STAR A

Investigation of the linear and mode-coupled flow harmonics in $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{S_{N N}}=200 \mathrm{GeV}$

Niseem Magdy
For the STAR Collaboration
University of Illinois at Chicago niseemm@gmail.com

Office of Science

Introduction

Anisotropic flow

Asymmetry in initial geometry \rightarrow Final-state momentum anisotropy

What are the respective roles of ε_{n} and its fluctuations, flow correlations and $\eta / \mathrm{s}(T)$ on the v_{n} ?

Introduction

Anisotropic flow

Asymmetry in initial geometry \rightarrow Final-state momentum anisotropy

What are the respective roles of ε_{n} and its fluctuations, flow correlations and $\eta / \mathrm{s}(T)$ on the v_{n} ?

Higher-order flow harmonics ($v_{\mathrm{n}>3}$) have multiple contributions:
\checkmark Linear response $\propto \varepsilon_{\mathrm{n}>3}$
\checkmark Mode-coupled response $\propto \varepsilon_{2}$ and/or ε_{3} and the Event Plane (EP) correlations

Introduction

Anisotropic flow

Asymmetry in initial geometry \rightarrow Final-state momentum anisotropy

What are the respective roles of ε_{n} and its fluctuations, flow correlations and $\eta / \mathrm{s}(T)$ on the v_{n} ?

Higher-order flow harmonics ($v_{\mathrm{n}>3}$) have multiple contributions:
\checkmark Linear response $\propto \varepsilon_{\mathrm{n}>3}$
\checkmark Mode-coupled response $\propto \varepsilon_{2}$ and/or ε_{3} and the Event Plane (EP) correlations

The focus of this work:
\checkmark Separate and study the linear and mode-coupled contributions
\checkmark Study the nature of the eccentricity coupling and the EP correlations

Introduction

The Solenoidal Tracker At RHIC

> Time Projection Chamber
Tracking of charged particles with:
\checkmark Full azimuthal coverage
$\checkmark \quad|\eta|<1$ coverage

Analysis Method

The two- and three-particle correlations:

$$
\mathrm{n}=2,3 \quad \mathrm{k}=n+2
$$

$C_{k, 2 n}=\left\langle\left\langle\cos \left((2+n) \varphi_{1}^{A}-2 \varphi_{2}^{B}-n \varphi_{3}^{B}\right)\right\rangle\right\rangle \quad v_{n}^{\text {Inclusive }}=\left\langle\left\langle\cos \left(n \varphi_{1}^{A}-n \varphi_{2}^{B}\right)\right\rangle\right\rangle^{1 / 2}$

$$
\begin{aligned}
& \text { The four-particle correlations: } \\
& \begin{aligned}
\left\langle\mathrm{v}_{2}^{4}\right\rangle & =\left\langle\left\langle\cos \left(2 \varphi_{1}+2 \varphi_{2}-2 \varphi_{3}-2 \varphi_{4}\right)\right\rangle\right\rangle-2\left\langle\left\langle\cos \left(2 \varphi_{1}-2 \varphi_{2}\right)\right\rangle\right\rangle^{2}+2\left\langle\left\langle\cos \left(2 \varphi_{1}^{A}-2 \varphi_{2}^{B}\right)\right\rangle\right\rangle^{2} \\
\left\langle\mathrm{v}_{2}^{2} \mathrm{v}_{3}^{2}\right\rangle & =\left\langle\left\langle\cos \left(3 \varphi_{1}+2 \varphi_{2}-3 \varphi_{3}-2 \varphi_{4}\right)\right\rangle\right\rangle-\left\langle\left\langle\cos \left(2 \varphi_{1}-2 \varphi_{2}\right)\right\rangle\right\rangle\left\langle\left\langle\cos \left(4 \varphi_{1}-3 \varphi_{2}\right)\right\rangle\right\rangle \\
& +\left\langle\left\langle\cos \left(2 \varphi_{1}^{A}-2 \varphi_{2}^{B}\right)\right\rangle\right\rangle\left\langle\left\langle\cos \left(3 \varphi_{1}^{A}-3 \varphi_{2}^{B}\right)\right\rangle\right\rangle
\end{aligned}
\end{aligned}
$$

Analysis Method

The two- and three-particle correlations:

$$
\mathrm{n}=2,3 \quad \mathrm{k}=n+2
$$

$$
\begin{aligned}
& C_{k, 2 n}=\left\langle\left\langle\cos \left((2+n) \varphi_{1}^{A}-2 \varphi_{2}^{B}-n \varphi_{3}^{B}\right)\right\rangle\right\rangle \quad v_{n}^{\text {Inclusive }}=\left\langle\left\langle\cos \left(n \varphi_{1}^{A}-n \varphi_{2}^{B}\right)\right\rangle\right\rangle^{1 / 2} \mathrm{~A} \\
& \text { The four-particle correlations: } \\
& \left\langle\mathrm{v}_{2}^{4}\right\rangle=\left\langle\left\langle\cos \left(2 \varphi_{1}+2 \varphi_{2}-2 \varphi_{3}-2 \varphi_{4}\right)\right\rangle\right\rangle-2\left\langle\left\langle\cos \left(2 \varphi_{1}-2 \varphi_{2}\right)\right\rangle\right\rangle^{2}+2\left\langle\left\langle\cos \left(2 \varphi_{1}^{A}-2 \varphi_{2}^{B}\right)\right\rangle\right\rangle^{2}
\end{aligned}
$$

$$
\left\langle\mathrm{v}_{2}^{2} \mathrm{v}_{3}^{2}\right\rangle=\left\langle\left\langle\cos \left(3 \varphi_{1}+2 \varphi_{2}-3 \varphi_{3}-2 \varphi_{4}\right)\right\rangle\right\rangle-\left\langle\left\langle\cos \left(2 \varphi_{1}-2 \varphi_{2}\right)\right\rangle\right\rangle\left\langle\left\langle\cos \left(4 \varphi_{1}-3 \varphi_{2}\right)\right\rangle\right\rangle
$$

$$
+\left\langle\left\langle\cos \left(2 \varphi_{1}^{A}-2 \varphi_{2}^{B}\right)\right\rangle\right\rangle\left\langle\left\langle\cos \left(3 \varphi_{1}^{A}-3 \varphi_{2}^{B}\right)\right\rangle\right\rangle
$$

Assume the orthogonality between linear and non-linear contributions

$$
V_{k}=V_{k}^{\text {Linear }}+V_{k}^{\text {Non-Linear }}
$$

ALICE Collaboration PLB 77368 (2017)

Analysis Method

The two- and three-particle correlations:

$$
\mathrm{n}=2,3 \quad \mathrm{k}=n+2
$$

$C_{k, 2 n}=\left\langle\left\langle\cos \left((2+n) \varphi_{1}^{A}-2 \varphi_{2}^{B}-n \varphi_{3}^{B}\right)\right\rangle\right\rangle \quad v_{n}^{\text {Inclusive }}=\left\langle\left\langle\cos \left(n \varphi_{1}^{A}-n \varphi_{2}^{B}\right)\right\rangle\right\rangle^{1 / 2} \mathrm{~A}$
The four-particle correlations:
$\left\langle\mathrm{v}_{2}^{4}\right\rangle=\left\langle\left\langle\cos \left(2 \varphi_{1}+2 \varphi_{2}-2 \varphi_{3}-2 \varphi_{4}\right)\right\rangle\right\rangle-2\left\langle\left\langle\cos \left(2 \varphi_{1}-2 \varphi_{2}\right)\right\rangle\right\rangle^{2}+2\left\langle\left\langle\cos \left(2 \varphi_{1}^{A}-2 \varphi_{2}^{B}\right)\right\rangle\right\rangle^{2}$
$\left\langle v_{2}^{2} v_{3}^{2}\right\rangle=\left\langle\left\langle\cos \left(3 \varphi_{1}+2 \varphi_{2}-3 \varphi_{3}-2 \varphi_{4}\right)\right\rangle\right\rangle-\left\langle\left\langle\cos \left(2 \varphi_{1}-2 \varphi_{2}\right)\right\rangle\right\rangle\left\langle\left\langle\cos \left(4 \varphi_{1}-3 \varphi_{2}\right)\right\rangle\right\rangle$

$$
+\left\langle\left\langle\cos \left(2 \varphi_{1}^{A}-2 \varphi_{2}^{B}\right)\right\rangle\right\rangle\left\langle\left\langle\cos \left(3 \varphi_{1}^{A}-3 \varphi_{2}^{B}\right)\right\rangle\right\rangle
$$

$>v_{k}^{\text {Non-Linear }}$ carry information about:
Assume the orthogonality between linear and non-linear contributions
\checkmark Viscous effects, EP angular correlations and Eccentricity coupling

$$
\begin{aligned}
v_{k}^{\text {Non-Linear }} & =\frac{\mathrm{C}_{\mathrm{k}, 2 \mathrm{n}}}{\sqrt{\left\langle\mathrm{v}_{2}^{2} \mathrm{v}_{\mathrm{n}}^{2}\right\rangle}}, \\
& =\frac{\left\langle\mathrm{v}_{\mathrm{k}} \mathrm{v}_{2} \mathrm{v}_{\mathrm{n}} \cos \left(\mathrm{k} \Psi_{\mathrm{k}}-\mathrm{n} \Psi_{\mathrm{n}}-2 \Psi_{2}\right)\right\rangle}{\left\langle\mathrm{v}_{2}^{2} \mathrm{v}_{\mathrm{n}}^{2}\right\rangle} \\
& \sim\left\langle\mathrm{v}_{\mathrm{k}} \cos \left(\mathrm{k} \Psi_{\mathrm{k}}-\mathrm{n} \Psi_{\mathrm{n}}-2 \Psi_{2}\right)\right\rangle
\end{aligned}
$$

$$
v_{k}^{\text {Linear }}=\sqrt{\left(\mathrm{v}_{\mathrm{k}}^{\text {Inclusive }}\right)^{2}-\left(\mathrm{v}_{\mathrm{k}}^{\text {Non-Linear }}\right)^{2}}
$$

Analysis Method

The two- and three-particle correlations:

$$
\mathrm{n}=2,3 \quad \mathrm{k}=n+2
$$

$C_{k, 2 n}=\left\langle\left\langle\cos \left((2+n) \varphi_{1}^{A}-2 \varphi_{2}^{B}-n \varphi_{3}^{B}\right)\right\rangle\right\rangle \quad v_{n}^{\text {Inclusive }}=\left\langle\left\langle\cos \left(n \varphi_{1}^{A}-n \varphi_{2}^{B}\right)\right\rangle\right\rangle^{1 / 2} \mathrm{~A} \quad \mathrm{~B}$
The four-particle correlations:

$$
\begin{aligned}
\left\langle\mathrm{v}_{2}^{4}\right\rangle & =\left\langle\left\langle\cos \left(2 \varphi_{1}+2 \varphi_{2}-2 \varphi_{3}-2 \varphi_{4}\right)\right\rangle\right\rangle-2\left\langle\left\langle\cos \left(2 \varphi_{1}-2 \varphi_{2}\right)\right\rangle\right\rangle^{2}+2\left\langle\left\langle\cos \left(2 \varphi_{1}^{A}-2 \varphi_{2}^{B}\right)\right\rangle\right\rangle^{2} \\
\left\langle\mathrm{v}_{2}^{2} \mathrm{v}_{3}^{2}\right\rangle & =\left\langle\left\langle\cos \left(3 \varphi_{1}+2 \varphi_{2}-3 \varphi_{3}-2 \varphi_{4}\right)\right\rangle\right\rangle-\left\langle\left\langle\cos \left(2 \varphi_{1}-2 \varphi_{2}\right)\right\rangle\right\rangle\left\langle\left\langle\cos \left(4 \varphi_{1}-3 \varphi_{2}\right)\right\rangle\right\rangle \\
& +\left\langle\left\langle\cos \left(2 \varphi_{1}^{A}-2 \varphi_{2}^{B}\right)\right\rangle\right\rangle\left\langle\left\langle\cos \left(3 \varphi_{1}^{A}-3 \varphi_{2}^{B}\right)\right\rangle\right\rangle \quad \text { Assume the orthogonality betv }
\end{aligned}
$$

Assume the orthogonality between linear and non-linear contributions
$>v_{k}^{\text {Non-Linear }}$ carry information about:

$$
V_{k}=V_{k}^{\text {Linear }}+V_{k}^{\text {Non-Linear }}
$$

$$
\begin{aligned}
v_{\boldsymbol{k}}^{\text {Non-Linear }} & =\frac{\mathrm{C}_{\mathrm{k}, 2, \mathrm{n}}}{\sqrt{\left\langle\mathrm{v}_{2}^{2} \mathrm{v}_{\mathrm{n}}^{2}\right\rangle}}, \\
& =\frac{\left\langle\mathrm{v}_{\mathrm{k}} \mathrm{~V}_{2} \mathrm{v}_{\mathrm{n}} \cos \left(\mathrm{k} \Psi_{\mathrm{k}}-\mathrm{n} \Psi_{\mathrm{n}}-2 \Psi_{2}\right)\right\rangle}{\left\langle\mathrm{v}_{2}^{2} \mathrm{v}_{\mathrm{n}}^{2}\right\rangle}, \\
& \sim\left\langle\mathrm{v}_{\mathrm{k}} \cos \left(\mathrm{k} \Psi_{\mathrm{k}}-\mathrm{n} \Psi_{\mathrm{n}}-2 \Psi_{2}\right)\right\rangle,
\end{aligned}
$$

\checkmark EP angular correlations

$$
\rho_{\mathrm{k}, 2 \mathrm{n}}=\frac{\mathrm{v}_{\mathrm{k}}^{\text {Non-Linear }}}{\mathrm{v}_{\mathrm{k}}^{\text {Inclusive }}}=\left\langle\cos \left(\mathrm{k} \Psi_{\mathrm{k}}-2 \Psi_{2}-\mathrm{n} \Psi_{\mathrm{n}}\right)\right\rangle
$$

$$
v_{k}^{\text {Linear }}=\sqrt{\left(\mathrm{v}_{\mathrm{k}}^{\text {Inclusive }}\right)^{2}-\left(\mathrm{v}_{\mathrm{k}}^{\text {Non-Linear }}\right)^{2}}
$$

\checkmark Eccentricity coupling

$$
\chi_{\mathrm{k}, 2 \mathrm{n}}=\frac{\mathrm{v}_{\mathrm{k}}^{\text {Non-Linear }}}{\sqrt{\left\langle\mathrm{v}_{2}^{2} \mathrm{v}_{\mathrm{n}}^{2}\right\rangle}}
$$

Weak viscous effect expected

The short-range non-flow contributions in the three-particle correlations

Three-particle correlations, $\mathrm{C}_{4,22}$ and $\mathrm{C}_{5,23}$ for $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{S_{N N}}=200 \mathrm{GeV}$ using the AMPT model

$>$ Two-subevents reduce the short-range non-flow effects in the three-particle correlation measurements

$$
\begin{aligned}
& C_{4,22}=\left\langle\left\langle\cos \left(4 \varphi_{1}^{A}-2 \varphi_{2}^{B}-2 \varphi_{3}^{B}\right)\right\rangle\right\rangle \\
& C_{5,23}=\left\langle\left\langle\cos \left(5 \varphi_{1}^{A}-2 \varphi_{2}^{B}-3 \varphi_{3}^{B}\right)\right\rangle\right\rangle
\end{aligned}
$$

Results

Three-particle correlations, $\mathrm{C}_{4,22}$ and $\mathrm{C}_{5,23}$ for $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{S_{N N}}=200 \mathrm{GeV}$ compared with different hydrodynamic simulations.

$$
\begin{aligned}
& C_{4,22}=\left\langle\left\langle\cos \left(4 \varphi_{1}^{A}-2 \varphi_{2}^{B}-2 \varphi_{3}^{B}\right)\right\rangle\right\rangle \\
& C_{5,23}=\left\langle\left\langle\cos \left(5 \varphi_{1}^{A}-2 \varphi_{2}^{B}-3 \varphi_{3}^{B}\right)\right\rangle\right\rangle
\end{aligned}
$$

Results

Three-particle correlations, $\mathrm{C}_{4,22}$ and $\mathrm{C}_{5,23}$ for $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{S_{N N}}=200 \mathrm{GeV}$ compared with different hydrodynamic simulations.

$>$ Two-subevents reduce the short-range non-flow effects in the three-particle correlation measurements

$$
\begin{aligned}
& C_{4,22}=\left\langle\left\langle\cos \left(4 \varphi_{1}^{A}-2 \varphi_{2}^{B}-2 \varphi_{3}^{B}\right)\right\rangle\right\rangle \\
& C_{5,23}=\left\langle\left\langle\cos \left(5 \varphi_{1}^{A}-2 \varphi_{2}^{B}-3 \varphi_{3}^{B}\right)\right\rangle\right\rangle
\end{aligned}
$$

Results

Three-particle correlations, $\mathrm{C}_{4,22}$ and $\mathrm{C}_{5,23}$ for $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{S_{N N}}=200 \mathrm{GeV}$ compared with different hydrodynamic simulations.

$>$ However both models fit the v_{n} they need additional constrains in order to describe the 3-particle correlations
$C_{4,22}=\left\langle\left\langle\cos \left(4 \varphi_{1}^{A}-2 \varphi_{2}^{B}-2 \varphi_{3}^{B}\right)\right\rangle\right\rangle$
$C_{5,23}=\left\langle\left\langle\cos \left(5 \varphi_{1}^{A}-2 \varphi_{2}^{B}-3 \varphi_{3}^{B}\right)\right\rangle\right\rangle$

Results

The p_{T}-differential dependence of the inclusive, linear and non-linear v_{4} for $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{S_{N N}}=200 \mathrm{GeV}$ are shown

> The inclusive, linear and non linear v_{4} shows a characteristics p_{T} dependence

$$
\begin{gathered}
v_{4}^{\text {Non-Linear }}=\frac{C_{4,22}}{\sqrt{\left\langle v_{2}^{4}\right\rangle}} \\
v_{4}^{\text {Linear }}=\sqrt{\left(v_{4}^{\text {Inclusive }}\right)^{2}-\left(v_{4}^{\text {Non-Linear }}\right)^{2}}
\end{gathered}
$$

Results

The p_{T}-differential dependence of the inclusive, linear and non-linear v_{4} for $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{S_{N N}}=200 \mathrm{GeV}$ are shown

$>$ The inclusive, linear and non linear v_{4} shows a characteristics p_{T} dependence

$$
\begin{aligned}
& v_{4}^{\text {Non-Linear }}=\frac{c_{422}}{\sqrt{\left(v_{2}^{4}\right\rangle}}>\text { The linear } v_{4} \text { term dominates in central collisions } \\
& v_{4}^{\text {Linear }}=\sqrt{\left(v_{4}^{\text {Inclusive }}\right)^{2}-\left(v_{4}^{\text {Non-Linear }}\right)^{2}}
\end{aligned}
$$

Results

Centrality dependence of the inclusive, linear and non-linear $v_{n}(\mathrm{n}=4,5)$ for $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{S_{N N}}=200 \mathrm{GeV}$

$>$ The linear $v_{n}(\mathrm{n}=4,5)$ terms dominate in central collisions

$$
\begin{gathered}
v_{m+2}^{\text {Non-Linear }}=\frac{C_{m+2,2 m}}{\sqrt{\left\langle v_{2}^{2} v_{m}^{2}\right\rangle}} \\
v_{m+2}^{\text {Linear }}=\sqrt{\left(v_{m+2}^{\text {Inclusive }}\right)^{2}-\left(v_{m+2}^{\text {Non-Linear }}\right)^{2}}
\end{gathered}
$$

Results

Centrality dependence of the non-linear mode-coupling coefficients, $\chi_{4,22}$ and $\chi_{5,23}$ and the EP angular correlations $\rho_{4,22}$ and $\rho_{5,23}$ for $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{s_{N N}}=200 \mathrm{GeV}$
$\chi_{\mathrm{k}, \mathrm{nm}}$ shows a weak centrality dependence (weak viscous effect)
$>\rho_{\mathrm{k}, \mathrm{nm}}$ shows a strong centrality dependence

$$
\begin{aligned}
& \chi_{m+2,2 m}=v_{m+2}^{\text {Non-Linear }} / \sqrt{\left\langle v_{2}^{2} v_{m}^{2}\right\rangle} \mathrm{m}=2,3 \\
& \rho_{m+2,2 m}=v_{m+2}^{\text {Non-Linear }} / v_{m+2}^{\text {Inclusive }}
\end{aligned}
$$

Results

Centrality dependence of the non-linear mode-coupling coefficients, $\chi_{4,22}$ and $\chi_{5,23}$ and the EP angular correlations $\rho_{4,22}$ and $\rho_{5,23}$ for $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{S_{N N}}=200 \mathrm{GeV}$
$\chi_{\mathrm{k}, \mathrm{nm}}$ shows a weak centrality dependence (weak viscous effect)
$>\rho_{\mathrm{k}, \mathrm{nm}}$ shows a strong centrality dependence
$>\rho_{\mathrm{k}, \mathrm{nm}}$ and $\chi_{\mathrm{k}, \mathrm{nm}}$ show a weak beam energy dependence

Results

Centrality dependence of the non-linear mode-coupling coefficients, $\chi_{4,22}$ and $\chi_{5,23}$ and the EP angular correlations $\rho_{4,22}$ and $\rho_{5,23}$ for $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{s_{N N}}=200 \mathrm{GeV}$
$\chi_{\mathrm{k}, \mathrm{nm}}$ shows a weak centrality dependence (weak viscous effect)
$>\rho_{\mathrm{k}, \mathrm{nm}}$ shows a strong centrality dependence
$>\rho_{\mathrm{k}, \mathrm{nm}}$ and $\chi_{\mathrm{k}, \mathrm{nm}}$ show a weak beam energy dependence

$$
\begin{aligned}
& \chi_{m+2,2 m}=v_{m+2}^{\text {Non-Linear }} / \sqrt{\left\langle v_{2}^{2} v_{m}^{2}\right\rangle} \mathrm{m}=2,3 \\
& \rho_{m+2,2 m}=v_{m+2}^{\text {Non-Linear }} / v_{m+2}^{\text {Inclusive }}
\end{aligned}
$$

Results

The p_{T}-differential dependence of the non-linear mode-coupling coefficients, $\chi_{4,22}$ and the EP angular correlations $\rho_{4,22}$ for $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{S_{N N}}=200 \mathrm{GeV}$ are shown

$$
\begin{aligned}
& \chi_{m+2,2 m}=v_{m+2}^{\text {Non-Linear }} / \sqrt{\left\langle v_{2}^{2} v_{m}^{2}\right\rangle} \mathrm{m}=2 \\
& \rho_{m+2,2 m}=v_{m+2}^{\text {Non-Linear }} / v_{m+2}^{\text {Inclusive }}
\end{aligned}
$$

The influence of event shape selection
$>$ Events are further subdivided into groups with different q_{2} magnitude:

$$
\begin{array}{cc}
Q_{n, x}=\sum_{i=1}^{M} \cos \left(n \varphi_{i}\right) & Q_{n, y}=\sum_{i=1}^{M} \sin \left(n \varphi_{i}\right) \\
\left|Q_{n}\right|=\sqrt{Q_{n, x}^{2}+Q_{n, y}^{2}} & q_{n}=\frac{\left|Q_{n}\right|}{\sqrt{M}}
\end{array}
$$

The influence of event shape selection

$>$ Events are further subdivided into groups with different q_{2} magnitude:

$$
\begin{array}{cc}
Q_{n, x}=\sum_{i=1}^{M} \cos \left(n \varphi_{i}\right) & Q_{n, y}=\sum_{i=1}^{M} \sin \left(n \varphi_{i}\right) \\
\left|Q_{n}\right|=\sqrt{Q_{n, x}^{2}+Q_{n, y}^{2}} & q_{n}=\frac{\left|Q_{n}\right|}{\sqrt{M}}
\end{array}
$$

$>v_{2}\{2\}$ increases linearly with q_{2} q_{2} is good event-shape selector

ALICE Collaboration
PRC 93, 034916 (2016)

The influence of event shape selection

$>$ Events are further subdivided into groups with different q_{2} magnitude:

$$
\begin{gathered}
Q_{n, x}=\sum_{i=1}^{M} \cos \left(n \varphi_{i}\right) \\
\mid Q_{n, y}=\sum_{i=1}^{M} \sin \left(n \varphi_{i}\right) \\
=\sqrt{Q_{n, x}^{2}+Q_{n, y}^{2}} \quad q_{n}=\frac{\left|Q_{n}\right|}{\sqrt{M}}
\end{gathered}
$$

$v_{4}\{2\}$ shows no sensitivity to q_{4}

$>v_{2}\{2\}$ increases linearly with q_{2} q_{2} is good event-shape selector

ALICE Collaboration
PRC 93, 034916 (2016)

Results

Centrality dependence of the linear and non-linear v_{4} for $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{S_{N N}}=200 \mathrm{GeV}$ with different event shape selections $\left(\mathrm{q}_{2} \%\right)$

$>$ The non-linear v_{4} increases with q_{2} selections

$$
\begin{gathered}
v_{4}^{N o n-L i n e a r}=\frac{C_{4,22}}{\sqrt{\left\langle v_{2}^{4}\right\rangle}} \\
v_{4}^{\text {Linear }}=\sqrt{\left(v_{4}^{\text {Inclusive }}\right)^{2}-\left(v_{4}^{\text {Non-Linear }}\right)^{2}}
\end{gathered}
$$

Results

Centrality dependence of the linear and non-linear v_{4} for $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{S_{N N}}=200 \mathrm{GeV}$ with different event shape selections ($\mathrm{q}_{2} \%$)

$>$ The non-linear v_{4} increases with q_{2} selections
$>$ The linear v_{4} shows a weak sensitivety to q_{2} selections

$$
\begin{gathered}
v_{4}^{N o n-L i n e a r}=\frac{C_{4,22}}{\sqrt{\left\langle v_{2}^{4}\right\rangle}} \\
v_{4}^{\text {Linear }}=\sqrt{\left(v_{4}^{\text {Inclusive }}\right)^{2}-\left(v_{4}^{\text {Non-Linear }}\right)^{2}}
\end{gathered}
$$

Results

Centrality dependence of the $\rho_{4,22}$ and $\chi_{4,22}$ for $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{S_{N N}}=200 \mathrm{GeV}$ with different event shape selections $\left(\mathrm{q}_{2}\right)$

Results

Centrality dependence of the $\rho_{4,22}$ and $\chi_{4,22}$ for $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{S_{N N}}=200 \mathrm{GeV}$ with different event shape selections $\left(\mathrm{q}_{2}\right)$

```
M,
\chi}\mp@subsup{m}{m,2,2m}{}=\mp@subsup{v}{m+2}{\mathrm{ Non-Linear }}/\sqrt{}{\langle\mp@subsup{v}{2}{2}\mp@subsup{v}{m}{2}\rangle
\rho
```


Results

Centrality dependence of the linear and non-linear v_{4} and the assosatied $\rho_{4,22}$ and $\chi_{4,22}$ for $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{S_{N N}}=200 \mathrm{GeV}$ with different event shape selection $\left(\mathrm{q}_{4}\right)$

$>$ The (non)linear v_{4} and the assosatied $\rho_{4,22}$ and $\chi_{4,22}$ show weak sensitivety to q_{4} selections

Conclusion

The linear and mode-coupled contributions to the higher-order anisotropic flow coefficients v_{4} and v_{5}, have been studied using two- and multi-particle correlations in $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{S_{N N}}=200 \mathrm{GeV}$

Conclusion

The linear and mode-coupled contributions to the higher-order anisotropic flow coefficients v_{4} and v_{5}, have been studied using two- and multi-particle correlations in $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{S_{N N}}=200 \mathrm{GeV}$

* Two-subevents reduce the short-range non-flow effect on in the three-particle correlations
$\dot{*}$ The linear $v_{n}(\mathrm{n}=4,5)$ terms dominate in central collisions
* The $\chi_{\mathrm{k}, \mathrm{nm}}$ show a weak centrality dependence (weak viscous effects)
\nLeftarrow The $\chi_{4,22}$ and $\rho_{4,22}$ show a weak p_{T} dependence
\checkmark Dynamical final-state effect are significantly less than the initial-state effect?

Conclusion

The linear and mode-coupled contributions to the higher-order anisotropic flow coefficients v_{4} and v_{5}, have been studied using two- and multi-particle correlations in $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{S_{N N}}=200 \mathrm{GeV}$

* Two-subevents reduce the short-range non-flow effect on in the three-particle correlations
* The linear $v_{n}(\mathrm{n}=4,5)$ terms dominate in central collisions
* The $\chi_{\mathrm{k}, \mathrm{nm}}$ show a weak centrality dependence (weak viscous effects)
* The $\chi_{4,22}$ and $\rho_{4,22}$ show a weak p_{T} dependence
\checkmark Dynamical final-state effect are significantly less than the initial-state effect?
* The influence of event shape selection
$>$ The non-linear v_{4} and $\rho_{4,22}$ increase with q_{2} selections
$>$ The linear $v_{4}, \chi_{4,22}$ show no sensitivity to q_{2} selections
$>$ The (Non)Linear $v_{4}, \chi_{4,22} \rho_{4,22}$ and show no sensitivity to q_{4} selections

Conclusion

The linear and mode-coupled contributions to the higher-order anisotropic flow coefficients v_{4} and v_{5}, have been studied using two- and multi-particle correlations in $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{S_{N N}}=200 \mathrm{GeV}$

* Two-subevents reduce the short-range non-flow effect on in the three-particle correlations
$\%$ The linear $v_{n}(\mathrm{n}=4,5)$ terms dominate in central collisions
* The $\chi_{\mathrm{k}, \mathrm{nm}}$ show a weak centrality dependence (weak viscous effects)
\nLeftarrow The $\chi_{4,22}$ and $\rho_{4,22}$ show a weak p_{T} dependence
\checkmark Dynamical final-state effect are significantly less than the initial-state effect?
* The influence of event shape selection
$>$ The non-linear v_{4} and $\rho_{4,22}$ increase with q_{2} selections
$>$ The linear $v_{4}, \chi_{4,22}$ show no sensitivity to q_{2} selections
$>$ The (Non)Linear $v_{4}, \chi_{4,22} \rho_{4,22}$ and show no sensitivity to q_{4} selections
The integrated and differential measurements, which are compared to viscous hydrodynamic model calculations, will add important constraints for the initial- and finlal-state models

Thank You

Backup

Good agreement with the STAR published measurements

