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Physics picture

In high energy nuclear collisions high density of gluons at the
saturation scale Qs.
If Qs large → αs (Qs)� 1,→ gluons at Qs overoccupied
classical color fields.
Many systems (non-Abelian gauge theories and scalars in 3D
and scalars in 2D etc.) with f � 1→ universal self-similar
attractors.
At high energy the initial color fields are boost invariant →
effectively 2D.
Gauge systems in 3D exhibit self-similarity. Less is known
about 2D.
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Aims of this talk:

Questions:
3D gauge and scalar systems exhibit self-similarity. How about
2D gauge theory?
Teaser: there are quasiparticles in the self-similar regime in 3D
(PRD 98 (2018) no.1, 014006). How about 2D?

Methods - two different theories:
2+1D gauge theory.
Dimensionally reduced 3+1D theory = 2+1D gauge + adjoint
scalar. Mimics the boost invariant system.

Answers:
2+1D and eff. 2+1D systems exhibit self-similarity.
Quasiparticle exitations for large p. Small p→ inverse lifetime
≈ω, which makes interpretation more difficult.
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Introduction: self-similarity in 3D
Gauge and scalar systems exhibit self-similar behavior at late times.
Dynamics governed by universal scaling exponents.

f (t, p) = (Qt)α fS((Qt)β p) , (1)

Figure: Occupation number
distribution. Phys.Rev. D89 (2014)
no.11, 114007

Figure: Third moment of the occupation
number distribution, also with rescaling.
Phys.Rev. D89 (2014) no.11, 114007
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Self-similarity in 2+1D
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Figure: With rescaling

10-6

10-5

10-4

10-3

10-2

10-1

100

 0.1  1  10

D
is

tr
ib

u
ti

o
n

: 
 g

2  f E
 / 

Q

Momentum:  p / Q

Qt =         0
Qt =       75
Qt =     200
Qt =     500
Qt =   1500
Qt =   4000
Qt = 16000

Figure: No rescaling

Self-similar evolution also in 2+1D!
In 2D results:

α= −3/5 (2)
β = −1/5. (3)

In 3D we had:

α= −4/7 (4)
β = −1/7. (5)

α= (d + 1)β → energy conservation.
β = −1/5: kinetic theory + small angle approximation.
→ energy cascade to UV.
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Self-similarity in eff. 2+1D
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Figure: Gauge distribution
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Figure: Scalar distribution

The same exponents also in eff. 2+1D simulations.
For scalar distribution fπ, the self-similar scaling is violated for
p < mD. One observes enhancement in the IR.
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Gauge-invariant hard scale: self-similar evolution
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Gauge invariant hard scale follows self-similar evolution in both
theories for both gauge and scalar excitations.
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Attractor in 2+1D
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Dashed lines: initial condition, full lines: 2D theory,
dash-dotted lines: 2D + scalar theory.
3 different initial conditions. At later times they fall on top of
each other. → Dynamics not sensitive to such initial conditions.
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Extraction of spectral function: Linear response theory

Use linear response theory, extract retarded propagator as in ( PRD
98 (2018) no.1, 014006) for 3D gauge system. Split the gauge field
into background field and a fluctuation

Aµ (t, x)→ Aµ (t, x) + aµ (t, x) . (8)

a evolves according to linearized EOMS. Use

〈âb
i (t,p)〉=

∫

dt ′ G bc
R,ik (t, t ′,p) jk

c (t
′,p). (9)

Source j can be chosen such that GR can be obtained from 〈 ja〉.
Finally obtain the spectral function as

ρ = 2ImGR. (10)
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Spectral function in 2+1D: Preliminary
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Figure: Numerically extracted spectral function

Curves correspond to ωρ
Peak position↔ω(p) dispersion relation.
Peak width↔ γ(p) damping rate (inverse lifetime)
At small p: ω≈ γ i.e. quasiparticle interpretation problematic.
At large p: we see quasiparticle peaks.
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Conclusions

We have
Observed self-similar behavior in 2+1D gauge theories. In both
theories both gauge and scalar fields approach a universal
attractor that is the same for both.
The scaling exponents are α= −3/5 and β = −1/5. Different
from 3D.
Scalar distribution IR enhanced.
Extracted spectral function from 2+1D simulations. We find
that quasiparticles exist for large p. However for small p
quasiparticle description becomes problematic.

Outlook
Work in progress also in terms of transport coefficients ( κ,
poster by JP). We also want to look at plasma instabilities etc.
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Correlation functions
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Figure: 2D
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Figure: 2D+Scalar

Scalar correlator is enhanced in the infrared.
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Debye mass
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Figure: 2D

The Debye mass extracted from the longitudinal < EE > correlator
follows self-similar evolution.

〈EL E∗L〉 ≈
A

1+ (p2/m2
D)1+δ

, (11)

for momenta p ® Λ. At early times δ ≈ 0.2− 0.3. At Qt = 2000
δ ≈ 0.08− 0.12 for both theories.
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Scaling exponents
Extract the scaling exponents α and β . Define a rescaled distribution

ftest(t, p) = (t/tr)
−α f

�

t, (t/tr)
−β p

�

. (12)

ftest(tr , p)≡ f (tr , p) for the reference time Qtr = 500.
Self-similarity → ftest(t, p) time-independent.

Quantify the deviation by computing

χ2
m(α̃,β) =

1
Nt

∑

i

∫

d log p (pm∆ f (t i , p))2
∫

d log p (pm f (tr , p))2
, (13)

∆ f (t i , p) = ftest(t i , p)− f (tr , p)
α̃≡ α− 3β .
Momentum integrals are performed in the interval
0.2≤ p/Q ≤ 5.
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Scaling exponents

The deviations χ2
m are averaged over the test times

Qt i = 75, 200,1500, 4000,16000 for different moments with
m= 2, . . . , 5.
Define a likelihood function

W (α̃,β) =
1
N

exp

�

1−
χ2(α̃,β)
χ2

min

�

. (14)

χ2(α̃0,β0)≡ χ2
min takes its minimal value.

The normalization N satisfies
∫

dα̃dβ W (α̃,β) = 1,
W (β) =

∫

dα̃W (α̃,β).
The uncertainty σβ for every m, fit∝ exp[−(β −β0)2/(2σ2

β
)].

The statistical error σχ
2

β
of the χ2 fit is the maximumf σβ

among the different m.

Jarkko Peuron Self-similarity and spectral functions of non-Abelian plasmas in 2+1D 4 / 0



Scaling exponents

Best fit values

αfit − 3βfit = 0.01± 0.02 (15)
βfit = −0.19± 0.015 . (16)
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