PHENIX Measurements of Heavy Flavor & DY in p+p and p+Au at 200 GeV

Axel Drees, Initial Stage 2019, June, Columbia University

- Introduction
- Heavy flavor
 - Charm from p+p
 - Bottom from p+p and p+Au
- Drell Yan from p+p and p+Au
- Summary

Heavy Flavor Measurements in p+p and p+Au

- Relative contributions dependent on \sqrt{s}
- Study through $q\overline{q}$ pair correlations
- In p+Au sensitive to modifications of the PDF and to initial/final state effects

Semi-leptonic Decays of Charm and Bottom

c/b from single electrons in p+p 200 GeV : c/b and DY from dimuons in p+p 200 GeV : c/b correlations from $\mu^{+}\mu^{-}$, $\mu^{\pm}\mu^{\pm}$, $e^{+}e^{-}$, $e^{\pm}\mu^{\mp}$ in p+p at 200 GeV: b from $\mu^{\pm}\mu^{\pm}$ in p+Au at 200 GeV: DY from $\mu^{+}\mu^{-}$ in p+Au at 200 GeV:

Stony Brook University

Phys. Rev. D 99 092003 (2019) Phys. Rev. D 99 072003 (2019) arXiv:1805.04075v1 Ph.D. Y.H.Leung SBU (2019) Ph.D. Y.H.Leung SBU (2019)

The PHENIX Experiment

Single Lepton Measurement in p+p

Charm and Bottom life time: B[±] → 491 µm D[±] → 312 µm VTX detector 2 pixel layers 2 strip-pixel layers

• Measure DCA_T with $\sigma_{DCA_T} \sim 100 \ \mu m$

Bayesian unfolding method to separate charm and bottom

• Input:

differential cross section of HF electrons p_T dependent DCA_T distributions incl. electrons Fraction of photonic electrons

- Output:
 - Charm and bottom hadron spectra
- Refolding:

Single electrons from charm and bottom

Charm and Bottom from Single Leptons

PHENIX: Phys. Rev. D 99 092003 (2019)

- **D**⁰ results compared to STAR
 - **Good agreement**

Charm and Bottom Electron Results

10

PHENIX: Phys. Rev. D 99 092003 (2019)

Bottom fraction

Stony Brook University

- **Results consistent with previous publications**
- **FONLL** predictions consistent with measurements

Differential cross section vs FONLL

- **Data more accurate than FONLL**
- **Difference is shape and magnitude**

Axel Drees

Muon Pair Measurements in p+p and p+Au

• Iterative simultaneous fit $\mu^+\mu^-$ and $\mu^+\mu^\pm$ in mass-p_T:

- **Combinatorial and correlated background mostly from of** μ from K, π
- Decays from $\eta, \eta' \rightarrow \mu^+ \mu^- \gamma$; $\rho, \omega, \phi, J/\psi, \psi'$, and $Y \rightarrow \mu^+ \mu^-$
- Charm, Bottom, Drell-Yan

Bottom Cross Section in p+p

Opening Angle of $c\overline{c}$ and *bb* Pairs in p+p

Compare $\Delta \phi$ to POWHEG and PYTHIA tune A

PHENIX: Phys. Rev. D 99 072003 (2019) and arXiv:1805.04075v1

- Normalized to measured cross sections
- **Bayesian analysis fit pair creation**, flavor excitation, and gluon splitting to data

- **POWHEG predicts broader** distribution; Data favor PYTHIA
- Fit to data consistent with PYTHIA
 - $\mathbf{F}_{\mathbf{FE}} > \mathbf{F}_{\mathbf{PC}} > \mathbf{F}_{\mathbf{CS}}$ **Flavor excitation dominate**

Stony Brook University

Bottom

- **POWHEG and PYTHIA describe** data within uncertainties
- Fit to data consistent with PYTHIA

 $\mathbf{F}_{\mathbf{PC}} > \mathbf{F}_{\mathbf{FE}} \gg \mathbf{F}_{\mathbf{GS}}$ **Pair creation dominant Gluon splitting small**

Extending the *c**c***Phase Space**

) Data

PHENIX: arXiv:1805.04075v1

- Yields of e^+e^- and $e^\pm\mu^\mp$ dominated by charm
- Cover wide kinematic range

- **POWHEG and PYTHIA normalized to \mu^+\mu^- analysis**
 - PYTHIA consistent with data over large kinematic range
 - Distributions from POWHEG broader for all datasets

$b\overline{b}$ Pairs in p+Au

p_T spectra

- p+Au in large-x (Au-going) small-x (p-going) consistent!
- Possible modification compared to p+p (see R_{pA})

Opening angle distribution

 p+p and p+Au (forward/ backward) no modification

Comparison to nuclear PDFs

- EPPS16 predicts constant R_{pA} as function of p_T
- Systematic deviation of data from prediction observed, though with limited significance

Drell-Yan in p+p and p+Au

Yue Hang Leung Ph.D. SBU (2019) - https://www.phenix.bnl.gov/WWW/p/talk/theses.php

• First Drell-Yan measurement at RHIC constrain:

- Unpolarized TMD PDFs
- Nuclear PDFs
- Nuclear initial state effects
- Drell-Yan in p+p
 - NLO calculations consistent with data
- Drell-Yan in p+Au
 - Backward x~0.1 (Au-going) R_{pA} consistent with EPPS16
 - Forward x ~ 0.005 (p-going)
 R_{pA} shows possible enhancement for p_T>2GeV/c

Summary

- Heavy flavor production in p+p at $\sqrt{s} = 200 \text{ GeV}$
 - Separation of charm and bottom
 - Single electrons with vertex tracking Muon pairs
 - Data more precise than pQCD calculations
 - Measured cross sections 2x larger than pQCD central values
 - Charm production dominated by NLO Flavor Excitation
 - Bottom production dominated by LO Pair Creation
- Bottom production from p+Au at $\sqrt{s} = 200 \text{ GeV}$
 - Hint of possible p_T dependent modification compared to p+p
- First Drell-Yan measurements at RHIC in p+p and p+Au
 - p+p cross section well described by pQCD
 - p+Au consistent with nPDF ESSP16, with possible deviation for p_T>2GeV/c at low x

Backup Slides

arXiv:1805.04407

