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Introduction a

Hydrodynamic Model
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e A simple Bjorken expansion can be used to begin to study effects qualitatively [1|[2]

e Relativistic viscous hydrodynamics has
been extremely successful in describing
data

e This is a (0+1) hydrodynamic system, since it evolves strictly in time

e We model the behavior of transport coefficients to be in line with physical expectations

e Initial conditions for charge distributions
(baryon number, strangeness, electric)
could be subject to fluctuations which
propagate through the hydrodynamics, to

— On The Left: Shear viscosity with dynamical minimum, pushed to lower temperatures at
higher chemical potential

— On The Right: Two models for bulk viscosity, one as a function of speed of sound, the

the final state other with fully controlled max, width, and T, [3]|[4]
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and to quantify how small scale ini-

tial state fluctuations can emerge in Thermodynamic Model
final state observables

e Traditionally, hydrodynamics assumes local equilibrium for fluid cells so that the equations are
closed with the thermodynamic equation of state (EOS)

l"a”’-"’ Hiiverse The Phases of QCD e The relevant equation of state for strongly interacting matter is the Nuclear EOS

— At up = 0, Lattice calculation are matched to a Hadron Resonance Gas description across
the transition

LHC Expariments
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— The finite density and critical point EOS used in this work was found by mapping (7', up)
to the 3D Ising variables (r, h) [5]
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On The Left: Speed of sound as a funtcion of (T, ug), On The Right: Isentropic trajectories in (7', up) plane.

Hydrodynamic Effects
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Max and Min Time P'*’flﬂe?(T_”c,Tgs) Viax-and Min Time Flanes if’?ﬁf@“d) e Initial transverse charge distributions and their diffusive properties
max/ S — T clVie . . .
B - RN are needed for generalizing to (2-+1) hydrodynamics

e Using a CGC framework, gluon splitting probabilities and MC meth-
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