Quarkonium production in pp, p-Pb and ultra-peripheral collisions with the ALICE detector at the LHC

S. Hayashi for the ALICE Collaboration Center for Nuclear Study, the University of Tokyo

The fifth installment on the physics of the initial stages of high energy nuclear collisions 24-28 June, 2019

Quarkonium production at LHC

- Quarkonium production in pp collisions at LHC

Heavy-quark pair production + Evolution into colorless state (perturbative) + (Non-perturbative)

- Sensitive to gluon PDF
- Production mechanism still not fully understood
 - ✓ Color Singlet Model PLB102 364 (1981)
 - ✓ Color Evaporation Model PRD 12 2007 (1975)
 - ✓ Non-relativistic Model (NRQCD) PRD 51 1125 (1995)
- Cold nuclear matter (CNM) effects
 - ✓ Modification of gluon distribution (nPDF): Shadowing, saturation
 - ✓ Multiple scattering of incident partons
 - ✓ Coherent energy loss
 - ✓ Break up with co-moving particles
- Ultra-peripheral collisions (p-Pb/Pb-Pb)
 - \checkmark Give access to the investigation of gluon PDF in proton/lead

- Multiplicity dependence of quarkonium production
 - Underlying physics:
 - ✓ Multi-parton interaction (MPI)
 - \checkmark Color reconnection

High multiplicity pp and p-Pb collisions show collectivity similar to that in Pb-Pb collisions

Flow of quarkonium in small systems

Quarkonium measurements in ALICE

- Dilepton decay measurements
 - ✓ Wide rapidity coverage
 - ✓ Down to zero $p_{\rm T}$

Dielectron channel (|y| < 0.9)</p>

- ✓ Charged-particle tracking
- ✓ Electron identification (TPC)

Quarkonium measurements in ALICE

- Dilepton decay measurements
 - ✓ Wide rapidity coverage
 - ✓ Down to zero $p_{\rm T}$

- > Dimuon channel (2.5 < y < 4)
 - ✓ Muon triggered data

Quarkonium production cross section in pp collisions

- Υ cross section at \sqrt{s} = 5.02 TeV with 2017 data set
- > Luminosity increases by a factor 10 w.r.t the previous data set
 - \checkmark Benefit in calculation of the nuclear modification factor
- Inclusive J/ ψ cross section at mid-rapidity at \sqrt{s} = 13 TeV
 - → NRQCD including CGC + FONLL (B→J/ ψ) describes the data down to zero $p_{\rm T}$

Same conclusion reached at forward rapidity EPJC 77 392 (2017)

Shinlchi Hayashi

$\int J/\psi$ polarization in pp collisions

 $\frac{\mathrm{d}^2 N}{\mathrm{d} \mathrm{cos} \theta \mathrm{d} \varphi} \propto 1 + \lambda_\theta \mathrm{cos}^2 \theta + \lambda_{\theta \varphi} \mathrm{sin} 2\theta \mathrm{cos} \varphi + \lambda_\varphi \mathrm{sin}^2 \theta \mathrm{cos} 2\varphi$

Z-axis:

✓ Collins-Soper:

Direction of the relative velocity of the colliding beams in the J/ ψ rest-frame

✓ Helicity:

Direction of J/ ψ in the Lab-frame

- No significant J/ ψ polarization measured
 - CSM and NRQCD cannot describe all polarization parameters

Multiplicity dependence of quarkonium production in pp collisions

- Linear increase at forward rapidity: J/ψ , $\Upsilon(1S)$, $\Upsilon(2S)$
 - Uncertainties large enough to be consistent with the CMS results
 - $\checkmark \Upsilon$ (nS)/ Υ (1S) decreases with multiplicity at mid-rapidity *JHEP04 103 (2014)*
- Stronger than linear (steeper at high $p_{\rm T}$) increase at mid-rapidity (in same η range) : Auto-correlation
 - Qualitative agreement with model calculations including MPI (Pythia8 Monash 2013)

ALICE

$\bigcup_{\text{ALICE}} J/\psi \langle p_{\text{T}} \rangle \text{ vs multiplicity in pp collisions}$

- No strong collision energy dependence
 - ✓ Increase of $\langle p_{\rm T} \rangle$ at low multiplicity
 - \checkmark A little saturation trend towards higher multiplicity

Charmonium production in p-Pb collisions

- Suppression of J/ ψ production at forward rapidity
 - Generally described by initial state effects (including shadowing/saturation)
 - ✓ nPDF: EPS09NLO, nCTEQ15, EPPS16, CGC
 - ✓ Coherent energy loss
 - ✓ Transport model: nPDF + Cronin effect + fireball evolution+ feeddown
- Stronger suppression of ψ (2S), in particular at backward rapidity
 - Models including shadowing and interaction with co-moving particles describe the data

- Centrality estimation using ZDC (112.5m away from IP)
 - \checkmark Smallest biases from multiplicity fluctuation, Jet contribution, etc

- Mid- and forward rapidity: Little centrality dependence
 Reasonable agreement with model calculations within current model uncertainties
- ✓ Backward rapidity: Increasing $Q_{\rm pPb}$ for more central collisions
 - Discrepancy between the data and model calculations

ALICE

(15) production in p-Pb collisions

- Suppression of $\Upsilon(1S)$ both at forward and backward rapidity
 - A model including the shadowing effect (EPS09NLO)
 - \checkmark Reasonable agreement at forward rapidity
 - \checkmark Overestimate the data at backward rapidity
 - No strong centrality dependence observed

Υ (1S) and Υ (2S) production in p-Pb collisions

- Suppression for $\Upsilon(1S)$ and $\Upsilon(2S)$ at both forward and backward rapidity
 - > Υ (2S) shows slightly stronger suppression compared to Υ (1S)
 - Models including shadowing and interaction with co-moving particles describe the data

Multiplicity dependence of J/ψ production in p-Pb collisions

- Rapidity dependence seen
 - Linear increase at backward rapidity: similar behavior as in pp
 - Slower than linear increase at forward rapidity
- Strong saturation trend of $\langle p_T \rangle$ at high multiplicity
 - > Saturated $\langle p_{\rm T} \rangle$: Compatible with $\langle p_{\rm T} \rangle_{\rm MB}$
 - Monotonic increase for charged particles at same charged-particle density PLB 727 371 (2013)

Shinlchi Hayashi

$\int \int \frac{1}{\psi} v_2$ in high multiplicity p-Pb collisions

> Similar magnitude of $J/\psi v_2$ in p-Pb and Pb-Pb collisions

The origin of positive v_2 is not understood yet.

A transport model, which describes a large v_2 at low p_T in Pb-Pb, cannot describe the data in p-Pb arXiv:1808.10014

- Ultra-peripheral collisions (UPC)
 - \checkmark Impact parameter larger than sum of nuclear radii
 - Hadronic interaction suppressed
 - ➤ The electromagnetic field of ions can be viewed as an equivalent flux of photons(∝ Z²)
- Exclusive charmonium production
 - \checkmark 2 gluons exchange process at leading order
 - Cross section is proportional to the gluon PDF squared
 - Hard scale of J/ψ production

✓
$$Q^2 \sim (M_{J/\psi}^2/4) \sim 2.5 \text{ GeV}^2$$

$$\checkmark x \sim 10^{-5} - 10^{-2}$$

Investigation of gluon PDF at low x in the target

- ✓ Central trigger: VOA·VOC·ADA·ADC·SPD·TOF(2≦hits≦6, back-to-back)
- ✓ Forward trigger: VOA·ADA·ADC·di-muon

- ✓ Central trigger: VOA·VOC·ADA·ADC·SPD·TOF(2≤hits≤6, back-to-back)
- ✓ Forward trigger: VOA·ADA·ADC·di-muon

Exclusive J/ ψ production in ultra-peripheral p-Pb collisions

- The energy in the photon-target proton system can be determined with J/ψ rapidity
 ✓ x~2x10⁻⁵-2x10⁻²
- $\sqrt{s_{\text{NN}}} = 5.02 \text{ TeV}$ data shown > Consistent with the HERA data
 - ✓ CCT: Saturation in an energy dependent hot spot model
 - ✓ JMRT NLO: DGLAP including the expected main NLO contributions
 - ✓ CGC: Color dipole model
 - ✓ NLO BFKL: Proton impact factor from HERA
 - ✓ STARLIGHT: Parameterized by fixed target data

Power low parameter

H1	δ=0.67±0.03
ZEUS	δ=0.69±0.02
ALICE	$\delta = 0.70 \pm 0.05$

ALICE

Exclusive J/ ψ production in ultra-peripheral p-Pb collisions

- The energy in the photon-target proton system can be determined with J/ψ rapidity
 ✓ x~2x10⁻⁵-2x10⁻²
- √s_{NN} = 5.02 TeV data shown
 ≻ Consistent with the HERA data
 - ✓ CCT: Saturation in an energy dependent hot spot model
 - ✓ JMRT NLO: DGLAP including the expected main NLO contributions

Coherent J/ ψ production at forward rapidity in Pb-Pb collisions

 \checkmark Over 20000J/ ψ s available

Measurement consistent with moderate shadowing model

✓ Same conclusion reached in the previous mid-rapidity measurement

EPJC73, 2617(2013)

- Run-2(2015, 2018) mid-rapidity analysis is ongoing
 - ✓ Higher statistics and cross sections than the previous data
 - 95 μ b⁻¹ (2015) + 250 μ b⁻¹ (2018) for 5.02 TeV \leftarrow 23 μ b⁻¹ for 2.76 TeV

18

pp collisions

 \checkmark J/ ψ and Υ cross section down to zero $p_{\rm T}$ and J/ ψ polarization

- Production mechanism still open question
- \checkmark Increase of the yields as a function of charged-particle density
 - No particle species dependence: J/ ψ , Υ (1S), Υ (2S)
 - Qualitatively described by the model including MPI
- p-Pb collisions
 - ✓ Described by CNM model calculations except for backward rapidity
 - ✓ Non-zero v_2 and saturation trend of $\langle p_T \rangle$ for J/ ψ in high multiplicity events
- Ultra-peripheral collisions
 - ✓ Precise forward rapidity dependence in Pb-Pb collisions
 - Agreement with moderate shadowing models
 - ✓ Run2 data (high statistics and collision energy) analysis is ongoing
 - Mid-rapidity in Pb-Pb at $\sqrt{s_{\text{NN}}} = 5.02 \text{ TeV}$
 - p-Pb at $\sqrt{s_{NN}} = 8.16 \text{ TeV}$

p-Pb measurements

 $\Delta y = 0.465$ in p-going direction

Forward (p-going):

Probing low-x in Pb: $10^{-5} - 10^{-4}$ Backward (Pb-going):

Probing large-x in Pb: 10^{-2} - 10^{-1} Mid-rapidity:

Probing *x* in Pb : 10⁻⁴ - 10⁻³

$\int J/\psi$ -hadron correlation in pp collisions

- High multiplicity selection: 0-0.1% highest multiplicity in V0
- Clear near-side peak observed in the correlation of J/ ψ ($p_T > 5$ GeV/c) and hadrons with $p_T > 1$ GeV/c
 - > Pythia 8 (Monash 2013 tune) describes the data Suggest the large contribution from non-prompt (B-feeddown) J/ ψ for the near-side peak

Multiplicity dependence of J/ψ production at mid-rapidity in pp

LI-PREL-128843

- ✓ String percolation Ferreiro *PRC86 (2012) 034903*
- ✓ Hydro dynamical evolu.on (EPOS3) Phys. Rept.350 (2001) 93
- ✓ Multi parton interaction (PYTHIA8)
- ✓ Contribu.ons of higher Fock states Kopeliovich PRD88 (2013) 116002

Multiplicity dependence of J/ψ production at forward rapidity in pp collisions

Pythia8 Monash 2013 production

ALI-SIMUL-134966

0

ALI-SIMUL-133490

2

3

4

5

 ${}^6_{\mathrm{dN}_{\mathrm{ch}}\!/\!\mathrm{d}\eta}$

 $\overline{\langle dN_{ch}/d\eta \rangle}_{INEL>0}$

$\underbrace{\mathsf{Multiplicity dependence of } \Upsilon \text{ production}}_{\mathsf{ALICE}}$

Shinlchi Hayashi

ALI-PREL-307424

$\underbrace{\mathsf{Multiplicity dependence of } \Upsilon \text{ production at CMS}}_{\mathsf{ALICE}}$

✓ Suppression at low p_T
 ✓ Small enhancement at backward rapidity
 Consistent with nPDF trends

Model calculations describe the data within the uncertainties.

- ✓ nPDF: EPS09NLO, nCTEQ15, CGC
- ✓ Coherent energy loss
- ✓ Transport model: nPDF(EPS09NLO) + Cronin effect + fireball evolution+ feeddown

$J/\psi R_{\rm pPb}$ vs $p_{\rm T}$ at $\sqrt{s_{\rm NN}}$ = 8.16 TeV

Shinlchi Hayashi

Prompt/Non-promptJ/ ψ in p-Pb collisions ALICE

ALI-PUB-161251

 $[\sigma_{\psi(2S)}/\sigma_{J/\psi}]_{pPb}/[\sigma_{\psi(2S)}/\sigma_{J/\psi}]_{pp}$ PHENIX d-Au \s_{NN}= 200 GeV |y_{cms}|<0.35 PRL 111 202301(2013) . ALICE, p-Pb √*s*_№= 5.02 TeV ² Inclusive J/ ψ , ψ (2S) $\rightarrow \mu^{+}\mu^{-}$ $-4.46 < y_{cms} < -2.96$ centrality-analysis $2.03 < y_{cms} < 3.53$ p_-analysis (JHEP 06(2015)55) centrality-analysis O p_-analysis (JHEP 06(2015)55) 0.5 4×10⁻⁵ 10^{-4} 2×10⁻² 3×10⁻² $\langle \tau_{c} \rangle$ (fm/c)

ALI-PUB-105839

Coherent charmonium production at mid-rapidity in Pb-Pb collisions in

- J/ ψ measurement consistent with moderate shadowing
- ψ (2S) data disfavor models using impulse approximation (no nuclear effects) and strong nuclear shadowing
 - ✓ Difficult to give an preference between gluon shadowing and Glauber nuclear effects only (as STARLIGHT)

AN-AB-MSTW08 AN-AB-HKN07 AN-AB-EPS09 AN-AB-EPS08 **GZ-RSZ-LTA** GZ-RSZ-EPS09 **GDGM-GM No Shadowing** GDGM-GM Moderate Shad. GDGM-GM Strong Shad LM STARLIGHT -0.1 0.1 0.2 0.4 0.5 σ(ψ(2S)) / σ(J/ψ) AT.T-PIIB-96047

 $R(\sigma(\psi(2S)/\sigma(J/\psi))) = 0.34^{+0.08}_{-0.07}$

✓ Need to understand γ +p → ψ (2S) + p baseline

Run1