

Investigation of the linear and mode-coupled flow harmonics in Au+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$

Niseem Magdy
For the STAR Collaboration
University of Illinois at Chicago
niseemm@gmail.com

Anisotropic flow

Asymmetry in initial geometry → Final-state momentum anisotropy

What are the respective roles of ε_n and its fluctuations, flow correlations and $\eta/s(T)$ on the v_n ?

Anisotropic flow

Asymmetry in initial geometry → Final-state momentum anisotropy

What are the respective roles of ε_n and its fluctuations, flow correlations and $\eta/s(T)$ on the v_n ?

Higher-order flow harmonics $(v_{n>3})$ have multiple contributions:

- ✓ Linear response $\propto \varepsilon_{n>3}$
- ✓ Mode-coupled response $\propto \varepsilon_2$ and/or ε_3 and the Event Plane (EP) correlations

Anisotropic flow

Asymmetry in initial geometry → Final-state momentum anisotropy

What are the respective roles of ε_n and its fluctuations, flow correlations and $\eta/s(T)$ on the v_n ?

Higher-order flow harmonics $(v_{n>3})$ have multiple contributions:

- ✓ Linear response $\propto \varepsilon_{n>3}$
- ✓ Mode-coupled response $\propto \varepsilon_2$ and/or ε_3 and the Event Plane (EP) correlations

The focus of this work:

- ✓ Separate and study the linear and mode-coupled contributions
- ✓ Study the nature of the eccentricity coupling and the EP correlations

The Solenoidal Tracker At RHIC

> Time Projection Chamber

Tracking of charged particles with:

- ✓ Full azimuthal coverage
- ✓ $|\eta|$ < 1 coverage

The two- and three-particle correlations:

$$C_{k,2n} = \left\langle \left\langle \cos((2+n)\varphi_1^A - 2\varphi_2^B - n\varphi_3^B) \right\rangle \right\rangle \quad v_n^{Inclusive} = \left\langle \left\langle \cos(n\varphi_1^A - n\varphi_2^B) \right\rangle \right\rangle^{1/2}$$

n = 2.3 k = n + 2

$$v_n^{Inclusive} = \left\langle \left\langle \cos(n\varphi_1^A - n\varphi_2^B) \right\rangle \right\rangle^{1/2}$$

The four-particle correlations:

$$\langle \mathbf{v}_{2}^{4} \rangle = \left\langle \left\langle \cos(2\varphi_{1} + 2\varphi_{2} - 2\varphi_{3} - 2\varphi_{4}) \right\rangle \right\rangle - 2 \left\langle \left\langle \cos(2\varphi_{1} - 2\varphi_{2}) \right\rangle \right\rangle^{2} + 2 \left\langle \left\langle \cos(2\varphi_{1}^{A} - 2\varphi_{2}^{B}) \right\rangle \right\rangle^{2}$$

$$\langle \mathbf{v}_{2}^{2}\mathbf{v}_{3}^{2} \rangle = \left\langle \left\langle \cos(3\varphi_{1} + 2\varphi_{2} - 3\varphi_{3} - 2\varphi_{4}) \right\rangle \right\rangle - \left\langle \left\langle \cos(2\varphi_{1} - 2\varphi_{2}) \right\rangle \right\rangle \left\langle \left\langle \cos(4\varphi_{1} - 3\varphi_{2}) \right\rangle \right\rangle$$

$$+ \left\langle \left\langle \cos(2\varphi_{1}^{A} - 2\varphi_{2}^{B}) \right\rangle \right\rangle \left\langle \left\langle \cos(3\varphi_{1}^{A} - 3\varphi_{2}^{B}) \right\rangle \right\rangle$$

The two- and three-particle correlations:

$$C_{k,2n} = \left\langle \left\langle \cos((2+n)\varphi_1^A - 2\varphi_2^B - n\varphi_3^B) \right\rangle \right\rangle$$

$$n = 2,3 \quad k = n + 2$$

$$|\Delta \eta| > 0.7$$

$$v_n^{Inclusive} = \left\langle \left\langle \cos(n\varphi_1^A - n\varphi_2^B) \right\rangle \right\rangle^{1/2} A$$

A B

The four-particle correlations:

$$\langle \mathbf{v}_{2}^{4} \rangle = \left\langle \left\langle \cos(2\varphi_{1} + 2\varphi_{2} - 2\varphi_{3} - 2\varphi_{4}) \right\rangle \right\rangle - 2 \left\langle \left\langle \cos(2\varphi_{1} - 2\varphi_{2}) \right\rangle \right\rangle^{2} + 2 \left\langle \left\langle \cos(2\varphi_{1}^{A} - 2\varphi_{2}^{B}) \right\rangle \right\rangle^{2}$$

$$\left\langle \mathbf{v}_{2}^{2} \mathbf{v}_{3}^{2} \right\rangle = \left\langle \left\langle \cos(3\varphi_{1} + 2\varphi_{2} - 3\varphi_{3} - 2\varphi_{4}) \right\rangle \right\rangle - \left\langle \left\langle \cos(2\varphi_{1} - 2\varphi_{2}) \right\rangle \right\rangle \left\langle \left\langle \cos(4\varphi_{1} - 3\varphi_{2}) \right\rangle \right\rangle$$

$$+ \left\langle \left\langle \cos(2\varphi_{1}^{A} - 2\varphi_{2}^{B}) \right\rangle \right\rangle \left\langle \left\langle \cos(3\varphi_{1}^{A} - 3\varphi_{2}^{B}) \right\rangle \right\rangle$$
Assume the orthogonality between the proposition of the property of the pr

Assume the orthogonality between linear and non-linear contributions

$$V_k = V_k^{Linear} + V_k^{Non-Linear}$$
ALICE Collaboration
PLB 773 68 (2017)

The two- and three-particle correlations:

s:
$$n = 2,3 \quad k = n + 2 \qquad |\Delta \eta| > 0.7$$
$$v_n^{Inclusive} = \left\langle \left\langle \cos(n\varphi_1^A - n\varphi_2^B) \right\rangle \right\rangle^{1/2} A \qquad B$$

 $C_{k,2n} = \left\langle \left\langle \cos((2+n)\varphi_1^A - 2\varphi_2^B - n\varphi_3^B) \right\rangle \right\rangle$

The four-particle correlations:

$$\langle \mathbf{v}_{2}^{4} \rangle = \left\langle \left\langle \cos(2\varphi_{1} + 2\varphi_{2} - 2\varphi_{3} - 2\varphi_{4}) \right\rangle \right\rangle - 2 \left\langle \left\langle \cos(2\varphi_{1} - 2\varphi_{2}) \right\rangle \right\rangle^{2} + 2 \left\langle \left\langle \cos(2\varphi_{1}^{A} - 2\varphi_{2}^{B}) \right\rangle \right\rangle^{2}$$

$$\langle \mathbf{v}_{2}^{2}\mathbf{v}_{3}^{2} \rangle = \left\langle \left\langle \cos(3\varphi_{1} + 2\varphi_{2} - 3\varphi_{3} - 2\varphi_{4}) \right\rangle \right\rangle - \left\langle \left\langle \cos(2\varphi_{1} - 2\varphi_{2}) \right\rangle \right\rangle \left\langle \left\langle \cos(4\varphi_{1} - 3\varphi_{2}) \right\rangle \right\rangle$$

$$+ \left\langle \left\langle \cos(2\varphi_{1}^{A} - 2\varphi_{2}^{B}) \right\rangle \right\rangle \left\langle \left\langle \cos(3\varphi_{1}^{A} - 3\varphi_{2}^{B}) \right\rangle \right\rangle$$
Assume the orthogonality between

Assume the orthogonality between linear and non-linear contributions

$$V_k = V_k^{Linear} + V_k^{Non-Linear}$$

 $v_k^{\text{Non-Linear}}$ carry information about:

✓ Viscous effects, EP angular correlations and Eccentricity coupling

ALICE Collaboration PLB 773 68 (2017)

$$\begin{split} \boldsymbol{\mathcal{V}_{\boldsymbol{k}}^{\boldsymbol{Non-Linear}}} &= \frac{C_{k,2,n}}{\sqrt{\langle v_2^2 v_n^2 \rangle}}, \\ &= \frac{\langle v_k \, v_2 \, v_n \, \cos(k \Psi_k - n \Psi_n - 2 \Psi_2) \rangle}{\langle v_2^2 v_n^2 \rangle}, \\ &\sim \langle v_k \, \cos(k \Psi_k - n \Psi_n - 2 \Psi_2) \rangle, \end{split}$$

$$v_k^{Linear} = \sqrt{(v_k^{Inclusive})^2 - (v_k^{Non-Linear})^2}$$

The two- and three-particle correlations:

$$C_{k,2n} = \left\langle \left\langle \cos((2+n)\varphi_1^A - 2\varphi_2^B - n\varphi_3^B) \right\rangle \right\rangle \qquad v_n^{Inclusive} = \left\langle \left\langle \cos(n\varphi_1^A - n\varphi_2^B) \right\rangle \right\rangle^{1/2} \mathbf{A}$$

$$n = 2,3 \quad k = n + 2$$

$$|\Delta \eta| > 0.7$$

$$I_n^{nclusive} = \left\langle \left\langle \cos(n\varphi_1^A - n\varphi_2^B) \right\rangle \right\rangle^{1/2}$$

The four-particle correlations:

$$\langle \mathbf{v}_{2}^{4} \rangle = \left\langle \left\langle \cos(2\varphi_{1} + 2\varphi_{2} - 2\varphi_{3} - 2\varphi_{4}) \right\rangle \right\rangle - 2 \left\langle \left\langle \cos(2\varphi_{1} - 2\varphi_{2}) \right\rangle \right\rangle^{2} + 2 \left\langle \left\langle \cos(2\varphi_{1}^{A} - 2\varphi_{2}^{B}) \right\rangle \right\rangle^{2}$$

$$\langle \mathbf{v}_{2}^{2}\mathbf{v}_{3}^{2} \rangle = \left\langle \left\langle \cos(3\varphi_{1} + 2\varphi_{2} - 3\varphi_{3} - 2\varphi_{4}) \right\rangle \right\rangle - \left\langle \left\langle \cos(2\varphi_{1} - 2\varphi_{2}) \right\rangle \right\rangle \left\langle \left\langle \cos(4\varphi_{1} - 3\varphi_{2}) \right\rangle \right\rangle$$

$$+ \left\langle \left\langle \cos(2\varphi_{1}^{A} - 2\varphi_{2}^{B}) \right\rangle \right\rangle \left\langle \left\langle \cos(3\varphi_{1}^{A} - 3\varphi_{2}^{B}) \right\rangle \right\rangle$$
Assume the orthogonality between the contraction of the properties of t

Assume the orthogonality between linear and non-linear contributions

$$V_k = V_k^{Linear} + V_k^{Non-Linear}$$

ALICE Collaboration PLB 773 68 (2017)

 $v_k^{\text{Non-Linear}}$ carry information about:

✓ Viscous effects, EP angular correlations and Eccentricity coupling

$$\begin{split} \boldsymbol{\mathcal{V}_{k}^{Non-Linear}} &= \frac{C_{k,2,n}}{\sqrt{\langle v_{2}^{2}v_{n}^{2}\rangle}}, \\ &= \frac{\langle v_{k}\,v_{2}\,v_{n}\,\cos(k\Psi_{k}-n\Psi_{n}-2\Psi_{2})\rangle}{\langle v_{2}^{2}v_{n}^{2}\rangle}, \\ &\sim \langle v_{k}\,\cos(k\Psi_{k}-n\Psi_{n}-2\Psi_{2})\rangle, \end{split}$$

$$v_k^{linear} = \sqrt{(v_k^{Inclusive})^2 - (v_k^{Non-Linear})^2}$$

EP angular correlations

$$\rho_{k,2n} = \frac{v_k^{Non-Linear}}{v_k^{Inclusive}} = \langle cos(k\Psi_k - 2\Psi_2 - n\Psi_n) \rangle$$

$$\chi_{k,2n} = \frac{v_k^{\text{Non-Linear}}}{\sqrt{\langle v_2^2 v_n^2 \rangle}}$$

Weak viscous effect expected

P.Liu, R.Lacey PRC 98, 021902 (2018)

The short-range non-flow contributions in the three-particle correlations

Three-particle correlations, $C_{4,22}$ and $C_{5,23}$ for Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV using the AMPT model

Two-subevents reduce the short-range non-flow effects in the three-particle correlation measurements

$$C_{4,22} = \left\langle \left\langle \cos(4\varphi_1^A - 2\varphi_2^B - 2\varphi_3^B) \right\rangle \right\rangle$$

$$C_{5,23} = \left\langle \left\langle \cos(5\varphi_1^A - 2\varphi_2^B - 3\varphi_3^B) \right\rangle \right\rangle$$

Three-particle correlations, $C_{4,22}$ and $C_{5,23}$ for Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV compared with different hydrodynamic simulations.

$$C_{4,22} = \left\langle \left\langle \cos(4\varphi_1^A - 2\varphi_2^B - 2\varphi_3^B) \right\rangle \right\rangle$$

$$C_{5,23} = \left\langle \left\langle \cos(5\varphi_1^A - 2\varphi_2^B - 3\varphi_3^B) \right\rangle \right\rangle$$

Three-particle correlations, $C_{4,22}$ and $C_{5,23}$ for Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV compared with different hydrodynamic simulations.

Two-subevents reduce the short-range non-flow effects in the three-particle correlation measurements

$$C_{4,22} = \left\langle \left\langle \cos(4\varphi_1^A - 2\varphi_2^B - 2\varphi_3^B) \right\rangle \right\rangle$$

$$C_{5,23} = \left\langle \left\langle \cos(5\varphi_1^A - 2\varphi_2^B - 3\varphi_3^B) \right\rangle \right\rangle$$

Three-particle correlations, $C_{4,22}$ and $C_{5,23}$ for Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV compared with different hydrodynamic simulations.

	Hydro-1	Hydro $-2^{a/b}$
η/s	0.05	0.12
Initial conditions	TRENTO Initial conditions	IP-Glasma Initial conditions
Contributions	Hydro + Direct decays	(a) Hydro + Hadronic cascade
		(b) Hydro only

- (1) P. Alba, et al. PRC 98, 034909 (2018)
- (2) B.Schenke, C.Shen, and P.Tribedy PRC 99, 044908 (2019)

 \triangleright However both models fit the v_n they need additional constrains in order to describe the 3-particle correlations

$$C_{4,22} = \left\langle \left\langle \cos(4\varphi_1^A - 2\varphi_2^B - 2\varphi_3^B) \right\rangle \right\rangle$$

$$C_{5,23} = \left\langle \left\langle \cos(5\varphi_1^A - 2\varphi_2^B - 3\varphi_3^B) \right\rangle \right\rangle$$

The p_T-differential dependence of the inclusive, linear and non-linear v_4 for Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV are shown

The inclusive, linear and non linear v_4 shows a characteristics p_T dependence

$$v_4^{Non-Linear} = rac{C_{4,22}}{\sqrt{\langle v_2^4
angle}}$$
 $v_4^{Linear} = \sqrt{\left(v_4^{Inclusive}
ight)^2 - \left(v_4^{Non-Linear}
ight)^2}$

The p_T-differential dependence of the inclusive, linear and non-linear v_4 for Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV are shown

- The inclusive, linear and non linear v_4 shows a characteristics p_T dependence
 - \triangleright The linear v_4 term dominates in central collisions

$$v_4^{Non-Linear} = rac{C_{4,22}}{\sqrt{\langle v_2^4
angle}}$$
 $Linear = \sqrt{\left(v_4^{Inclusive}
ight)^2 - \left(v_4^{Non-Linear}
ight)^2}$

Centrality dependence of the inclusive, linear and non-linear v_n (n=4,5) for Au+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$

 \triangleright The linear v_n (n=4,5) terms dominate in central collisions

$$\begin{aligned} v_{m+2}^{Non-Linear} &= \frac{C_{m+2,2m}}{\sqrt{\left\langle v_2^2 \ v_m^2 \right\rangle}} \\ v_{m+2}^{Linear} &= \sqrt{\left(v_{m+2}^{Inclusive}\right)^2 - \left(v_{m+2}^{Non-Linear}\right)^2} \end{aligned}$$

Centrality dependence of the non-linear mode-coupling coefficients, $\chi_{4,22}$ and $\chi_{5,23}$ and the EP angular correlations $\rho_{4,22}$ and $\rho_{5,23}$ for Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV

- λ $\chi_{k,nm}$ shows a weak centrality dependence (weak viscous effect)
- ρ_{k,nm} shows a strong centrality dependence

$$\chi_{m+2,2m} = v_{m+2}^{Non-Linear} / \sqrt{\langle v_2^2 v_m^2 \rangle}$$

$$\rho_{m+2,2m} = v_{m+2}^{Non-Linear} / v_{m+2}^{Inclusive}$$

$$m = 2,3$$

Centrality dependence of the non-linear mode-coupling coefficients, $\chi_{4,22}$ and $\chi_{5,23}$ and the EP angular correlations $\rho_{4,22}$ and $\rho_{5,23}$ for Au+Au collisions at $\sqrt{s_{NN}}=200~{\rm GeV}$

- $\nearrow \chi_{k,nm}$ shows a weak centrality dependence (weak viscous effect)
- ρ_{k,nm} shows a strong centrality dependence
- $ho_{k,nm}$ and $\chi_{k,nm}$ show a weak beam energy dependence

$$\chi_{m+2,2m} = v_{m+2}^{Non-Linear} / \sqrt{\langle v_2^2 v_m^2 \rangle}$$

$$\rho_{m+2,2m} = v_{m+2}^{Non-Linear} / v_{m+2}^{Inclusive}$$
m = 2,3

Centrality dependence of the non-linear mode-coupling coefficients, $\chi_{4,22}$ and $\chi_{5,23}$ and the EP angular correlations $\rho_{4,22}$ and $\rho_{5,23}$ for Au+Au collisions at $\sqrt{s_{NN}}=200~{\rm GeV}$

- λ $\chi_{k,nm}$ shows a weak centrality dependence (weak viscous effect)
- ρ_{k,nm} shows a strong centrality dependence
- $ho_{k,nm}$ and $\chi_{k,nm}$ show a weak beam energy dependence

$$\chi_{m+2,2m} = v_{m+2}^{Non-Linear} / \sqrt{\langle v_2^2 v_m^2 \rangle}$$

$$\rho_{m+2,2m} = v_{m+2}^{Non-Linear} / v_{m+2}^{Inclusive}$$
m = 2,3

The p_T-differential dependence of the non-linear mode-coupling coefficients, $\chi_{4,22}$ and the EP angular correlations $\rho_{4,22}$ for Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV are shown

The influence of event shape selection

 \triangleright Events are further subdivided into groups with different q_2 magnitude:

$$Q_{n,x} = \sum_{i=1}^{M} \cos(n \, \varphi_i) \qquad Q_{n,y} = \sum_{i=1}^{M} \sin(n \, \varphi_i)$$
$$|Q_n| = \sqrt{Q_{n,x}^2 + Q_{n,y}^2} \qquad q_n = \frac{|Q_n|}{\sqrt{M}}$$

The influence of event shape selection

 \triangleright Events are further subdivided into groups with different q_2 magnitude:

$$Q_{n,x} = \sum_{i=1}^{M} \cos(n \, \varphi_i) \qquad Q_{n,y} = \sum_{i=1}^{M} \sin(n \, \varphi_i)$$
$$|Q_n| = \sqrt{Q_{n,x}^2 + Q_{n,y}^2} \qquad q_n = \frac{|Q_n|}{\sqrt{M}}$$

 v_2 {2} increases linearly with q_2 q_2 is good event-shape selector

ALICE Collaboration
PRC 93, 034916 (2016)

The influence of event shape selection

 \triangleright Events are further subdivided into groups with different q_2 magnitude:

$$Q_{n,x} = \sum_{i=1}^{M} \cos(n \, \varphi_i) \qquad Q_{n,y} = \sum_{i=1}^{M} \sin(n \, \varphi_i)$$
$$|Q_n| = \sqrt{Q_{n,x}^2 + Q_{n,y}^2} \qquad q_n = \frac{|Q_n|}{\sqrt{M}}$$

 $\triangleright v_4\{2\}$ shows no sensitivity to q_4

 v_2 {2} increases linearly with q_2 q_2 is good event-shape selector

ALICE Collaboration
PRC 93, 034916 (2016)

Centrality dependence of the linear and non-linear v_4 for Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV with different event shape selections (q₂%)

The non-linear v_4 increases with q_2 selections

$$v_4^{Non-Linear} = rac{C_{4,22}}{\sqrt{\langle v_2^4
angle}}$$
 $v_4^{Linear} = \sqrt{\left(v_4^{Inclusive}
ight)^2 - \left(v_4^{Non-Linear}
ight)^2}$

Centrality dependence of the linear and non-linear v_4 for Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV with different event shape selections (q₂%)

 \triangleright The non-linear v_4 increases with q_2 selections

The linear v_4 shows a weak sensitivety to q_2 selections

$$v_4^{Non-Linear} = rac{C_{4,22}}{\sqrt{\langle v_2^4
angle}}$$
 $v_4^{Linear} = \sqrt{\left(v_4^{Inclusive}
ight)^2 - \left(v_4^{Non-Linear}
ight)^2}$

Centrality dependence of the $\rho_{4,22}$ and $\chi_{4,22}$ for Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV with different event shape selections (q₂)

The $\chi_{4,22}$ shows a weak sensitivety to q_2 selections

$$\chi_{m+2,2m} = v_{m+2}^{Non-Linear} / \sqrt{\langle v_2^2 v_m^2 \rangle}$$

$$\rho_{m+2,2m} = v_{m+2}^{Non-Linear} / v_{m+2}^{Inclusive}$$

$$m = 2$$

Centrality dependence of the $\rho_{4,22}$ and $\chi_{4,22}$ for Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV with different event shape selections (q₂)

The $\chi_{4,22}$ shows a weak sensitivety to q_2 selections

 \triangleright The $\rho_{4,22}$ increases with q_2 selections

$$\chi_{m+2,2m} = v_{m+2}^{Non-Linear} / \sqrt{\langle v_2^2 v_m^2 \rangle}$$

$$\rho_{m+2,2m} = v_{m+2}^{Non-Linear} / v_{m+2}^{Inclusive}$$
 $m = 2$

Centrality dependence of the linear and non-linear v_4 and the assosatied $\rho_{4,22}$ and $\chi_{4,22}$ for Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV with different event shape selection (q₄)

The (non)linear v_4 and the assosatied $\rho_{4,22}$ and $\chi_{4,22}$ show weak sensitivety to q_4 selections

The linear and mode-coupled contributions to the higher-order anisotropic flow coefficients v_4 and v_5 , have been studied using two- and multi-particle correlations in Au+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$

The linear and mode-coupled contributions to the higher-order anisotropic flow coefficients v_4 and v_5 , have been studied using two- and multi-particle correlations in Au+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$

- ❖ Two-subevents reduce the short-range non-flow effect on in the three-particle correlations
- The linear v_n (n=4,5) terms dominate in central collisions
- \Leftrightarrow The $\chi_{k,nm}$ show a weak centrality dependence (weak viscous effects)
- \Leftrightarrow The $\chi_{4,22}$ and $\rho_{4,22}$ show a weak p_T dependence
 - ✓ Dynamical final-state effect are significantly less than the initial-state effect?

The linear and mode-coupled contributions to the higher-order anisotropic flow coefficients v_4 and v_5 , have been studied using two- and multi-particle correlations in Au+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$

- Two-subevents reduce the short-range non-flow effect on in the three-particle correlations
- The linear v_n (n=4,5) terms dominate in central collisions
- \Leftrightarrow The $\chi_{k,nm}$ show a weak centrality dependence (weak viscous effects)
- \Leftrightarrow The $\chi_{4,22}$ and $\rho_{4,22}$ show a weak p_T dependence
 - ✓ Dynamical final-state effect are significantly less than the initial-state effect?
- ❖ The influence of event shape selection
 - \triangleright The non-linear v_4 and $\rho_{4,22}$ increase with q_2 selections
 - \triangleright The linear v_4 , $\chi_{4,22}$ show no sensitivity to q_2 selections
 - \triangleright The (Non)Linear v_4 , $\chi_{4,22}$ $\rho_{4,22}$ and show no sensitivity to q_4 selections

The linear and mode-coupled contributions to the higher-order anisotropic flow coefficients v_4 and v_5 , have been studied using two- and multi-particle correlations in Au+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$

- Two-subevents reduce the short-range non-flow effect on in the three-particle correlations
- The linear v_n (n=4,5) terms dominate in central collisions
- \Leftrightarrow The $\chi_{k,nm}$ show a weak centrality dependence (weak viscous effects)
- \clubsuit The $\chi_{4,22}$ and $\rho_{4,22}$ show a weak p_T dependence
 - ✓ Dynamical final-state effect are significantly less than the initial-state effect?
- ❖ The influence of event shape selection
 - \triangleright The non-linear v_4 and $\rho_{4,22}$ increase with q_2 selections
 - \triangleright The linear v_4 , $\chi_{4,22}$ show no sensitivity to q_2 selections
 - \triangleright The (Non)Linear v_4 , $\chi_{4,22}$ $\rho_{4,22}$ and show no sensitivity to q_4 selections

The integrated and differential measurements, which are compared to viscous hydrodynamic model calculations, will add important constraints for the initial- and finlal-state models

Thank You

Backup

Good agreement with the STAR published measurements