

Influence of neutron skin in heavy ion collisions at RHIC energies

Jan Hammelmann^{1,2,*}, Alba Soto Ontoso⁴, Massimiliano Alvioli⁵ and Hannah Elfner^{3,2,1}

 ¹ Johann Wolfgang Goethe Universität Frankfurt, ² Frankfurt Institute for Advanced Studies, ³ GSI Helmholtzzentrum für Schwerionenforschung ⁴ Brookhaven National Laboratory
 ⁵ Instituto di Ricerca per la Protezione Idrogeologica, Consiglio Nazionale delle Ricerche

*hammelmann@fias.uni-frankfurt.de

Introduction

Neutron skin effect

• Classically the density of protons and neutrons inside the nucleus is modeled with the so called Woods-Saxon distribution

$$\rho(r) = \frac{\rho_0}{e^{\frac{r-r_0}{d}} + 1} \qquad \begin{cases} r_{0,p} = r_{0,n} \\ d_p = d_n \end{cases}$$

• However experimental measurements in

Density calculation

- Initial state isospin 3 distribution could be use as input parameter for a hydrodynamic calculation
- Construct a current with density factor I

$$j^{\mu} = \int I \frac{p^{\mu}}{p^{0}} f(r, p, t) \frac{d^{3}p}{(2\pi\hbar)^{3}}$$

• Split positively and negatively charged

• While the total one-body density is unaffected, the ratio of the proton to neutron density changes.

Isobar run at RHIC

- Recently there has been a measurement of the isobar nuclei $^{96}{\rm Zr}$ and $^{96}{\rm Ru}$ at RHIC at $\sqrt{s}=200\,{\rm GeV}$ with the goal of studying the chiral magnetic effect
- Underlying idea:
 - \rightarrow Keep the background component (v_2) fixed
 - Handle on the magnetic field strength via the atomic number

Neutron skin for 96Zr

• Since

$$\frac{\#n}{\#p}\Big|_{Zr} = \frac{\#n}{\#p}\Big|_{Pb} > \frac{\#n}{\#p}\Big|_{Ru}$$

We consider the neutron skin to appear at ${}^{96}Zr$

current

$$\rho_{eck} = \sqrt{j^{\mu}j_{\mu}} = \rho_+ - \rho_-$$

Results

Isospin 3 and electric charge densities

Integrate over the participant density in the transverse plane

Magnetic fields

Computing the magnetic field at the time both nuclei completely overlap

Time evolution of isospin 3 density

• Under the condition that the neutron skin is halo like $(r_{0,p} \sim r_{0,n})$, Δr_{np} is the same as for ²⁰⁸Pb and keeping the size of the nucleus fixed we obtain the following Woods-Saxon parameters individually for protons and neutrons

System	<i>r</i> ₀ / <i>fm</i>	d / fm	β2	β4	r _{0,р} / fm	r _{0,n} / fm	<i>d_p / fm</i>	<i>d_n / fm</i>
⁹⁶ Zr	5,02	0,46	0	0	5,08	5,08	0,34	0,46
⁹⁶ Ru	5,085	0,46	0,158	0	5,085	5,085	0,46	0,46

Model

- We are using the relativistic hadronic transport approach SMASH (), see also smash-transport.github.io [2]
- SMASH contains all well-established hadrons with masses up to $\,\sim 2\,{\rm GeV}$
- It gives an effective solution to the relativistic Boltzmann equation

 $p^{\mu}\partial_{\mu}f_{i}(x,p) + m_{i}F^{\alpha}\partial_{\alpha}^{p}f_{i}(x,p) = C_{coll}^{i}$

- Nuclei Configurations including nucleon-nucleon correlations plus neutron skin are computed by Alvioli et al. [3]
- Modeling of cross section via resonance formation and decay
- String excitation in high energy regime by PYTHIA for interactions with large \sqrt{s}

Magnetic fields in heavy-ion collisions

CME search related observables

Correlation between angle of magnetic field and Ψ_2^{SP} [4]

Magnetic fields can be computed using Lienard-Wiechert potentials

Acknowledgements

Computational resources have been provided by the Center for Scientific Computing (CSC) at the Goethe-University of Frankfurt.

Conclusions

- We implemented the neutron skin effect for the nuclear density distribution of ⁹⁶Zr in the hadronic transport approach SMASH
- Neutron skin increases the magnetic field strength for impact parameter > 8 fm
- The ratio of B^2 between Ru and Zr is reduced from ~10% to ~5%
- Our result suggests a smaller CME signal to background ratio than previously expected for peripheral isobar collisions at RHIC

References

[1] C. M. Tarbert et al. Phys. Rev. Lett. **112**, 242502
[2] J. Weil et al Phys.Rev. C94 (2016) no.5, 054905
[3] M. Alvioli, M. Strikman arXiv:1811.10078v1
[4] S. Chatterjee, P. Tribedy Phys.Rev. C92 (2015) no.1, 011902