

Heavy-quark diffusion coefficient in out-of-equilibrium plasmas K. Boguslavski¹, A. Kurkela^{2,3}, T. Lappi^{4,5}, <u>J. Peuron^{6,7}</u>

¹Institut für Theoretische Physik, Technische Universität Wien, Austria, ²Theoretical Physics Department, CERN, Geneva, Switzerland, ³Faculty of Science and Technology, University of Stavanger, Norway, ⁴Department of Physics, University of Jyväskylä, Finland, ⁵Helsinki Institute of Physics, University of Helsinki, Finland, ⁶ECT^{*}, Trento, Italy, ⁷Fondazione Bruno Kessler, Trento, Italy

Introduction

Transport coefficients contain information about the microscopic properties of the medium. We study the **heavy quark** (HQ) momentum diffusion coefficient κ out of equilibrium by using classical Yang-Mills (CYM) simulations in the self-similar regime. With this setup we aim to mimic the medium consisting of overoccupied gluon fields created at the initial stages of an ultrarelativistic heavy ion collision.

Diffusion in the Langevin picture [1]

In the Langevin approach the EOM for HQ is given by

Signal from real time lattice

$$\frac{\mathrm{d}p_{i}}{\mathrm{d}t} = -\eta_{D}p_{i} + \xi_{i}\left(t\right).$$

(1)

(2)

Identify the Lorentz force as the stochastic force

 $\langle \xi_i(t) \, \xi_j(t') \rangle = \kappa \delta_{ij} \, \delta(t - t').$

Extracting κ , 3 methods

CYM Measure the force-force correlation , $A^0 = 0$.

$$\kappa(t,\tilde{t}) = \int_{0}^{\tilde{t}} d\Delta t \ \kappa(t,\Delta t)$$

$$= \frac{g^{2}}{3VN_{c}} \int_{0}^{\tilde{t}} d\Delta t \int d^{3}x \sum_{i=1}^{3} \left\langle E_{i}(\boldsymbol{x},t+\Delta t) E_{i}(\boldsymbol{x},t) \right\rangle$$
(3)

HTL Use results from LO HTL perturbation theory to estimate $\ddot{F}(t, t + \Delta t) \approx \langle E(t)E(t + \Delta t) \rangle$. Include our data [2] on the quasiparticle damping rate and \ddot{F} .

Results: Time dependence and IR enhancement

Dependence on time t of $\kappa(t) = \lim_{\tilde{t}\to\infty} \kappa(t,\tilde{t})$

Conclusions

• We measure the heavy quark momentum diffusion

- At large t our gauge field configuration is that of a universal attractor where the physical scales evolve as powerlaws in t. We extract the powerlaw of κ so that we can compare the exponent and coefficient to other physical scales, such as m_D, T_*, Λ .
- Preliminary: HTL method close to data extractions, KT method is a factor 2 smaller.
- In " At^B fit to avg. $\kappa(t, \tilde{t})$ ", powerlaw fit to \tilde{t} -averaged data for $Qt \geq 3000$. The fit reveals a considerable uncertainty.

Dependence on upper integration limit t

coefficient κ far from equilibrium. κ follows an approximate $t^{-1/2}$ power law (preliminary). This is consistent with HTL $(t^{-5/7} \times \text{logarithmic correction}).$ Including the IR enhancement improves the agreement with the transient time behavior.

• We find that the IR enhancement of the *gauge-fixed* \ddot{F} leads to an observable modification of the gauge*invariant* signal in $\kappa(t, \tilde{t})$. Oscillations in finite \tilde{t} have a similar frequency as the plasmon frequency.

References

[1] G. D. Moore, D. Teaney, Phys.Rev. C71 (2005) 064904 K. Boguslavski, A. Kurkela, T. Lappi, J. Peuron, Phys.Rev. D98 (2018) no.1, 014006

- Time-dependent curves (full lines): "Data" corresponds to $\kappa(t, \tilde{t})$ extracted from real time lattice. HTL finite \tilde{t} with IR enh. curve replaces the HTL \ddot{F} with the one extracted from data.
- Time-independent curves (dashed lines): $\kappa_{HTL}^{t\to\infty}$ corresponds to Δt integration up to ∞ . KT method uses eq. (4).