MEASUREMENTS OF HEAVY-FLAVOUR JETS, CORRELATIONS AND ELLIPTIC FLOW IN SMALL SYSTEMS WITH ALICE

Fabio Colamaria, for the ALICE Collaboration

ALICE

Initial Stages 2019 - NYC (US), 26/06/2019

MOTIVATIONS: HEAVY-FLAVOUR STUDY

- Heavy quarks experience the full evolution of the hot and dense medium produced in ultra-relativistic heavy-ion collisions
 - Excellent probes of the Quark-Gluon Plasma medium

Great interest for heavy-flavour studies also in **small systems** (pp, p-Pb):

- Reference for measurements in p-Pb and Pb-Pb

- Investigate cold-nuclear-matter effects on heavy quarks (HQ)
- Search for "collective-like" effects in heavy-flavour sector
- Larger pp and p-Pb data samples collected during LHC Run2 (2015-2018)
 - Allow for more differential studies w.r.t single particle analysis
 - Additional physics motivations

MOTIVATIONS: HF JETS AND CORRELATIONS

pp collisions

- Test pQCD predictions with more direct access to parton (recover a large fraction of its p_{T})
- Investigate heavy-flavour quark fragmentation properties and characterize heavy-flavour jets
- Sensitivity to modelling of HQ production processes (→angular correlations)

Phys. Lett. B 719 (2013) 29-41

p-Pb collisions

- Investigate possible modifications of heavy-quark fragmentation and hadronisation from cold-nuclearmatter effects
- Search for long-range ridge-like structures, possibly due to initial- (e.g. gluon saturation) or final-state effects (e.g. hydrodynamics)

F. Colamaria – Initial Stages 2019

NYC, 26/06/2019

THE ALICE DETECTOR

Heavy-flavour at central rapidity:

- Charmed hadrons from hadronic decay channels (**D**⁰, **D**⁺, **D**^{*+}, **D**⁺_S, Λ⁺_c, Ξ⁰_c)
- Electrons from semileptonic decays (**b**, **c** \rightarrow **e**^{\pm}*X*)
- Non-prompt J/Psi from $\mathbf{B} \to \mathbf{J}/\mathbf{\Psi}\mathbf{X} \to \mathbf{e}^+\mathbf{e}^-\mathbf{X}$
- Non-prompt D-mesons $\mathbf{B} \to \mathbf{D}^0 \mathbf{X} \to \mathbf{K} \pi \mathbf{X}$
- Jets with heavy-flavour content

Heavy-flavour at forward rapidity:

Muons from semileptonic decays
 (b, c → μ[±]X)

3

F. Colamaria – Initial Stages 2019

- Reconstruction of jets from charged-particle clustering
 - > Charged tracks with $p_{\rm T}$ > 0.15 GeV/c
 - > Fastjet with anti-kT; $|\eta^{\text{jet}}| < 0.9 R$
 - Average jet background subtraction (in p-Pb)
- Heavy-flavour tagging by requesting the presence of a:

NYC, 26/06/2019

F. Colamaria – Initial Stages 2019

- Reconstruction of jets from charged particle clustering
 - > Charged tracks with $p_{T} > 0.15 \text{ GeV}/c$
 - > Fastjet with anti-kT; $|\eta^{jet}| < 0.9 R$
 - Average jet background subtraction (in p-Pb)
- Heavy-flavour tagging by requesting the presence of a:

D meson

- Subtraction of jets with combinatorial D via sideband subtraction
- D-meson reconstruction efficiency correction
- Subtraction of B→D contribution (w/ POWHEG)

4

F. Colamaria – Initial Stages 2019

- Reconstruction of jets from charged particle clustering
 - > Charged tracks with $p_{\rm T}$ > 0.15 GeV/c
 - Fastjet with anti-kT; $|\eta^{jet}| < 0.9 R$
 - Average jet background subtraction (in p-Pb)
- Heavy-flavour tagging by requesting the presence of a:

D meson

- Subtraction of jets with combinatorial D via sideband subtraction
- D-meson reconstruction efficiency correction
- Subtraction of B→D contribution (w/ POWHEG)

- Subtraction of jets with non-HF electron, or misidentified hadron
- Electron reconstruction efficiency correction

F. Colamaria – Initial Stages 2019

- Reconstruction of jets from charged particle clustering
 - > Charged tracks with $p_{T} > 0.15 \text{ GeV}/c$
 - Fastjet with anti-kT; $|\eta^{jet}| < 0.9 R$
 - Average jet background subtraction (in p-Pb)
- Heavy-flavour tagging by requesting the presence of a:

D meson

- Subtraction of jets with combinatorial D via sideband subtraction
- D-meson reconstruction efficiency correction
- Subtraction of B→D contribution (w/ POWHEG)

HF hadron decay electron (HFe)

- Subtraction of jets with non-HF electron, or misidentified hadron
- Electron reconstruction
 efficiency correction

b-hadron decay vertex

- Reconstructed from displaced secondary-vertex
- Secondary-vertex taggingefficiency correction
- Rejection of misidentified c-jets, LF-jets (purity correction)

- Reconstruction of jets from charged particle clustering
 - > Charged tracks with $p_{\rm T}$ > 0.15 GeV/c
 - Fastjet with anti-kT; $|\eta^{jet}| < 0.9 R$
 - Average jet background subtraction (in p-Pb)
- Heavy-flavour tagging by requesting the presence of a:

D meson

- Subtraction of jets with combinatorial D via sideband subtraction
- D-meson reconstruction efficiency correction
- Subtraction of B→D contribution (w/ POWHEG)

HF hadron decay electron (HFe)

- Subtraction of jets with non-HF electron, or misidentified hadron
- Electron reconstruction efficiency correction

b-hadron decay vertex

- Reconstructed from displaced secondary-vertex
- Secondary-vertex tagging efficiency correction
- Rejection of misidentified c-jets, LF-jets (purity correction)

Unfolding of the jet spectrum to remove detector effects on the jet measured quantities + **normalisation**

F. Colamaria – Initial Stages 2019

D-TAGGED JETS IN pp COLLISIONS

 $p_{\rm T}$ -differential cross section of **D**⁰-meson tagged jets in pp collisions at \sqrt{s} = 5.02, 7, 13 TeV

- Very low p_T reach: p_T (jet) > 5 GeV/c!
- POWHEG+PYTHIA predictions (NLO pQCD) describe well the measured cross section

5

NYC, 26/06/2019

- Theory uncertainties larger than data ones
- Note: minimum $p_T(D)$ is lower (2 GeV/c) for $\sqrt{s} = 13$ TeV results

F. Colamaria – Initial Stages 2019

F. Colamaria – Initial Stages 2019

- D⁰-tagged jet cross section as a function of jet parallel momentum fraction carried by D⁰ meson compared to PYTHIA+POWHEG predictions, for two p_T(jet) ranges in pp collisions
- Overall, good description of data. Hint of softer fragmentation at high p_{T} in data w.r.t. prediction
- Similar conclusions, for rate to inclusive jets, from LO models (Herwig, Pythia8, Pythia6)

F. Colamaria – Initial Stages 2019

HF ELECTRON JETS IN pp COLLISIONS p_{T} -differential cross section of HFe-tagged $d^2 \sigma_{dp_T} d\eta$ (mb(GeV/*c*)⁻¹ **ALICE** Preliminary charged jets, in pp collisions at $\sqrt{s} = 5$ TeV pp, *\s* = 5.02 TeV 10 For different jet cones R=0.3, 0.4, 0.6 Charged Jets, Anti- k_{τ} , R = 0.3, $|\eta^{\text{jet}}| < 0.6$ with c,b \rightarrow e, 4 < $p_{_{T,o}}$ < 18 GeV/c, $|y^e|$ <0.6 Sensitive to beauty! (HFe dominated by 10^{-5} beauty for $p_{T}(e) > 5 \text{ GeV}/c$ POWHEG+PYTHIA8 predictions in 10^{-6} agreement with measurement within uncertainties Data 10 Syst. Unc. (data) 2.4 **POWHEG+PYTHIA8** 5(*R*=0.3)/σ(*R*=0.6) pp, *\s* = 5.02 TeV **ALICE Preliminary** Syst. Unc. (theory) 2.2 p-Pb, $s_{NN} = 5.02 \text{ TeV}$ Charged Jets, Anti- k_{τ} $\begin{array}{l} R = 0.3, \ |\eta^{\rm jet}| < 0.6 \\ R = 0.6, \ |\eta^{\rm jet}| < 0.3 \end{array}$ Data/Theory 2.5 POWHEG+PYTHIA8 1.8 with c,b \rightarrow e, 4 < $p_{_{\rm T,e}}$ < 18 GeV/*c*, $|y^{\rm e}|$ <0.6 1.5 0.5٩b 20 25 30 35 40 45 50 55 60 $p_{\rm T,ch\,jet}({\rm GeV}/c)$ ALI-PREL-322279 0.8 Ratio of cross section with R=0.3 over R=0.6 0.6 0.4 also well described by POWHEG+PYTHIA8

 $p_{\rm T,ch\,jet}^{50}$ (GeV/c) $({\rm GeV/c})^{60}$

NLO calculations

ALI-PREL-322384

0.2

F. Colamaria – Initial Stages 2019

35

40

45

20

15

R_{pPb} OF D-MESON AND HFe JETS Nuclear modification factor of D⁰-tagged and HFe-tagged charged jets: $R_{\rm pPb} = \frac{1}{A} \cdot \frac{\mathrm{d}\sigma_{\rm pPb}/\mathrm{d}p_{\rm T}}{\mathrm{d}\sigma_{\rm pp}/\mathrm{d}p_{\rm T}}$ **ALICE** Preliminary $R_{ m pPb}$ D⁰-tagged jets, $\sqrt{s_{_{ m NN}}}$ = 5.02 TeV, $p_{_{ m T,D^0}}$ > 3 GeV/c- charged jets, anti- $k_{\rm T}$, R = 0.3, $|\eta_{\rm int}| < 0.6$ $H_{\rm pPb}$ $R = 0.3, |\eta^{\text{jet}}| < 0.6, |\gamma^{\text{e}}| < 0.6$ ALICE Preliminary $R = 0.4, |\eta^{\text{jet}}| < 0.5, |\gamma^{\text{e}}| < 0.6$ R_{p-Pb} (pp data reference) p-Pb, <u></u>*s*_{NN} = 5.02 TeV $R = 0.6, |\eta^{\text{jet}}| < 0.3, |y^{\text{e}}| < 0.6$ 1.5 Charged Jets, Anti-k₊ with $\vec{c}, b \rightarrow e, 4 < p_{T,e} < 18 \text{ GeV}/c$ 0.5 0.5

• R_{pPb} for both tagging particles are **consistent with unity** over the full p_T range

 $p_{_{\mathrm{T.ch\,iet}}}\,(\mathrm{GeV}/c)$

50

No evidence of strong cold-nuclear-matter effects on charm (and beauty) jet production

ALI-PREL-322365

20

30

 $p_{\rm T,ch\,jet}^{50}({\rm GeV}/c)$

NYC, 26/06/2019

8

 Single-particle R_{pPb} measurement also consistent with one, hinting to no large modifications to the parton fragmentation from pp to p-Pb

→ See Mattia Faggin's talk on Tuesday at 15:20 (parallel nPDF/CNM)

F. Colamaria – Initial Stages 2019

0 5 10 15 20 25 30 35 40 45 5

ALI-PREL-313224

b-TAGGED JETS IN p-Pb COLLISIONS

First ALICE measurement of **beauty jets** in p-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV

- Cross section described within uncertainties by POWHEG+PYTHIA NLO calculations with HVQ and dijet production process + nuclear PDF
- Very low p_T reach, p_T (jet) > 10 GeV/c, complementing other existing measurements at the LHC at higher p_T

F. Colamaria – Initial Stages 2019

NYC, 26/06/2019

Reconstruction of **D mesons** via hadronic decays

Reconstruction of HF electrons (HFe)

F. Colamaria – Initial Stages 2019

Reconstruction of **D mesons** via hadronic decays

Reconstruction of HF electrons (HFe)

- Correlation with other tracks in the event to build 2D distributions
- Mixed-event and reconstruction efficiency correction, 1D projection

NYC, 26/06/2019

F. Colamaria – Initial Stages 2019

Reconstruction of **D mesons** via hadronic decays

Reconstruction of **HF electrons (HFe)**

- Correlation with other tracks in the event to build 2D distributions
- Mixed-event and reconstruction efficiency correction, 1D projection

Subtraction of $B \rightarrow D$ feed-down contribution and of secondary track contamination

 Average of D⁰,D⁺,D^{*+} distribution, fit, and extraction of peak yields and widths

F. Colamaria – Initial Stages 2019

NYC, 26/06/2019

Reconstruction of **D mesons** via hadronic decays

Reconstruction of HF electrons (HFe)

Subtraction of hadron contamination from

E/p distribution in the EMCal

- Correlation with other tracks in the event to build 2D distributions
- Mixed-event and reconstruction efficiency correction, 1D projection

NYC, 26/06/2019

 Subtraction of B→D feed-down contribution and of secondary track contamination

F. Colamaria – Initial Stages 2019

D-h CORRELATIONS IN pp AND p-Pb

- Azimuthal correlation distributions of D mesons with charged particles in pp and p-Pb collisions
- Similar correlation pattern and in pp and p-Pb over a large kinematic range:
 - > $3 < p_T(D) < 24 \text{ GeV}/c$
 - > 0.3 < $p_{\rm T}$ (assoc) < 3 GeV/c

- Near-side yields and widths consistent between pp and p-Pb
 - Same for away-side, not shown
 - No evidence of cold-nuclearmatter effects larger than uncertainties

F. Colamaria – Initial Stages 2019

NYC, 26/06/2019

D-h CORRELATIONS IN pp VS MODELS

Comparison of near-side and away-side peak yields and widths to Monte Carlo predictions

• POWHEG+PYTHIA (NLO) predicts larger NS yields/widths and smaller AS yields/widths than models at LO

- NS peak not favouring a specific model; AS possibly better described by POWHEG+PYTHIA
- Observables sensitive to modelling of heavy-quark production processes and fragmentation

F. Colamaria – Initial Stages 2019

NYC, 26/06/2019

- Azimuthal correlations of heavy-flavour decay electrons with charged particles in HM (high multiplicity, 0-20%) and LM (low multiplicity, 60-100%) p-Pb collisions
- v_2 extracted from Fourier decomposition of HM LM correlation distribution
- **Positive** v_2 for heavy-flavour decay electrons (**5** σ effect for 1.5 < p_T^e < 4 GeV/*c*)
 - Strength of v_2 lower than for charged particles (but different p_T ranges of original partons), and comparable with muons (but different rapidities)

HEAVY-FLAVOUR MUON v₂ IN p-Pb

- Same values of muon v_2 in HM p-Pb obtained also via 2-particle cumulant method
- Muon sample dominated by heavy-flavour contribution above 2 GeV/c
- Compatibility of v_2 values at forward and backward rapidity

F. Colamaria – Initial Stages 2019

NYC, 26/06/2019

HEAVY-FLAVOUR MUON v₂ IN p-Pb

- Same values of muon v_2 in HM p-Pb obtained also via 2-particle cumulant method
- Muon sample dominated by heavy-flavour contribution above 2 GeV/c
- Compatibility of v_2 values at forward and backward rapidity

v₂^{HFe,HFµ} > 0 in p-Pb: Initial-state (gluon saturation) or final-state effect? If it's final, does it come from collectivity as for Pb-Pb? Need model predictions to investigate further the origin!

F. Colamaria – Initial Stages 2019

NYC, 26/06/2019

- Measurement of $Q_{CP} > 1$ with $\approx 3\sigma$ significance for 20-40% class, for $3 < p_T(D) < 7$ GeV/c
 - Similar feature observed also for charged particle measurements
- One possible origin: radial flow induced by hydrodynamic evolution of the collisions
 - Models are needed for interpreting the results!

F. Colamaria – Initial Stages 2019

CONCLUSIONS

- *p*_T-differential cross section of D-tagged, HFe-tagged and b-tagged charged jets in small systems described by POWHEG+PYTHIA predictions within uncertainties
 - **Parallel D-jet momentum fraction** of D⁰ in overall agreement with predictions, with hints of softening for data distribution w.r.t. models at high p_T
- R_{pPb} of D-tagged jets and HF-tagged jets compatible with unity over full p_T range

F. Colamaria – Initial Stages 2019

CONCLUSIONS

- *p*_T-differential cross section of D-tagged, HFe-tagged and b-tagged charged jets in small systems described by POWHEG+PYTHIA predictions within uncertainties
 - **Parallel D-jet momentum fraction** of D⁰ in overall agreement with predictions, with hints of softening for data distribution w.r.t. models at high p_T
- R_{pPb} of D-tagged jets and HF-tagged jets compatible with unity over full p_T range
- D-h correlation distributions and peak features in pp collisions generally well described by LO and NLO models, with preference to POWHEG+PYTHIA for the away-side description
- No evidence of large cold-nuclear-matter effects on charm fragmentation from the comparison of pp and p-Pb collision results

CONCLUSIONS

- *p*_T-differential cross section of D-tagged, HFe-tagged and b-tagged charged jets in small systems described by POWHEG+PYTHIA predictions within uncertainties
 - **Parallel D-jet momentum fraction** of D⁰ in overall agreement with predictions, with hints of softening for data distribution w.r.t. models at high p_T
- R_{pPb} of D-tagged jets and HF-tagged jets compatible with unity over full p_T range
- D-h correlation distributions and peak features in pp collisions generally well described by LO and NLO models, with preference to POWHEG+PYTHIA for the away-side description
- No evidence of large cold-nuclear-matter effects on charm fragmentation from the comparison of pp and p-Pb collision results
- **Positive elliptic flow** of **heavy-flavour hadron decay electrons** (at central rapidity) and **muons** (at forward/backward rapidity) in high multiplicity p-Pb collisions

Initial state or final state effect? Does it come from collectivity?

 Possible onset of collectivity in such conditions could be supported by Q_{CP} > 1 of D mesons at intermediate p_T

BACKUP SLIDES

HEAVY QUARK PRODUCTION

BJORKEN X REGIONS AT THE LHC AND PDF

CHARMED HADRON RECONSTRUCTION

• Reconstruction and selection of charm-hadron candidates exploiting the displaced decay topologies + particle identification on daughter tracks (p/K/ π)

> Multivariate approach (BDT) also available for Λ_{c}^{+} in p-Pb

- Signal extracted via an invariant-mass analysis
- Feed-down from beauty-hadron decays subtracted by means of FONLL calculations
 + assumptions on feed-down nuclear modification factor

F. Colamaria – Initial Stages 2019

D-MESON *R*_{pPb}

- Non-strange D meson R_{pPb} is compatible with unity within uncertainties
 - Described by models including cold nuclear-matter effects; models assuming QGP formation are more disfavoured

F. Colamaria – Initial Stages 2019

NYC, 26/06/2019

D-MESON Q_{pPb}

F. Colamaria – Initial Stages 2019

D-JETS: ANALYSIS STRATEGY

- Charged jets tagged by the presence of a reconstructed D-meson candidate inside the cone
 - Jet finder algorithm (Fastjet, anti-k_T) run for each D-meson candidate, after substituting the daughter tracks with the D-meson particle

- Invariant mass study to extract D-jet raw yield
 - Background spectrum from the sidebands
 - Spectrum corrected for D-jet efficiency and for beauty feed-down, exploiting folded POWHEG+PYTHIA predictions
- Corrected D-jet spectrum unfolded for detector effects and background fluctuations (in p-Pb and Pb-Pb)

F. Colamaria – Initial Stages 2019

D-JETS – TECHNICAL PLOTS

F. Colamaria – Initial Stages 2019

NYC, 26/06/2019

7

TCF

D-TAGGED JETS IN Pb-Pb COLLISIONS

• Strong suppression of production cross section in 0-20% Pb-Pb collisions over full p_{T} (jet) range

• Comparison with inclusive jets difficult due to non-overlapping p_T ranges, but hint of lower R_{AA} for D jets in 5 < p_T (jet) < 20 GeV/c than inclusive jets with p_T > 50 GeV/c

> Can address different quark/gluon jet ratio and collisional/radiative energy loss fractions

• R_{AA} comparable with single D-meson measurement: jet R_{AA} dominated by leading particle energy loss? Or a coincidence? Yet not apple-to-apple comparison (jet vs. hadron p_T scale)

F. Colamaria – Initial Stages 2019

NYC, 26/06/2019

HFe-JETS – TECHNICAL PLOTS

F. Colamaria – Initial Stages 2019

NYC, 26/06/2019

LICE

HFe-JET CROSS SECTION RATIO AT DIFFERENT R

F. Colamaria – Initial Stages 2019

b-JETS – TECHNICAL PLOTS

ALICE

D-h CORRELATIONS: ANALYSIS STRATEGY

- Selected D mesons (including background) used as «trigger» particles for building (Δφ,Δη) angular correlations
- **«Associated**» particles correlated to D-mesons selected via kinematic ($p_T > 0.3 \text{ GeV}/c$, $|\eta| < 0.8$) and track-quality cuts
- Background D-meson candidates removed exploiting sideband subtraction
- Correction for limited detector acceptance and for detector spatial inhomogeneities via **event mixing**
- Correction for inefficiencies in D-meson and associated track reconstruction
- Removal of B→D feed-down contribution and of contamination from secondary tracks
- Weighted average of D^0 , D^+ , $D^{*+} \Delta \phi$ correlations
- Fit to correlation distributions to extract quantitative observables (near- and away-side peak yields and widths, baseline height)

$$f(\Delta\phi) = c + \frac{Y_{NS}}{\sqrt{2\pi}\sigma_{NS}}e^{\frac{(\Delta\phi - \mu_{NS})^2}{2\sigma_{NS}^2}} + \frac{Y_{AS}}{\sqrt{2\pi}\sigma_{AS}}e^{\frac{(\Delta\phi - \mu_{AS})^2}{2\sigma_{AS}^2}}$$

F. Colamaria – Initial Stages 2019

D-h CORRELATIONS: p-Pb VS CENTRALITY

- Charm jet fragmentation doesn't show modifications as a function of centrality above the current uncertainties
 - Possible flow in central p-Pb events taken into account as systematic uncertainty
- No sensitivity to extract v_2 via HM LM subtraction with available statistics

F. Colamaria – Initial Stages 2019

NYC, 26/06/2019

PREVIOUS RESULTS ON HF CORRELATIONS (LHC ONLY)

Selection of LHCb measurements for DD (top row) and DDbar (bottom row) angular correlations in pp collisions at 7 TeV:

- DD are uncorrelated
 (independently produced)
- DDbar are mostly produced in the same hard scattering
 - NS and AS peaks are clearly visible

43

F. Colamaria – Initial Stages 2019

PREVIOUS RESULTS ON HF CORRELATIONS (LHC ONLY)

 LHCb measurements for D⁰-D⁰bar correlations compared with calculations from k_Tfactorization approach, in pp collisions at 7 TeV

 CMS measurements for B-Bbar production cross section as a function of Δφ, compared with predictions, in pp collisions at 7 TeV

LHCb, JHEP 06 (2012) 141

F. Colamaria – Initial Stages 2019

F. Colamaria – Initial Stages 2019

ATLAS, HF muon

NYC, 26/06/2019

F. Colamaria – Initial Stages 2019

F. Colamaria – Initial Stages 2019