Non-linear evolution in QCD at high-energy beyond leading order

Bertrand Ducloué (IPhT Saclay)

Initial Stages 2019
Columbia University, June 25, 2019
B. D., E. lancu, A.H. Mueller, G. Soyez, D.N. Triantafyllopoulos, JHEP 1904 (2019) 081 [arXiv:1902.06637]

At high energy, the evolution of gluon densities is governed by:

- the BFKL equation in the linear regime
- the BK / JIMWLK equations in the saturation regime

Our goal here is to go beyond the leading order (+ running coupling corrections) approximation used until now in the saturation regime (BK)

At high energy, DIS can be viewed as a virtual photon (virtuality Q^{2}, flying almost along P^{+}) splitting into a $q \bar{q}$ pair which then interacts eikonally with the target (transverse scale Q_{0}^{2}, flying almost along P^{-})

Kinematics of interest: $Q^{2} \gg Q_{0}^{2}$
Leading logarithmic approximation: resum any number of gluons strongly ordered in longitudinal momentum (rapidity)

Can look at the evolution

- in $p^{-}: q_{0}^{-} \gg k_{n}^{-} \gg \cdots \gg k_{1}^{-} \gg q^{-}$ " η evolution": resum $\left(\alpha_{s} \eta\right)^{n}$
- in $p^{+}: q^{+} \gg k_{1}^{+} \gg \cdots>k_{n}^{+} \gg q_{0}^{+}$ " Y evolution": resum $\left(\alpha_{s} Y\right)^{n}$

The corresponding rapidity intervals are:

$$
\begin{aligned}
& \eta=\ln \frac{q_{0}^{-}}{q^{-}}=\ln \frac{s}{Q^{2}}=\ln \frac{1}{x_{\mathrm{Bj}}} \\
& Y=\ln \frac{q^{+}}{q_{0}^{+}}=\ln \frac{s}{Q_{0}^{2}}=\eta+\ln \frac{Q^{2}}{Q_{0}^{2}} \equiv \eta+\rho>\rho
\end{aligned}
$$

Note that the difference between Y and η is relevant only at NLO and beyond

Resummation of all soft emissions: Balitsky-Kovchegov (BK) equation:

$$
\frac{\partial S_{x y}}{\partial Y}=\frac{\bar{\alpha}_{s}}{2 \pi} \int \frac{\mathrm{~d}^{2} \boldsymbol{z}(\boldsymbol{x}-\boldsymbol{y})^{2}}{(\boldsymbol{x}-\boldsymbol{z})^{2}(\boldsymbol{z}-\boldsymbol{y})^{2}}\left(S_{\boldsymbol{x} z} S_{\boldsymbol{z} \boldsymbol{y}}-S_{\boldsymbol{x y}}\right), \quad S_{x y} \equiv \frac{1}{N_{c}}\left\langle\operatorname{Tr} U_{\boldsymbol{x}} U_{\boldsymbol{y}}^{\dagger}\right\rangle
$$

Possibility for a parent dipole with size $r=|\boldsymbol{x}-\boldsymbol{y}|$ to emit two daughter dipoles with sizes $|\boldsymbol{x}-\boldsymbol{z}|,|\boldsymbol{z}-\boldsymbol{y}|$ or to remain intact

Starting with a given initial condition at $Y=0$ (e.g. the simple GBW model $S_{x y}^{(0)}=e^{-(\boldsymbol{x}-\boldsymbol{y})^{2} Q_{0}^{2}}$), solve the BK equation numerically to larger rapidities

Can then compute various observables, e.g. $F_{L}\left(x_{\mathrm{Bj}}, Q^{2}\right)=\frac{Q^{2}}{4 \pi^{2} \alpha_{e m}} \sigma_{L}\left(x_{\mathrm{B}}, Q^{2}\right)$
with $\sigma_{L}\left(x_{\mathrm{Bj}}, Q^{2}\right) \propto \sum_{f} e_{f}^{2} \int \mathrm{~d} z_{1} \mathrm{~d}^{2} \mathbf{r} Q^{2} z_{1}^{2}\left(1-z_{1}\right)^{2} K_{0}^{2}\left(Q \sqrt{z_{1}\left(1-z_{1}\right) \mathbf{r}^{2}}\right)\left(1-S_{\mathbf{r}}\left(Y=\ln \frac{1}{x_{\mathrm{Bj}}}\right)\right)$

NLO BK for Y evolution has been derived by Balitsky, Chirilli:

$$
\begin{aligned}
\frac{\partial S_{\boldsymbol{x} \boldsymbol{y}}}{\partial Y}= & \frac{\bar{\alpha}_{s}}{2 \pi} \int \mathrm{~d}^{2} \boldsymbol{z} \frac{(\boldsymbol{x}-\boldsymbol{y})^{2}}{(\boldsymbol{x}-\boldsymbol{z})^{2}(\boldsymbol{y}-\boldsymbol{z})^{2}}\left(S_{x \boldsymbol{z}} S_{z y}-S_{x y}\right) \\
& \times\left\{1+\bar{\alpha}_{s}\left[\bar{b} \ln (\boldsymbol{x}-\boldsymbol{y})^{2} \mu^{2}-\bar{b} \frac{(\boldsymbol{x}-\boldsymbol{z})^{2}-(\boldsymbol{y}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{y})^{2}} \ln \frac{(\boldsymbol{x}-\boldsymbol{z})^{2}}{(\boldsymbol{y}-\boldsymbol{z})^{2}}\right.\right. \\
& \left.\left.+\frac{67}{36}-\frac{\pi^{2}}{12}-\frac{1}{2} \ln \frac{(\boldsymbol{x}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{y})^{2}} \ln \frac{(\boldsymbol{y}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{y})^{2}}\right]\right\}
\end{aligned}
$$

$$
\times\left\{-2+\frac{(\boldsymbol{x}-\boldsymbol{u})^{2}(\boldsymbol{y}-\boldsymbol{z})^{2}+(\boldsymbol{x}-\boldsymbol{z})^{2}(\boldsymbol{y}-\boldsymbol{u})^{2}-4(\boldsymbol{x}-\boldsymbol{y})^{2}(\boldsymbol{u}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{u})^{2}(\boldsymbol{y}-\boldsymbol{z})^{2}-(\boldsymbol{x}-\boldsymbol{z})^{2}(\boldsymbol{y}-\boldsymbol{u})^{2}} \ln \frac{(\boldsymbol{x}-\boldsymbol{u})^{2}(\boldsymbol{y}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{z})^{2}(\boldsymbol{y}-\boldsymbol{u})^{2}}\right.
$$

$$
\left.+\frac{(\boldsymbol{x}-\boldsymbol{y})^{2}(\boldsymbol{u}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{u})^{2}(\boldsymbol{y}-\boldsymbol{z})^{2}}\left[1+\frac{(\boldsymbol{x}-\boldsymbol{y})^{2}(\boldsymbol{u}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{u})^{2}(\boldsymbol{y}-\boldsymbol{z})^{2}-(\boldsymbol{x}-\boldsymbol{z})^{2}(\boldsymbol{y}-\boldsymbol{u})^{2}}\right] \ln \frac{(\boldsymbol{x}-\boldsymbol{u})^{2}(\boldsymbol{y}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{z})^{2}(\boldsymbol{y}-\boldsymbol{u})^{2}}\right\}
$$

- green: leading order
- violet: running coupling corrections
- red: double collinear logarithm
- blue: single collinear logarithm (DGLAP)

First numerical solution of the NLO BK equation (Lappi, Mäntysaari):

Very large and negative NLO corrections which make the evolution unstable The main source of the instability is the collinear double log. A similar issue arises with NLO BFKL. Solved long time ago by a resummation to all orders (Salam et al.)

Physical origin of the instability: time ordering problem
Two successive emissions $\boldsymbol{k}_{1}, \boldsymbol{k}_{2}$ must have ordered lifetimes $\tau \sim \frac{1}{p^{-}} \sim \frac{p^{+}}{p_{\perp}^{2}}$ i.e. one should have ordering in both p^{+}and p^{-}

Typical Y evolution: $k_{1}^{+}>k_{2}^{+}, k_{1 \perp} \gtrsim k_{2 \perp}$ \rightarrow the ordering $\frac{k_{1}^{+}}{k_{1 \perp}^{2}}>\frac{k_{2}^{+}}{k_{2 \perp}^{2}}$ is not guaranteed

The ordering in lifetimes is not automatic and must be imposed by hand ("kinematical constraint")

Problem with large daughter dipoles, i.e. small k_{\perp} emissions

The double logs can be resummed in several ways:

- A non-local equation, similar to "kinematically-improved BK" proposed by Beuf

$$
\frac{\partial S_{\boldsymbol{x} \boldsymbol{y}}(Y)}{\partial Y}=\frac{\bar{\alpha}_{s}}{2 \pi} \int \frac{\mathrm{~d}^{2} \boldsymbol{z}(\boldsymbol{x}-\boldsymbol{y})^{2}}{(\boldsymbol{x}-\boldsymbol{z})^{2}(\boldsymbol{z}-\boldsymbol{y})^{2}}\left[S_{\boldsymbol{x} \boldsymbol{z}}\left(Y-\Delta_{\boldsymbol{x} ; ; r}\right) S_{\boldsymbol{z} \boldsymbol{y}}\left(Y-\Delta_{\boldsymbol{z} y ; r}\right)-S_{\boldsymbol{x} \boldsymbol{y}}(Y)\right]
$$

with $\Delta_{\boldsymbol{x} \boldsymbol{z} ; r} \sim \ln \frac{(\boldsymbol{x}-\boldsymbol{z})^{2}}{r^{2}}$ when $(\boldsymbol{x}-\boldsymbol{z})^{2} \gg r^{2}$ and $\Delta_{\boldsymbol{x} \boldsymbol{z} ; r} \rightarrow 0$ when $(\boldsymbol{x}-\boldsymbol{z})^{2} \ll r^{2}$

- A local equation with a modified kernel (lancu, Madrigal, Mueller, Soyez, Triantafyllopoulos)

$$
\frac{\partial S_{\boldsymbol{x} y}}{\partial Y}=\frac{\bar{\alpha}_{s}}{2 \pi} \int \frac{\mathrm{~d}^{2} \boldsymbol{z}(\boldsymbol{x}-\boldsymbol{y})^{2}}{(\boldsymbol{x}-\boldsymbol{z})^{2}(\boldsymbol{z}-\boldsymbol{y})^{2}} \mathcal{K}_{\mathrm{DLA}}\left(\sqrt{\ln \frac{(\boldsymbol{x}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{y})^{2}} \ln \frac{(\boldsymbol{y}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{y})^{2}}}\right)\left(S_{\boldsymbol{x} \boldsymbol{z}} S_{\boldsymbol{z} \boldsymbol{y}}-S_{\boldsymbol{x} \boldsymbol{y}}\right)
$$

with $\mathcal{K}_{\text {DLA }}(\rho)=\mathrm{J}_{1}\left(2 \sqrt{\bar{\alpha}_{s} \rho^{2}}\right) / \sqrt{\bar{\alpha}_{s} \rho^{2}}$. Expansion in powers of $\bar{\alpha}_{s}$:

$$
\frac{\partial S_{\boldsymbol{x} \boldsymbol{y}}}{\partial Y}=\frac{\bar{\alpha}_{s}}{2 \pi} \int \frac{\mathrm{~d}^{2} \boldsymbol{z}(\boldsymbol{x}-\boldsymbol{y})^{2}}{(\boldsymbol{x}-\boldsymbol{z})^{2}(\boldsymbol{z}-\boldsymbol{y})^{2}}\left(1-\frac{\bar{\alpha}_{s}}{2} \ln \frac{(\boldsymbol{x}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{y})^{2}} \ln \frac{(\boldsymbol{y}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{y})^{2}}+\cdots\right)\left(S_{\boldsymbol{x} \boldsymbol{z}} S_{\boldsymbol{z} \boldsymbol{y}}-S_{\boldsymbol{x} \boldsymbol{y}}\right)
$$

The resummation of the double logs indeed makes the evolution stable:

Good fits to HERA data obtained with these resummations (lancu, Madrigal, Mueller, Soyez, Triantafyllopoulos; Albacete)

But not consistent:

- Evolved over the rapidity interval η instead of $Y=\eta+\rho$
- Did not treat the initial condition properly: only values $Y>\rho$ are physical ($\Leftrightarrow x_{\mathrm{Bj}}<1$). These equations should not be solved with a standard GBW or MV-like initial condition at $Y=0$
- Very large scheme dependence

The results for quantities such as the saturation exponent show a very large resummation scheme dependence when expressed as a function of the target rapidity $\eta=\ln 1 / x_{\mathrm{Bj}}$:

The resummed evolution is stable, but it lacks predictive power

Because of these issues, it appears that working in Y is not the best choice
This is confirmed by looking at the typical evolution in $\eta: k_{1}^{-}<k_{2}^{-}, k_{1 \perp} \gtrsim k_{2 \perp}$
$\Rightarrow \frac{k_{1 \perp}^{2}}{k_{1}^{-}}>\frac{k_{2 \perp}^{2}}{k_{2}^{-}} \Leftrightarrow k_{1}^{+}>k_{2}^{+}$: both p^{+}and p^{-}are correctly ordered for the typical η evolution

This is in contrast to what happens for Y evolution and motivates the use of η as the "right" variable

In addition, for η evolution the initial condition at $\eta=0$ is just the physical IC (GBW, MV, ...)

Why did we start with Y evolution?

The NLO BK equation was derived for Y evolution (Balitsky, Chirilli):

$$
\begin{aligned}
\frac{\partial S_{\boldsymbol{x} y}(Y)}{\partial Y}= & \frac{\bar{\alpha}_{s}}{2 \pi} \int \frac{\mathrm{~d}^{2} \boldsymbol{z}(\boldsymbol{x}-\boldsymbol{y})^{2}}{(\boldsymbol{x}-\boldsymbol{z})^{2}(\boldsymbol{z}-\boldsymbol{y})^{2}}\left[S_{\boldsymbol{x} \boldsymbol{z}}(Y) S_{\boldsymbol{z} \boldsymbol{y}}(Y)-S_{\boldsymbol{x} \boldsymbol{y}}(Y)\right] \\
& -\frac{\bar{\alpha}_{s}^{2}}{4 \pi} \int \frac{\mathrm{~d}^{2} \boldsymbol{z}(\boldsymbol{x}-\boldsymbol{y})^{2}}{(\boldsymbol{x}-\boldsymbol{z})^{2}(\boldsymbol{z}-\boldsymbol{y})^{2}} \ln \frac{(\boldsymbol{x}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{y})^{2}} \ln \frac{(\boldsymbol{y}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{y})^{2}}\left[S_{\boldsymbol{x} \boldsymbol{z}}(Y) S_{\boldsymbol{z} \boldsymbol{y}}(Y)-S_{\boldsymbol{x} \boldsymbol{y}}(Y)\right] \\
& +\bar{\alpha}_{s}^{2} \times \text { "regular". }
\end{aligned}
$$

But we can obtain NLO BK in η with the change $Y \rightarrow \eta+\rho$. At NLO:

- Such a change only affects the LO piece. In the $\mathcal{O}\left(\bar{\alpha}_{s}^{2}\right)$ terms we can just replace $S(Y) \rightarrow \bar{S}(\eta)$
- We can use LO BK to evaluate $\partial \bar{S}_{x z}(\eta) / \partial \eta$ in

$$
S_{\boldsymbol{x} z}(Y)=S_{\boldsymbol{x} \boldsymbol{z}}(\eta+\rho) \equiv \bar{S}_{\boldsymbol{x} \boldsymbol{z}}\left(\eta+\ln \frac{(\boldsymbol{x}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{y})^{2}}\right) \simeq \bar{S}_{\boldsymbol{x} \boldsymbol{z}}(\eta)+\ln \frac{(\boldsymbol{x}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{y})^{2}} \frac{\partial \bar{S}_{\boldsymbol{x} \boldsymbol{z}}(\eta)}{\partial \eta}
$$

This leads to NLO BK for η evolution:

$$
\begin{aligned}
\frac{\partial \bar{S}_{\boldsymbol{x} \boldsymbol{y}}(\eta)}{\partial \eta}= & \frac{\bar{\alpha}_{s}}{2 \pi} \int \frac{\mathrm{~d}^{2} \boldsymbol{z}(\boldsymbol{x}-\boldsymbol{y})^{2}}{(\boldsymbol{x}-\boldsymbol{z})^{2}(\boldsymbol{z}-\boldsymbol{y})^{2}}\left[\bar{S}_{\boldsymbol{x} \boldsymbol{z}}(\eta) \bar{S}_{\boldsymbol{z} \boldsymbol{y}}(\eta)-\bar{S}_{\boldsymbol{x} \boldsymbol{y}}(\eta)\right] \\
& -\frac{\bar{\alpha}_{s}^{2}}{4 \pi} \int \frac{\mathrm{~d}^{2} \boldsymbol{z}(\boldsymbol{x}-\boldsymbol{y})^{2}}{(\boldsymbol{x}-\boldsymbol{z})^{2}(\boldsymbol{z}-\boldsymbol{y})^{2}} \ln \frac{(\boldsymbol{x}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{y})^{2}} \ln \frac{(\boldsymbol{y}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{y})^{2}}\left[\bar{S}_{\boldsymbol{x} \boldsymbol{z}}(\eta) \bar{S}_{\boldsymbol{z} \boldsymbol{y}}(\eta)-\bar{S}_{\boldsymbol{x} \boldsymbol{y}}(\eta)\right] \\
& +\frac{\bar{\alpha}_{s}^{2}}{2 \pi^{2}} \int \frac{\mathrm{~d}^{2} \boldsymbol{z} \mathrm{~d}^{2} \boldsymbol{u}(\boldsymbol{x}-\boldsymbol{y})^{2}}{(\boldsymbol{x}-\boldsymbol{u})^{2}(\boldsymbol{u}-\boldsymbol{z})^{2}(\boldsymbol{z}-\boldsymbol{y})^{2}} \ln \frac{(\boldsymbol{u}-\boldsymbol{y})^{2}}{(\boldsymbol{x}-\boldsymbol{y})^{2}} \bar{S}_{\boldsymbol{x} \boldsymbol{u}}(\eta)\left[\bar{S}_{\boldsymbol{u} \boldsymbol{z}}(\eta) \bar{S}_{\boldsymbol{z} y}(\eta)-\bar{S}_{u \boldsymbol{y}}(\eta)\right] \\
& +\bar{\alpha}_{s}^{2} \times \text { "regular" }
\end{aligned}
$$

The extra term (3rd line) coming from the change $Y \rightarrow \eta$ cancels the double logs for large daughter dipoles

But this term creates new large double logs for small daughter dipoles!
Such atypical configurations are allowed by BFKL diffusion

Similarly to Y evolution, the large double logs can be resummed by a rapidity shift in the LO piece:

$$
\frac{\partial \bar{S}_{\boldsymbol{x} \boldsymbol{y}}(\eta)}{\partial \eta}=\frac{\bar{\alpha}_{s}}{2 \pi} \int \frac{\mathrm{~d}^{2} \boldsymbol{z}(\boldsymbol{x}-\boldsymbol{y})^{2}}{(\boldsymbol{x}-\boldsymbol{z})^{2}(\boldsymbol{z}-\boldsymbol{y})^{2}}\left[\bar{S}_{\boldsymbol{x} \boldsymbol{z}}\left(\eta-\delta_{x \boldsymbol{z} ; r}\right) \bar{S}_{\boldsymbol{z} \boldsymbol{y}}\left(\eta-\delta_{z y ; r}\right)-\bar{S}_{\boldsymbol{x} \boldsymbol{y}}(\eta)\right]
$$

But this time the resummation only affects small daughter dipoles:

- $\delta_{\boldsymbol{x} \boldsymbol{z} ; r} \sim \ln \frac{r^{2}}{(\boldsymbol{x}-\boldsymbol{z})^{2}}$ when $(\boldsymbol{x}-\boldsymbol{z})^{2} \ll r^{2}$
- $\delta_{\boldsymbol{x} \boldsymbol{z} ; r} \rightarrow 0$ when $(\boldsymbol{x}-\boldsymbol{z})^{2} \gg r^{2}$

This is the equation we will study numerically in the following
The missing $\mathcal{O}\left(\bar{\alpha}_{s}^{2}\right)$ terms can be added (being careful to avoid double counting) to get full NLO accuracy + resummation of double logs

Saturation exponent as a function of the coupling for different resummations:

The results depend much less on the scheme than when considering Y evolution
This is likely due to the fact that the double logs do not become large for the typical evolution

Expect an even smaller dependence after adding the missing $\mathcal{O}\left(\bar{\alpha}_{s}^{2}\right)$ terms

Comparison with inclusive HERA DIS data (LO γ^{*} impact factor + evolution in η with resummation of double and single logs + running coupling):

Good description of the data ($\chi^{2} / \mathrm{ndf}<1.2$) with two types of initial conditions (GBW and rcMV) and two different prescriptions for the running coupling (smallest dipole prescription and fastest apparent convergence)

NLO equation in Y : unstable because of double collinear logarithms which become large for the typical evolution. These logs can be resummed but:

- Not a simple initial condition problem
- Large scheme dependence

On the contrary, η is the "right" variable to consider the evolution: also double logarithms, but they become large only for the atypical evolution:

- Milder instability
- Small resummation scheme dependence
- Initial condition problem formulated at $x_{\mathrm{Bj}}=1$

We propose a non-local equation for η evolution which resums the double logarithms to all orders and can be promoted to full NLO accuracy

LO BK supplemented by the resummation of double and single logs: good description of inclusive HERA data

