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Initial→ Final Mapping
In usual hydro simulations, the distribution of energy/momentum

when hydro becomes valid (“initial condition”) completely deter-
mines the final result, which is a distribution function for indepen-
dent hadrons.
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dN

d3p
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=
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2π
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This complicated process can be represented by relatively simple
relations, such as

Vn = κεn (1)

that identify the relevant properties of the initial state (εn) and sep-
arate them from the effects of subsequent evolution (κ). This al-
lows for a deeper insight into the system dynamics and is a pow-
erful way to constrain physical properties from measured observ-
ables.

Normally, only the geometric distribution of energy (or
entropy) is considered. We propose a way to incorporate the
other components of Tµν that comprise initial conditions.

These may be particularly important in small systems.

First we revisit the known case, so we can use the same consid-
erations to construct estimators that include new contributions.A
similar approach should allow for inclusion of, e.g., conserved cur-
rents in the future.

Eccentricity Scaling as a
Controlled Expansion in
Length Scales

The most important guideline is the ansatz that large-scale struc-
tures in the initial condition contribute more to the final particle
distribution than structures at small scale
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similar global structure =⇒ similar final state

The natural way to separate scales is with a Fourier transform.

ρ(~x) ≡ T ττ (τ = τ0, ~x) (2)
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d2xei~x·
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Wn,mk
me−inφk

Cumulants Wn,m with smaller m represent larger length scales
and have larger contribution to the final particle distribution. Cu-
mulants above some maximum m can be disregarded.

To predict dimensionless flow coefficients, it is useful to com-
pare to a common scale to make dimensionless ratios. A natural
choice for this scale is the system size W0,2 = 〈r2〉ε − |〈riφ〉ε|2:

εn,m ≡ −
Wn,m(
W0,2

)m
2

We can construct an estimator for each harmonic Vn as a power
series in these cumulants:

Vn '
mmax∑
m=n

κn,mεn,m +

mmax∑
l=1

mmax∑
m=l

mmax∑
m′=|n−l|

κl,m,m′εl,mεn−l,m′ +O(W 3).

The lowest cumulant corresponding to rotational mode n is
Wn,n, and so the largest contribution is typically εn ≡ εn,n.

Eccentricity scaling (1) means that only global, large-scale struc-
ture is important, and small-scale granularity is negligible.

Note that these arguments are quite general, and this be-
havior may apply even if hydrodynamics is not applicable. The
essential assumptions are

1. The energy momentum tensor at some early time Tµν(τ =
τ0) contains sufficient information to predict future evolution.

2. The final particle properties can be captured by a one body
distribution for each event.

3. The structure of Tµν(τ = τ0) at large length scales generally
has a larger affect on the final results than small-scale struc-
ture.

Including other T µν components
Using the same considerations as for the case of energy density

only, we can include other components of the initial Tµν.

Here we focus on the contribution from the transverse momen-
tum density T τi and stress tensor T ij, with i, j ∈ (1, 2).

The proposal is to add terms to Eq. (2), and generate the cumu-
lant expansion exactly as before.

ρ(~x) = T ττ (~x) + α∂iT
τi(~x)− β∂i∂jT ij(~x) (3)

This ansatz introduces only two unknown response coefficients
α, β, which are constants that do not depend on harmonic n or
orderm, for example, and should also depend only weakly on cen-
trality. Thus it is a highly restrictive and nontrivial ansatz.

This gives estimators with the correct expected properties:

•Ordered in length scale

• Translation invariant

•Decomposed into definite rotational modes n
• In the limit when the extra components of Tµν are uniformly

scaled to 0, α, β → 0, the contribution of these terms vanish.∗
∗(Note that one can have energy density without momentum density or stress, but one cannot
have the latter without energy density. In contrast to this criterion, anisotropic flow does not
necessarily go smoothly to zero as the initial energy is scaled to zero.)

An example of the result for the leading order term εn, in a
particular centered coordinate system W1,1(α, β) = 0, is:
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using the following notation

U(~x) ≡ T τx + iT τy

C(~x) ≡ 1

2
(Txx − T yy) + iTxy

〈. . .〉ε =
∫
d2x . . . T ττ (~x)∫
d2x . . . T ττ (~x)

〈. . .〉U =

∫
d2x . . . U(~x)∫
d2x . . . T ττ (~x)

〈. . .〉C =

∫
d2x . . . C(~x)∫
d2x . . . T ττ (~x)

The usual quantities are obtained for α, β → 0.

Physical Motivation
Let’s return for the moment to the case where only initial en-

ergy density contributes, such that the evolution beginning at some
time τ0 depends on the distribution of energy density only.

We know that estimators derived from Eq. (2) give an excellent
description of the final results (even momentum-dependent flow
fluctuations — see poster by Mauricio Hippert).

Now imagine that we don’t know the value of τ0, and we in-
stead generate estimators from the state of the system a short time
before or after, τ = τ0 + δτ :

T ττ (τ ) = T ττ (τ0) + δτ∂τT
ττ |τ0 +

δτ2

2
∂2τT

ττ |τ0 +O(δτ3)

The final state of the system is the same, and so our estimator
should also be approximately unchanged.

Conservation of energy/momentum tells us that, to first order,
any change in energy density is compensated by momentum den-
sity. We can continue to second order, which adds the stress tensor.

∂τT
ττ = −∂iT τi

∂2τT
ττ = −∂i∂τT τi = ∂i∂jT

ij

Thus, our original scalar ρ can be approximated by these terms

ρ(x) = T ττ (τ0) ' T ττ (τ ) + δτ∂iT
τi(τ0)−

δτ2

2
∂i∂jT

ij(τ0)

So, while we can’t make a rigorous derivation of, e.g., the val-
ues of α and β, which clearly depend on the system, it is natural
to construct a field with a some of the three quantities in the form
of Eq. (3) (T ττ , ∂iT τi, ∂i∂jT ij) to make an estimator for the final
flow.

While not all transverse degrees of freedom of Tµν appear,
these three quantities can be expected to be the most important.

Numerical Validation
Toy Initial Conditions

We start with a simple Gaussian distribution, which can be dis-
torted in various ways to obtain a rotational asymmetry in mode
n in the distribution of energy density, magnitude and direction of
momentum density, and magnitude and orientation of stress.

T ττ = Ae
− r2

2σ2ε
[1+an cos(nφ)]

|U | = rBe
− r2

2σ2U
[1−bn cos(nφ)]

argU = φU = φ− cn sin(nφ)

|C| = r2Pe
− r2

2σ2C
(1−pn cos(nφ))

argC = θ = φ− qn sin(nφ)

We follow the initial conditions with viscous hydrodynamics
and calculate flow of direct pions. We find an approximate linear
relation between Vn and the new εn(α, β).

As an example,we show a scatter plot testing the contribution
from the stress tensor. I.e., for parameters in ranges an ∈ [0, 0.5], P ∈
[0, 10]fm−6, pn ∈ [0, 0.4], qn ∈ [0, 0.8], and with(α, β) = (0, 5fm2).
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We find that the lowest order estimator (1) gives in general a
very good description of the results (until non-linearities appear,
when the size and/or asymmetry of the extra components of Tµν

become large).

IP-Glasma Initial Conditions

To test whether the size and asymmetries of the momentum den-
sity and stress that we tested are realistic, we perform state-of-the-
art simulations using IP-Glasma initial conditions of Pb-Pb colli-
sions, viscous hydrodynamics, and UrQMD afterburner. We take
the fluid properties from a previous Bayesian analysis (see thesis
of Jonah Bernhard, arXiv:1804.06469).

The success of an estimator (εn) can be measured by the lin-
ear (Pearson) correlation coefficient between the estimator and the
final flow vector Vn over the ensemble of events

Qn =
Re 〈Vnε∗n〉√〈
|Vn|2

〉〈
|εn|2

〉
Here we have the result with (α, β) = (1fm, 15fm2) compared

to the original estimator (α, β) = (0, 0)
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We can see that, while the majority of flow in this large sys-
tem is generated as a response to the spatial anisotropy of the en-
ergy density, including the effects of other components of the
energy-momentum tensor improves the estimator.

Additionally, approximately the same value of α, β (1 fm, 15
fm2) maximize the Pearson coefficient for v2 and v3 and for all
centralities, giving validation to our nontrivial ansatz (3).

With this information, it should be possible to estimate the
importance of initial flow/correlations in a given system or model
and to better understand the interplay between this initial flow/correlation
and hydrodynamic evolution. This in turn can allow to con-
strain properties of the initial state and the QGP.


