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Possible sources of flow-like signals in small system collisions Significance of distribution function
Examine:
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Small-x gluons are nucleon fluctuations

e Changing effective reduced
thickness function
FTEGD, TEGD) in
collision generation

—» Change in flow signals?
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# Hydrodynamic model
Small QGP droplets
evolve hydrodynamically

Hysrodyrssiric:
Evoluton

) Sharper distribution in initial
to produce flow signals

energy density profile
Flow signals from CGC Flow signals from QGP droplet Using deformed nuclei (38U, °Be) as disctiminators

0 Singlefpa-rticle distributions are isotropic = 0 E_cce_ntri_cities describe initial energy between QGP and CGC

two-particle _cumulant contains only non- dlviaomitoriy . Lower flow fluctuations in ultra-central UU collisions due to

flow correlations f r"emd’s(r, P)rdrde L.
. i T 2 2 1. & = driving geometry

First approximation for p7 > Q5 [1]: n [rre(r, p)rdrdep o s

— — [ d%x, T2(7) T2 . . 0
n even: 8,(py, pz) = fdz xJ_T: (x1) TSB ) f(p1,02) 0-5% Centrality *  Linear response: -~
n odd: 8(p1, p2) = [ d*x TR (xD) T (X1) 9n (P2, p2) ] VUn = Knén For |
i ' va{2) = [(v3) g

¢ Define relevant moments of nuclear density n n s ] = v from trantosv-USPhydra

profiles Ty and Tg: . e e e
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n Pure hydro (initial geometry dependence):

+ Initial conditions model determines Ny qjrs - negative correlation of elliptic flow signals with multiplicity

dependence on T and Ty Method of comparison Pure CGC (multplicity dependence):

Noo ~ N2, [ ]2 1. Select ultra-central events (1% by Ny,...) - positive correlation of elliptic flow signals with multiplicity [2]
palurs tot T 2y Sub-bin by multiplicity to select geometry
where 1 = 5 of 1 (reduced thickness models) 3. Calculate two-particle cumulant v2{2} from £z
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where v, = 2 or 3 (even or odd harmonic) Epudp, Ppidp; pz nonflow | Multiplicity

Models used to produce events: Collisions for both CGC and QGP calculations are generated with TRENTOo software [3] modified with new ions and to include a
new scaling in the effective reduced thickness function f (4,B). Multiplicity is calculated in TRENTo as § = Cf d?x of (Tﬁ(x—l), TS (@) where c is a scaling constant.
By default TRENTo includes a scaling as f (4, B) = VAB (r = % above). f(4,B) = AB (r = 1) is include to match theory predictions of the expected behavior of flow
with multiplicity [1]. TRENTOo is also modified to output the moments T, for CGC calculations. To evolve these distributions hydrodynamically for QGP calculations,
the software v-USPhydro [4] was used with parameters from [5].
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K] difference between BeBe results
— propose experiments with symmetric and

¢ Changes to TRENTo model tested: . .
nuclecns substructure
© Effective reduced thickness function: / TyTp = TaTp Trento
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