Investigation of the linear and mode-coupled flow harmonics in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV

Niseem Magdy
For the STAR Collaboration
University of Illinois at Chicago
niseemm@gmail.com

This work is supported by the grant from doe office of science
What are the respective roles of \(\varepsilon_n \) and its fluctuations, flow correlations and \(\eta/s(T) \) on the \(v_n \)?
Introduction

Anisotropic flow
Asymmetry in initial geometry → Final-state momentum anisotropy

What are the respective roles of ε_n and its fluctuations, flow correlations and $\eta/s(T)$ on the v_n?

Higher-order flow harmonics ($v_{n>3}$) have multiple contributions:
- Linear response $\propto \varepsilon_{n>3}$
- Mode-coupled response $\propto \varepsilon_2$ and/or ε_3 and the Event Plane (EP) correlations
Introduction

Anisotropic flow
Asymmetry in initial geometry → Final-state momentum anisotropy

What are the respective roles of ε_n and its fluctuations, flow correlations and $\eta/s(T)$ on the v_n?

Higher-order flow harmonics ($v_{n>3}$) have multiple contributions:

- Linear response $\propto \varepsilon_{n>3}$
- Mode-coupled response $\propto \varepsilon_2$ and/or ε_3 and the Event Plane (EP) correlations

The focus of this work:
- Separate and study the linear and mode-coupled contributions
- Study the nature of the eccentricity coupling and the EP correlations
Introduction

The Solenoidal Tracker At RHIC

Time Projection Chamber
Tracking of charged particles with:

✔ Full azimuthal coverage
✔ $|\eta| < 1$ coverage
Analysis Method

The two- and three-particle correlations:

\[C_{k,2n} = \left\langle \cos((2 + n)\varphi_1^A - 2\varphi_2^B - n\varphi_3^B) \right\rangle \]

\[\nu_n^{Inclusive} = \left\langle \cos(n\varphi_1^A - n\varphi_2^B) \right\rangle^{1/2} \]

\[n = 2,3 \quad k = n + 2 \]

The four-particle correlations:

\[\langle v_2^4 \rangle = \left\langle \cos(2\varphi_1 + 2\varphi_2 - 2\varphi_3 - 2\varphi_4) \right\rangle - 2 \left\langle \cos(2\varphi_1 - 2\varphi_2) \right\rangle^2 + 2 \left\langle \cos(2\varphi_1^A - 2\varphi_2^B) \right\rangle^2 \]

\[\langle v_2^2 v_3^2 \rangle = \left\langle \cos(3\varphi_1 + 2\varphi_2 - 3\varphi_3 - 2\varphi_4) \right\rangle - \left\langle \cos(2\varphi_1 - 2\varphi_2) \right\rangle \left\langle \cos(4\varphi_1 - 3\varphi_2) \right\rangle \]

\[+ \left\langle \cos(2\varphi_1^A - 2\varphi_2^B) \right\rangle \left\langle \cos(3\varphi_1^A - 3\varphi_2^B) \right\rangle \]
Analysis Method

The two- and three-particle correlations:

\[C_{k,2n} = \left\langle (\cos((2 + n)\varphi_1^A - 2\varphi_2^B - n\varphi_3^B)) \right\rangle \]

The four-particle correlations:

\[v_{n,2n}^{\text{Inclusive}} = \frac{1}{2} \left(\cos(n\varphi_1^A - n\varphi_2^B) \right) \]

\[v_n^A = \left\langle \cos(2\varphi_1 + 2\varphi_2 - 2\varphi_3 - 2\varphi_4) \right\rangle - 2 \left\langle \cos(2\varphi_1 - 2\varphi_2) \right\rangle^2 + 2 \left\langle \cos(2\varphi_1^A - 2\varphi_2^B) \right\rangle^2 \]

\[v_n^B = \left\langle \cos(3\varphi_1 + 2\varphi_2 - 3\varphi_3 - 2\varphi_4) \right\rangle - \left\langle \cos(2\varphi_1 - 2\varphi_2) \right\rangle \left\langle \cos(4\varphi_1 - 3\varphi_2) \right\rangle \]

Assume the orthogonality between linear and non-linear contributions

\[V_k = V_k^{\text{Linear}} + V_k^{\text{Non-Linear}} \]

ALICE Collaboration
PLB 773 68 (2017)
Analysis Method

The two- and three-particle correlations:

\[C_{k,2n} = \left\langle \cos((2+n)\phi_1^A - 2\phi_2^B - n\phi_3^B) \right\rangle \]

\[\nu_n^{Inclusive} = \left(\left\langle \cos(n\phi_1^A - n\phi_2^B) \right\rangle \right)^{1/2} \]

|Δη| > 0.7

The four-particle correlations:

\[\langle v_2^4 \rangle = \left\langle \cos(2\phi_1 + 2\phi_2 - 2\phi_3 - 2\phi_4) \right\rangle - 2 \left\langle \cos(2\phi_1 - 2\phi_2) \right\rangle^2 + 2 \left\langle \cos(2\phi_1^A - 2\phi_2^B) \right\rangle^2 \]

\[\langle v_2^2v_3^2 \rangle = \left\langle \cos(3\phi_1 + 2\phi_2 - 3\phi_3 - 2\phi_4) \right\rangle - \left\langle \cos(2\phi_1 - 2\phi_2) \right\rangle \left\langle \cos(4\phi_1 - 3\phi_2) \right\rangle + \left\langle \cos(2\phi_1^A - 2\phi_2^B) \right\rangle \left\langle \cos(3\phi_1^A - 3\phi_2^B) \right\rangle \]

\[\nu_k^{Non-Linear} \]

carry information about:

✓ Viscous effects, EP angular correlations and Eccentricity coupling

\[\nu_k^{Non-Linear} = \frac{C_{k,2n}}{\sqrt{\langle v_2^2v_3^2 \rangle}} , \]

\[= \frac{\langle v_k v_2 v_n \cos(k\Psi_k - n\Psi_n - 2\Psi_2) \rangle}{\langle v_2^2v_3^2 \rangle} , \]

\[\sim \langle v_k \cos(k\Psi_k - n\Psi_n - 2\Psi_2) \rangle , \]

Assume the orthogonality between linear and non-linear contributions

\[V_k = V_k^{Linear} + V_k^{Non-Linear} \]

ALICE Collaboration
PLB 773 68 (2017)
Analysis Method

The two- and three-particle correlations:

\[C_{k,2n} = \left\langle \cos((2+n)\phi_1^A - 2\phi_2^B - n\phi_3^B) \right\rangle \]

The four-particle correlations:

\[\langle v_2^4 \rangle = \left\langle \cos(2\phi_1 + 2\phi_2 - 2\phi_3 - 2\phi_4) \right\rangle - 2 \left\langle \cos(2\phi_1 - 2\phi_2) \right\rangle^2 + 2 \left\langle \cos(2\phi_1^A - 2\phi_2^B) \right\rangle^2 \]

\[\langle v_2^2 v_3^2 \rangle = \langle \cos(3\phi_1 + 2\phi_2 - 3\phi_3 - 2\phi_4) \rangle - \langle \cos(2\phi_1 - 2\phi_2) \rangle \langle \cos(4\phi_1 - 3\phi_2) \rangle
+ \left\langle \cos(2\phi_1^A - 2\phi_2^B) \right\rangle \left\langle \cos(3\phi_1^A - 3\phi_2^B) \right\rangle \]

\[\nu_n^{Inclusive} = \left\langle \cos(n\phi_1^A - n\phi_2^B) \right\rangle^{1/2} \]

\(\Delta \eta > 0.7 \)

\(|\Delta \eta| > 0.7 \)

\[A \]

\[B \]

\[\eta \]

\[\text{Assume the orthogonality between linear and non-linear contributions} \]

\[V_k = V_k^{Linear} + V_k^{Non-Linear} \]

ALICE Collaboration
PLB 773 68 (2017)

\[V_k^{Linear} = \sqrt{\left(V_k^{Inclusive} \right)^2 - \left(V_k^{Non-Linear} \right)^2} \]

\[V_k^{Non-Linear} = \frac{C_{k,2n}}{\sqrt{\langle v_2^2 v_n^2 \rangle}} \]

\[\sim \langle v_k v_2 v_n \cos(k\Psi_k - n\Psi_n - 2\Psi_2) \rangle \]

\(\nu_k^{Non-Linear} \) carry information about:

- Viscous effects, EP angular correlations and Eccentricity coupling

\[\rho_{k,2n} = \frac{\nu_{k}^{Non-Linear}}{\nu_{k}^{Inclusive}} = \langle \cos(k\Psi_k - 2\Psi_2 - n\Psi_n) \rangle \]

\(\text{EP angular correlations} \)

\[\chi_{k,2n} = \frac{\nu_{k}^{Non-Linear}}{\sqrt{\langle v_2^2 v_n^2 \rangle}} \]

\(\text{Eccentricity coupling} \)

\(\text{Weak viscous effect expected} \)

P.Liu, R.Lacey
PRC 98, 021902 (2018)
The short-range non-flow contributions in the three-particle correlations

Three-particle correlations, $C_{4,22}$ and $C_{5,23}$ for Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV using the AMPT model

Two-subevents reduce the short-range non-flow effects in the three-particle correlation measurements

$C_{4,22} = \langle \cos(4\phi_1^A - 2\phi_2^B - 2\phi_3^B) \rangle$

$C_{5,23} = \langle \cos(5\phi_1^A - 2\phi_2^B - 3\phi_3^B) \rangle$
Three-particle correlations, $C_{4,22}$ and $C_{5,23}$ for Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV compared with different hydrodynamic simulations.

$C_{4,22} = \langle \cos(4\phi_1^{A} - 2\phi_2^{B} - 2\phi_3^{B}) \rangle$

$C_{5,23} = \langle \cos(5\phi_1^{A} - 2\phi_2^{B} - 3\phi_3^{B}) \rangle$
Three-particle correlations, $C_{4,22}$ and $C_{5,23}$ for Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV compared with different hydrodynamic simulations.

Two-subevents reduce the short-range non-flow effects in the three-particle correlation measurements.

$C_{4,22} = \left\langle \cos(4\phi_1^A - 2\phi_2^B - 2\phi_3^B) \right\rangle$

$C_{5,23} = \left\langle \cos(5\phi_1^A - 2\phi_2^B - 3\phi_3^B) \right\rangle$
Results

Three-particle correlations, $C_{4,22}$ and $C_{5,23}$ for Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV compared with different hydrodynamic simulations.

![Graph showing Au+Au 200 GeV, Two-subevent method, and Hydro-1, Hydro-2a, Hydro-2b comparisons for $C_{4,22}$ and $C_{5,23}$ with different centrality and p_T bins.]

<table>
<thead>
<tr>
<th>Centrality %</th>
<th>Hydro-1</th>
<th>Hydro-2a/b</th>
</tr>
</thead>
<tbody>
<tr>
<td>n = 2, m = 2</td>
<td>$C_{4,22}$</td>
<td>$C_{5,23}$</td>
</tr>
<tr>
<td>0 - 20</td>
<td>$\times 10^{-4}$</td>
<td>$\times 10^{-4}$</td>
</tr>
<tr>
<td>20 - 40</td>
<td>STAR Preliminary</td>
<td>STAR Preliminary</td>
</tr>
<tr>
<td>40 - 60</td>
<td>(b) 0.2 < p_T < 4 GeV/c</td>
<td>(b) 0.2 < p_T < 4 GeV/c</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hydro-1</th>
<th>Hydro-2a/b</th>
</tr>
</thead>
<tbody>
<tr>
<td>η/s</td>
<td>0.05</td>
</tr>
<tr>
<td>Initial conditions</td>
<td>TRENTO Initial conditions</td>
</tr>
<tr>
<td>Contributions</td>
<td>Hydro + Direct decays</td>
</tr>
<tr>
<td>(a) Hydro + Hadronic cascade</td>
<td>(b) Hydro only</td>
</tr>
</tbody>
</table>

- (2) B.Schenke, C.Shen, and P.Tribedy
 PRC 99, 044908 (2019)

- However both models fit the ν_n they need additional constrains in order to describe the 3-particle correlations

$$C_{4,22} = \langle \cos(4\phi_1 - 2\phi_2 - 2\phi_3^B) \rangle$$

$$C_{5,23} = \langle \cos(5\phi_1 - 2\phi_2 - 3\phi_3^B) \rangle$$
The \(p_T \)-differential dependence of the inclusive, linear and non-linear \(\nu_4 \) for Au+Au collisions at \(\sqrt{s_{NN}} = 200 \) GeV are shown.

- The inclusive, linear and non-linear \(\nu_4 \) shows a characteristics \(p_T \) dependence.

\[
\nu_4^{\text{Non-Linear}} = \frac{C_{4,22}}{\sqrt{\langle \nu_4^2 \rangle}}
\]

\[
\nu_4^{\text{Linear}} = \sqrt{(\nu_4^{\text{Inclusive}})^2 - (\nu_4^{\text{Non-Linear}})^2}
\]
The p_T-differential dependence of the inclusive, linear and non-linear v_4 for Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV are shown.

- The inclusive, linear and non linear v_4 shows a characteristics p_T dependence.
- The linear v_4 term dominates in central collisions.

\[v_{4}^{\text{Non-Linear}} = \frac{C_{4,22}}{\sqrt{\langle v_2^4 \rangle}} \]
\[v_{4}^{\text{Linear}} = \sqrt{\langle v_4^{\text{Inclusive}} \rangle^2 - \langle v_4^{\text{Non-Linear}} \rangle^2} \]
Results

Centrality dependence of the inclusive, linear and non-linear v_n (n=4,5) for Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV

The linear v_n (n=4,5) terms dominate in central collisions

$$v_{m+2}^{\text{Non-Linear}} = \frac{c_{m+2,2m}}{\sqrt{\langle v_2^2 v_m^2 \rangle}}$$

$$v_{m+2}^{\text{Linear}} = \sqrt{(v_{m+2}^{\text{Inclusive}})^2 - (v_{m+2}^{\text{Non-Linear}})^2}$$
Results

Centrality dependence of the non-linear mode-coupling coefficients, $\chi_{4,22}$ and $\chi_{5,23}$ and the EP angular correlations $\rho_{4,22}$ and $\rho_{5,23}$ for Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV

- $\chi_{k,nm}$ shows a weak centrality dependence (weak viscous effect)
- $\rho_{k,nm}$ shows a strong centrality dependence

$$\chi_{m+2,m} = v_{m+2}^{Non-Linear} / \sqrt{(v_2^2 v_m^2)} \quad m = 2,3$$

$$\rho_{m+2,m} = v_{m+2}^{Non-Linear} / v_{m+2}^{Inclusive}$$
Results

Centrality dependence of the non-linear mode-coupling coefficients, $\chi_{4,22}$ and $\chi_{5,23}$ and the EP angular correlations $\rho_{4,22}$ and $\rho_{5,23}$ for Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV

- $\chi_{k,nm}$ shows a weak centrality dependence (weak viscous effect)

- $\rho_{k,nm}$ shows a strong centrality dependence

- $\rho_{k,nm}$ and $\chi_{k,nm}$ show a weak beam energy dependence

$\chi_{m+2,m} = \frac{v_{m+2}}{\sqrt{v_{2}^{2} + v_{m}^{2}}} \quad m = 2,3$

$\rho_{m+2,m} = \frac{v_{m+2}}{v_{m+2}}$
Results

Centrality dependence of the non-linear mode-coupling coefficients, $\chi_{4,22}$ and $\chi_{5,23}$ and the EP angular correlations $\rho_{4,22}$ and $\rho_{5,23}$ for Au+Au collisions at $\sqrt{S_{NN}} = 200$ GeV

- $\chi_{k,\text{nm}}$ shows a weak centrality dependence (weak viscous effect)
- $\rho_{k,\text{nm}}$ shows a strong centrality dependence
- $\rho_{k,\text{nm}}$ and $\chi_{k,\text{nm}}$ show a weak beam energy dependence

\[\begin{align*}
\chi_{m+2m} &= \nu_{m+2}^{\text{Non-Linear}} / \sqrt{\nu_{2}^{2} \nu_{m}^{2}} \\
\rho_{m+2m} &= \nu_{m+2}^{\text{Non-Linear}} / \nu_{m+2}^{\text{Inclusive}}
\end{align*}\]

$m = 2, 3$

[1] ALICE Collaboration
PLB 773 68 (2017)
The p_T-differential dependence of the non-linear mode-coupling coefficients, $\chi_{4,22}$ and the EP angular correlations $\rho_{4,22}$ for Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV are shown.

- $\chi_{4,22}$ shows a weak p_T dependence
- $\rho_{4,22}$ shows a weak p_T dependence
- Dynamical final-state effects are significantly less than the initial-state effect.

\[
\chi_{m+2m} = \frac{v_{m+2}^{\text{Non-Linear}}}{\sqrt{\langle v_2^2 v_m^2 \rangle}} \quad m = 2
\]
\[
\rho_{m+2m} = \frac{v_{m+2}^{\text{Non-Linear}}}{v_{m+2}^{\text{Inclusive}}} \]

Results
The influence of event shape selection

- Events are further subdivided into groups with different q_2 magnitude:

$$Q_{n,x} = \sum_{i=1}^{M} \cos(n \phi_i) \quad Q_{n,y} = \sum_{i=1}^{M} \sin(n \phi_i)$$

$$|Q_n| = \sqrt{Q_{n,x}^2 + Q_{n,y}^2} \quad q_n = \frac{|Q_n|}{\sqrt{M}}$$
The influence of event shape selection

- Events are further subdivided into groups with different q_2 magnitude:

$$Q_{n,x} = \sum_{i=1}^{M} \cos(n \varphi_i) \quad Q_{n,y} = \sum_{i=1}^{M} \sin(n \varphi_i)$$

$$|Q_n| = \sqrt{Q_{n,x}^2 + Q_{n,y}^2} \quad q_n = \frac{|Q_n|}{\sqrt{M}}$$

- $v_2\{2\}$ increases linearly with q_2

q_2 is good event-shape selector
The influence of event shape selection

- Events are further subdivided into groups with different q_2 magnitude:

$$Q_{n,x} = \sum_{i=1}^{M} \cos(n \varphi_i)$$
$$Q_{n,y} = \sum_{i=1}^{M} \sin(n \varphi_i)$$

$$|Q_n| = \sqrt{Q_{n,x}^2 + Q_{n,y}^2}$$
$$q_n = \frac{|Q_n|}{\sqrt{M}}$$

- $v_n(2)$ shows no sensitivity to q_4

- $v_2(2)$ increases linearly with q_2

q_2 is good event-shape selector

ALICE Collaboration
PRC 93, 034916 (2016)
Results

Centrality dependence of the linear and non-linear v_4 for Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV with different event shape selections ($q_2\%$)

- The non-linear v_4 increases with q_2 selections

\[v_4^{Non-Linear} = \frac{C_{4,22}}{\sqrt{\langle v_4^2 \rangle}} \]

\[v_4^{Linear} = \sqrt{\langle v_4^{inclusive} \rangle^2 - (v_4^{Non-Linear})^2} \]
Results

Centrality dependence of the linear and non-linear v_4 for Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV with different event shape selections ($q_2\%$)

- The non-linear v_4 increases with q_2 selections.
- The linear v_4 shows a weak sensitivity to q_2 selections.

\[
\begin{align*}
 v_4^{\text{Non-Linear}} &= \frac{C_{4,22}}{\sqrt{\langle v_2^4 \rangle}} \\
 v_4^{\text{Linear}} &= \sqrt{\langle v_4^{\text{inclusive}} \rangle^2 - \langle v_4^{\text{Non-Linear}} \rangle^2}
\end{align*}
\]
Results

Centrality dependence of the $\rho_{4,22}$ and $\chi_{4,22}$ for Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV with different event shape selections (q_2)

- The $\chi_{4,22}$ shows a weak sensitivity to q_2 selections

$$\chi_{m+2m} = \frac{v_{m+2}^{\text{Non-Linear}}}{\sqrt{\langle v_2^2 \rangle} v_m^{\text{Linear}}}, \quad m = 2$$

$$\rho_{m+2m} = \frac{v_{m+2}^{\text{Non-Linear}}}{v_{m+2}^{\text{Inclusive}}}, \quad m = 2$$
Results

Centrality dependence of the $\rho_{4,22}$ and $\chi_{4,22}$ for Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV with different event shape selections (q_2)

- The $\chi_{4,22}$ shows a weak sensitivity to q_2 selections
- The $\rho_{4,22}$ increases with q_2 selections

\[\chi_{m+2,2m} = \frac{v_{Non-Linear}^{m+2}}{\sqrt{\langle v_2^2 v_m^2 \rangle}} \]
\[\rho_{m+2,2m} = \frac{v_{Non-Linear}^{m+2}}{v_{m+2}^{Inclusive}} \]
Centrality dependence of the linear and non-linear \(v_4 \) and the associated \(\rho_{4,22} \) and \(\chi_{4,22} \) for Au+Au collisions at \(\sqrt{s_{NN}} = 200 \) GeV with different event shape selection (\(q_4 \)).

- The (non)linear \(v_4 \) and the associated \(\rho_{4,22} \) and \(\chi_{4,22} \) show weak sensitivity to \(q_4 \) selections.
Conclusion

The linear and mode-coupled contributions to the higher-order anisotropic flow coefficients v_4 and v_5, have been studied using two- and multi-particle correlations in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV.
Conclusion

The linear and mode-coupled contributions to the higher-order anisotropic flow coefficients v_4 and v_5, have been studied using two- and multi-particle correlations in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV.

- Two-subevents reduce the short-range non-flow effect on in the three-particle correlations.
- The linear v_n (n=4,5) terms dominate in central collisions.
- The $\chi_{k,nm}$ show a weak centrality dependence (weak viscous effects).
- The $\chi_{4,22}$ and $\rho_{4,22}$ show a weak p_T dependence.
 ✓ Dynamical final-state effect are significantly less than the initial-state effect?
Conclusion

The linear and mode-coupled contributions to the higher-order anisotropic flow coefficients ν_4 and ν_5, have been studied using two- and multi-particle correlations in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV

- Two-subevents reduce the short-range non-flow effect on in the three-particle correlations
- The linear ν_n (n=4,5) terms dominate in central collisions
- The $\chi_{k,nn}$ show a weak centrality dependence (weak viscous effects)
- The $\chi_{4,22}$ and $\rho_{4,22}$ show a weak p_T dependence
 ✓ Dynamical final-state effect are significantly less than the initial-state effect?

- The influence of event shape selection
 - The non-linear ν_4 and $\rho_{4,22}$ increase with q_2 selections
 - The linear ν_4, $\chi_{4,22}$ show no sensitivity to q_2 selections
 - The (Non)Linear ν_4, $\chi_{4,22}$, $\rho_{4,22}$ and show no sensitivity to q_4 selections
Conclusion

The linear and mode-coupled contributions to the higher-order anisotropic flow coefficients v_4 and v_5, have been studied using two- and multi-particle correlations in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV

- Two-subevents reduce the short-range non-flow effect on in the three-particle correlations
- The linear v_n (n=4,5) terms dominate in central collisions
- The $\chi_{k,nm}$ show a weak centrality dependence (weak viscous effects)
- The $\chi_{4,22}$ and $\rho_{4,22}$ show a weak p_T dependence
 - ✓ Dynamical final-state effect are significantly less than the initial-state effect?

- The influence of event shape selection
 - The non-linear v_4 and $\rho_{4,22}$ increase with q_2 selections
 - The linear v_4, $\chi_{4,22}$ show no sensitivity to q_2 selections
 - The (Non)Linear v_4, $\chi_{4,22}$ $\rho_{4,22}$ show no sensitivity to q_4 selections

The integrated and differential measurements, which are compared to viscous hydrodynamic model calculations, will add important constraints for the initial- and final-state models
Thank You
Good agreement with the STAR published measurements