Contraining nPDFs with electroweak bosons measurements in pPb collisions with CMS $% \left({{{\rm{CMS}}} \right) = 0.025} \right)$

Émilien Chapon on behalf of the CMS Collaboration

CERN

Initial Stages 2019 June 24–28

Columbia University, New York City, USA

$$f_i^{p/A}(x, Q^2) = R_i^A(x, Q^2) f_i^p(x, Q^2)$$

Impact of nPDFs on LHC observables

- Important for most heavy-ion observables
- Up to 20 30 % modification compared to a free proton PDF

Impact of the LHC on nPDFs

- New range of (x, Q^2) accessible
- First nPDF to include LHC data: EPPS16

nPDF constraints with electroweak bosons in pPb

 $\eta_{\rm CM} = \eta_{\rm lab} - 0.465$

- Probing quarks and anti-quarks
- $10^{-3} \lesssim x_{Pb} \lesssim 10^{-1}:$ shadowing and anti-shadowing regions
- Asymmetric beams: laboratory frame \neq centre-of-mass frame

P q q q' v v

W and Z bosons in pPb at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

- Both muon and electron channels
- Hints of shadowing (large $\eta > 0$) and anti-shadowing (large $\eta < 0$)
- Observables:
 - Cross sections $d\sigma/dy$
 - Forward-backward asymmetries $R_{\text{FB}} = N(\eta > 0)/N(\eta < 0)$
 - Charge asymmetry (W bosons): $(N^+ N^-)/(N^+ + N^-)$

W and Z bosons in pPb at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

PLB 759 (2016) 36, PLB 750 (2015) 565

- Both muon and electron channels
- Hints of shadowing (large $\eta > 0$) and anti-shadowing (large $\eta < 0$)
- Observables:
 - Cross sections $d\sigma/dy$
 - Forward-backward asymmetries $R_{\rm FB} = N(\eta > 0)/N(\eta < 0)$
 - Charge asymmetry (W bosons): $(N^+ N^-)/(N^+ + N^-)$
- Data included in EPPS16

W bosons in pPb at $\sqrt{s_{NN}} = 8.16 \text{ TeV}$

• Muons: $p_{\rm T} > 25 \,{
m GeV}$, $|\eta_{
m lab}| < 2.4$, isolated:

$$\left(\sum_{\Delta R < 0.3} p_{\mathsf{T}}(\mathsf{particle flow candidate})\right) < 0.15 imes p_{\mathsf{T}}(\mu)$$

- No explicit p_T^{miss} cut: signal extracted using a p_T^{miss} fit
 - QCD multijet distribution estimated using non-isolated muons
 - Templates for other background estimated from MC
 - p_T^{miss} calibrated using Z boson events ("recoil corrections")

Cross sections

- Differential cross sections as a function of muon $\eta_{\rm CM}$
- Compared to NLO calculations (Powheg)
- Smaller experimental than nPDF uncertainties!
- Negative rapidity: good description with all (n)nPDF
- Positive rapidity:
 - Bad description with CT14
 - Too strong shadowing in nCTEQ15
 - Good description with EPPS16 (note: includes W,Z data at 5.02 TeV)

Correlation matrix

arXiv:1905.01486

Full correlation matrix public in HepData

- Crucial for proper use in nPDF fits
- Sizeable correlation between μ^+ and μ^- at a given η
- Small correlation between different η

Charge asymmetry

arXiv:1905.01486

- Large cancellation of experimental uncertainties
- Most nPDF uncertainties cancel too
- Sensitive to the flavour dependence of nPDF: R_{u_V}/R_{d_V}

E. Chapon (CERN)

Charge asymmetry: comparison with Run1

- Direct comparison with 5.02 TeV data using a scaling (EPJC 76 (2016), 214)
 - Applicable when one of the partons is at low enough x
- Good consistency between the two datasets
 - Scaling starts to break down at midrapidity
 - Small tension at large $\eta < 0$ seems to be gone
 - Change in proton PDF (CT10 \rightarrow CT14), enlarged nPDF uncertainties

Forward-backward asymmetries

- Reduction of experimental uncertainties in the ratio
- (Shadowing) / (anti-shadowing): enhanced nuclear effects
- Best description with EPPS16, especially for $W^{\rm +}$

Forward-backward asymmetrY, combined charges

- Even reduced uncertainties
- Best description with EPPS16

Observable	CT14			CT14+EPPS16			CT14+nCTEQ15		
	χ^2	dof	Prob. [%]	χ^2	dof	Prob. [%]	χ^2	dof	Prob. [%]
$d\sigma/dy$	135	48	$3 imes 10^{-8}$	32	48	96	40	48	79
Ch. asym.	23	24	54	18	24	80	29	24	23
R_{FB}^{\pm}	98	20	$3 imes 10^{-10}$	11	20	95	14	20	83
R _{FB}	87	10	$2 imes 10^{-12}$	3	10	99	5	10	90

Account for bin-to-bin correlations of uncertainties (experimental and theoretical)

•
$$\chi^2 = \sum_{i,j} (\mathsf{data}_i - \mathsf{theory}_i) V_{ij}^{-1} (\mathsf{data}_j - \mathsf{theory}_j)$$

- CT14: very small χ^2 probability
- **EPPS16**: very large χ^2 probability
- **nCTEQ15**: good χ^2 probability
 - Central value off, but correlations help
 - In other words: model has degrees of freedom to accomodate for the data
- Charge asymmetry: good description by all models

χ^2 for individual error sets

What is the data-prediction $\chi^2/$ ndf for the PDF individual error sets?

- Data covariance taken into account
- No theory uncertainty, no theory correlation
- CT14: large χ^2/ndf , small spread
- EPPS16: small χ^2/ndf , larger spread
- nCTEQ15: large χ^2/ndf , even larger spread
- Interpretation: good description of the data provided by
 - most EPPS16 error sets,
 - some nCTEQ15 error sets,
 - none of the CT14 error sets

Summary and outlook

Electroweak bosons in 5.02 and 8.16 TeV data

- Strong nPDF constraints with W and Z boson production in pPb collisions with CMS
 - Quarks and antiquarks, $10^{-3} \lesssim x \lesssim 10^{-1}$
 - Smaller experimental than nPDF uncertainties
- Charge asymmetry well reproduced with and without nPDF effects

Summary and outlook

WG5 YR and references therein: CMS-PAS-FTR-17-002, CMS-PAS-FTR-18-027

Electroweak bosons in 5.02 and 8.16 TeV data

- Strong nPDF constraints with W and Z boson production in pPb collisions with CMS
 - Quarks and antiquarks, $10^{-3} \lesssim x \lesssim 10^{-1}$
 - Smaller experimental than nPDF uncertainties
- · Charge asymmetry well reproduced with and without nPDF effects

Outlook

- Expect ≈ 10 times more pPb data with future Runs 3–4 of the LHC
- Dominant systematic uncertainties will be reduced with more data
- Also planned: Z/γ^* in pPb, including mass and p_T dependence

Systematic uncertainties

- Systematically limited (statistical uncertainty of a similar size)
 - For cross sections: additional 3.5% luminosity uncertainty
- Dominant uncertainties: efficiency, QCD background
 - Both dependent on the data sample size
- Reduced uncertainties in asymmetries because of correlations

• Typical asymmetry magnitude: $R_{\text{FB}} \approx 0.7$ –1.0, $\frac{N_{\mu}^{+} - N_{\mu}^{-}}{N_{\mu}^{+} + N_{\mu}^{-}} \approx -0.1$ –0.2

Source	$rac{\mathrm{d}\sigma}{\mathrm{d}\eta}(W^+)$ [%]	$R_{\rm FB}({ m W}^+)$	$\frac{N_{\mu}^{+} - N_{\mu}^{-}}{N_{\mu}^{+} + N_{\mu}^{-}}$
Boson $p_{\rm T}$ reweighing	0.5	0.001	0.001
EW background	0.4	0.002	0.000
POWHEG EW correction	0.9	0.007	0.003
Efficiency	3.0	0.026	0.011
Event activity reweighing	0.6	0.002	0.002
$p_{\rm T}^{\rm miss}$ template binning	0.1	0.002	0.001
QCD background	1.2	0.016	0.006
Hadronic recoil correction	0.2	0.002	0.002
Total systematic uncertainty	3.3	0.030	0.013
Statistical uncertainty	2.4	0.026	0.015