-B
comments		Δχ ² =50, ratios, <u>huge</u> <u>shadowing-</u> <u>antishadowing</u>	$\Delta \chi^2$ =30, ratios, <u>medium-</u> <u>modified FFs for</u> <u>π^0</u>	Δχ ² =35, PDFs, valence <u>flavour</u> <u>sep., not enough</u> <u>sensitivity</u>	PDFs, <u>deuteron</u> <u>data included</u>	Δχ ² =52, flavour sep., ratios, <u>LHC</u> <u>pPb data</u>	<u>NNPDF</u> <u>methodology</u> , isoscalarity assumed

nPDF studies now:

• Theoretical control in PT over forward D or J/ ψ under debate: scales, DPS, non-linear dynamics,... E.g. quarkonium: superposition of nPDFs + eloss/absorption + comovers for ψ ',

Collectivity (flow for D and J/ψ as in charged hadrons in pPb and PbPb) would limit the use of low p_T data for extraction of nPDFs.
UPCs offer possibilities for constraining both nPDFs: first indication of nuclear shadowing (talk by J. Seger).

Correlations in eA/pA (II):

- Studying dijet azimuthal decorrelation or forward jets ($p_T \sim Q$) in ep/eA/pp/ pAwould allow to understand the mechanism of radiation:
- \rightarrow k_T-ordered: DGLAP.
- \rightarrow k_T-disordered: BFKL.
- → Saturation?
- Further imposing a rapidity gap (diffractive jets) would be most interesting: perturbatively controllable observable.

•Nuclear and saturation effects on usual BFKL signals (e.g. dijet azimuthal decorrelation, Mueller-Navelet jets) has not been extensively addressed: A-dependence contrary to linear resummation?