PHENIX Measurements of Heavy Flavor & DY in p+p and p+Au at 200 GeV

Axel Drees, Initial Stage 2019, June, Columbia University

- Introduction
- Heavy flavor
 - Charm from p+p
 - Bottom from p+p and p+Au
- Drell Yan from p+p and p+Au
- Summary
Heavy Flavor Measurements in p+p and p+Au

- In p+p test pQCD calculations
 - Sensitive to relative importance of LO and NLO QCD processes

 (a) s-channel Flavor Creation
 (b) t-channel Flavor Creation
 (c) Flavor Excitation
 (d) Gluon Splitting

 Relative contributions dependent on \sqrt{s}
 Study through $q\bar{q}$ pair correlations

- In p+Au sensitive to modifications of the PDF and to initial/final state effects
Semi-leptonic Decays of Charm and Bottom

Charm
- Single leptons: e^\pm, μ^\pm
- Lepton pairs: $e^+e^-, \mu^+\mu^-$
- Mixed lepton pairs: $e^\pm\mu^\mp$

Bottom
- Single leptons: e^\pm, μ^\pm
- Lepton pairs: $e^+e^-, \mu^+\mu^-, e^{\pm}\mu^{\pm}$
- Mixed lepton pairs: $e^\pm\mu^\pm, e^{\pm}\mu^{\mp}$

- c/b from single electrons in $p+p$ at 200 GeV:
- c/b and DY from dimuons in $p+p$ at 200 GeV:
- c/b correlations from $\mu^+\mu^-, \mu^+\mu^-, e^+e^-, e^\pm\mu^\mp$ in $p+p$ at 200 GeV:
- b from $\mu^+\mu^-$ in $p+Au$ at 200 GeV:
- DY from $\mu^+\mu^-$ in $p+Au$ at 200 GeV:

arXiv:1805.04075v1
The PHENIX Experiment

Central Arms
|\eta| < 0.35

Muon Arms
1.2 < |\eta| < 2.2

Vertex Tracker

\textit{VTX}: |\eta| < 0.35

\textit{FVTX}: 1.2 < |\eta| < 0.35
Single Lepton Measurement in p+p

- Charm and Bottom life time:
 - $B^\pm \rightarrow 491 \, \mu m$
 - $D^\pm \rightarrow 312 \, \mu m$

- VTX detector
 - 2 pixel layers
 - 2 strip-pixel layers
 - Measure DCA$_T$ with $\sigma_{DCAT} \sim 100 \, \mu m$

- Bayesian unfolding method to separate charm and bottom
 - **Input:**
 - differential cross section of HF electrons
 - p_T dependent DCA$_T$ distributions incl. electrons
 - Fraction of photonic electrons
 - **Output:**
 - Charm and bottom hadron spectra
 - **Refolding:**
 - Single electrons from charm and bottom
Charm and Bottom from Single Leptons

- Refolded heavy flavor electrons
 - Results are self-consistent

- D^0 results compared to STAR
 - Good agreement
Charm and Bottom Electron Results

Bottom fraction
- Results consistent with previous publications
- FONLL predictions consistent with measurements

Differential cross section vs FONLL
- Data more accurate than FONLL
- Difference is shape and magnitude

At low p_T bottom (and charm) factor 2 above pQCD central value
Muon Pair Measurements in p+p and p+Au

- Iterative simultaneous fit $\mu^+\mu^-$ and $\mu^+\mu^\pm$ in mass-p_T:
 - Combinatorial and correlated background mostly from μ from K, π
 - Decays from $\eta, \eta' \rightarrow \mu^+\mu^-\gamma$; ρ, ω, ϕ, J/ψ, ψ', and $Y \rightarrow \mu^+\mu^-$
 - Charm, Bottom, Drell-Yan

Combinatorial and correlated background mostly from μ from K, π Decays from η, η' $\rightarrow \mu^+\mu^-\gamma$; ρ, ω, ϕ, J/ψ, ψ', and $Y \rightarrow \mu^+\mu^-$

Good agreement of data and cocktail of sources

*Note: p+p only

Extrapolate to 4π phase space

$$\sigma_{bb} = 3.75 \pm 0.24\text{(stat)} \pm 0.45\text{ (global)} \pm 0.35\text{ (sys)} \mu b$$

Most precise measurement
Consistent with earlier publications using different methods

Compare to pQCD calculations
Different pQCD results very consistent
At RHIC data factor ~2 above pQCD
Better agreement at higher energy

Indication for missing (\sqrt{s} dependent) effect?
Opening Angle of $c\bar{c}$ and $b\bar{b}$ Pairs in p+p

Compare $\Delta\phi$ to POWHEG and PYTHIA tune A
- Normalized to measured cross sections
- Bayesian analysis fit pair creation, flavor excitation, and gluon splitting to data (PYTHIA)

Charm
- POWHEG predicts broader distribution; Data favor PYTHIA
- Fit to data consistent with PYTHIA
 - $F_{FE} > F_{PC} > F_{GS}$
 - Flavor excitation dominate

Bottom
- POWHEG and PYTHIA describe data within uncertainties
- Fit to data consistent with PYTHIA
 - $F_{PC} > F_{FE} \gg F_{GS}$
 - Pair creation dominant
 - Gluon splitting small
Extending the $c\bar{c}$ Phase Space

- **Data**
 - Yields of e^+e^- and $e^\pm\mu^\mp$ dominated by charm
 - Cover wide kinematic range

- **POWHEG and PYTHIA normalized to $\mu^+\mu^-$ analysis**
 - PYTHIA consistent with data over large kinematic range
 - Distributions from POWHEG broader for all datasets

PHENIX: arXiv:1805.04075v1
$b\bar{b}$ Pairs in p+Au

![Graphs showing $b\bar{b}$ pair distributions and R_{pA} values](image)

- **p_T spectra**
 - p+Au in large-\(x\) (Au-going)
 - small-\(x\) (p-going) consistent!
 - Possible modification compared to p+p (see R_{pA})

- **Opening angle distribution**
 - p+p and p+Au (forward/backward) no modification

Comparison to nuclear PDFs

- EPPS16 predicts constant R_{pA} as function of p_T
- Systematic deviation of data from prediction observed, though with limited significance
First Drell-Yan measurement at RHIC constrain:
- Unpolarized TMD PDFs
- Nuclear PDFs
- Nuclear initial state effects

Drell-Yan in p+p
- NLO calculations consistent with data

Drell-Yan in p+Au
- Backward $x \sim 0.1$ (Au-going)
 R_{pA} consistent with EPPS16
- Forward $x \sim 0.005$ (p-going)
 R_{pA} shows possible enhancement for $p_T > 2$ GeV/c

Summary

- Heavy flavor production in p+p at $\sqrt{s} = 200$ GeV
 - Separation of charm and bottom
 - Single electrons with vertex tracking
 - Muon pairs
 - Data more precise than pQCD calculations
 - Measured cross sections 2x larger than pQCD central values
 - Charm production dominated by NLO Flavor Excitation
 - Bottom production dominated by LO Pair Creation

- Bottom production from p+Au at $\sqrt{s} = 200$ GeV
 - Hint of possible p_T dependent modification compared to p+p

- First Drell-Yan measurements at RHIC in p+p and p+Au
 - p+p cross section well described by pQCD
 - p+Au consistent with nPDF ESSP16, with possible deviation for $p_T > 2$ GeV/c at low x
Backup Slides
DY measurements from Fermilab

Solid: Fe/Be, W/Be from 800 GeV/c p-Be, Fe, W (E866)
Open: Fe/C, W/C from 800 GeV/c p-C, Fe, W (E772)
Line: Shadowing calculations (EKS98, MRST)

$m = 4.0-8.4$ GeV/c^2
$x_2 \sim 0.04$

“Characteristic of multiple scattering of incident partons traversing the nucleus” PhysRevLett.83.2304
Charm

Bottom

PHENIX (a) \(pp \rightarrow c\bar{c} X \rightarrow \mu^+\mu^- X \)

- \(p_{\mu} > 3 \text{ GeV}/c, 1.2 < |\eta| < 2.2 \)
- \(1.5 < m_{\mu^+\mu^-} \text{ [GeV}/c^2] < 2.5 \)
- Global Uncertainty 12.0%

\[\text{arXiv:1805.02448} \]

PHENIX (b) \(pp \rightarrow b\bar{b} X \rightarrow \mu^+\mu^- X \)

- \(p_{\mu} > 3 \text{ GeV}/c, 1.2 < |\eta| < 2.2 \)
- \(3.5 < m_{\mu^+\mu^-} \text{ [GeV}/c^2] < 10.0 \)
- Global Uncertainty 12.0%

\[\text{arXiv:1805.02448} \]
ALICE pp $\sqrt{s} = 13$ TeV

$p_{T,e} > 0.2$ GeV/c, $|\eta_e| < 0.8$

$1.03 < m_{ee} < 2.86$ GeV/c2

±5% global unc. not shown

- Data
- Cocktail (PYTHIA)
- $cc \rightarrow e^+e^-$ (PYTHIA)
- $bb \rightarrow e^+e^-$ (PYTHIA)
- Cocktail (POWHEG)
- $cc \rightarrow e^+e^-$ (POWHEG)
- $bb \rightarrow e^+e^-$ (POWHEG)