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At high energy, the evolution of gluon densities is governed by:
o the BFKL equation in the linear regime
e the BK / JIMWLK equations in the saturation regime

Y:ln%

Non-perturbative

In Q?

Our goal here is to go beyond the leading order (+ running coupling
corrections) approximation used until now in the saturation regime (BK)
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The LO BK equation

At high energy, DIS can be viewed as a virtual photon (virtuality Q?, flying
almost along P*) splitting into a ¢g pair which then interacts eikonally with
the target (transverse scale Q3, flying almost along P™)

Kinematics of interest: Q2 > Q2

- = Leading logarithmic approximation: resum any
kf-kf\%(g—(%m&wgg number of gluons strongly ordered in longitudinal
momentum (rapidity)

Can look at the evolution
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Note that the difference between Y and 7 is relevant only at NLO and beyond
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The LO BK equation

Resummation of all soft emissions: Balitsky-Kovchegov (BK) equation:

08y _ Qs A’z (x—1y)? 1 !
Y  2r ) (z—2)%(z—y)? (S2252y = Say) Soy = N¢ <Tr UmU”>

Possibility for a parent dipole with size » = |z — y| to emit two daughter dipoles
with sizes |z — z|,|z — y| or to remain intact

T, RoogesS
a%%% :

Starting with a given initial condition at Y = 0 (e.g. the simple GBW model
59 = e’(w’yﬁQg), solve the BK equation numerically to larger rapidities

2
Can then compute various observables, e.g. Fr(zg;, Q) = ZMZQTWUL(IBLQz)

1

with JL(sz,QZ) o zf:eﬁ /dzldzr Q*2i(1 — =1)*K3 (Q\/zl(l — zl)rQ) <1 — Sy <Y =1In TT%,))
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The NLO BK equation in Y

NLO BK for Y evolution has been derived by Balitsky, Chirilli:
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green: leading order

violet: running coupling corrections

red: double collinear logarithm

blue: single collinear logarithm (DGLAP)
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The NLO BK equation in Y

First numerical solution of the NLO BK equation (Lappi, Mantysaari):

Qs0/Aqep = 19
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Very large and negative NLO corrections which make the evolution unstable

The main source of the instability is the collinear double log. A similar issue
arises with NLO BFKL. Solved long time ago by a resummation to all orders
(Salam et al.)
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Collinear-improved BK in Y

Physical origin of the instability: time ordering problem

. - I 1 +
Two successive emissions k1, ks must have ordered lifetimes 7 ~ — ~ p—z

p Y
i.e. one should have ordering in both p™ and p~

Typical Y evolution: k" > ki, ki1 > koo

kT R
— the ordering le > kT? is not guaranteed
11 21

The ordering in lifetimes is not automatic and must
be imposed by hand (“kinematical constraint”)

Problem with large daughter dipoles, i.e. small k, emissions
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Collinear-improved BK in Y

The double logs can be resummed in several ways:
@ A non-local equation, similar to “kinematically-improved BK" proposed by Beuf
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o A local equation with a modified kernel (lancu, Madrigal, Mueller, Soyez,
Triantafyllopoulos)
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Collinear-improved BK in Y

The resummation of the double logs indeed makes the evolution stable:
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Good fits to HERA data obtained with these resummations
(lancu, Madrigal, Mueller, Soyez, Triantafyllopoulos; Albacete)
But not consistent:

o Evolved over the rapidity interval 7 instead of Y =1+ p

o Did not treat the initial condition properly: only values Y > p are physical
(& zBj < 1). These equations should not be solved with a standard GBW or
MV-like initial condition at Y =0

@ Very large scheme dependence
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Collinear-improved BK in Y

The results for quantities such as the saturation exponent show a very large
resummation scheme dependence when expressed as a function of the target
rapidity n =In1/zg; :
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The resummed evolution is stable, but it lacks predictive power
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Collinear-improved BK in n

Because of these issues, it appears that working in Y is not the best choice
This is confirmed by looking at the typical evolution in 7 : k7 < k3 , ki1 = koo

:>—>—«:>k1 > ki : both p™ and p~ are

correctly ordered for the typical i evolution

This is in contrast to what happens for Y evolution
and motivates the use of 1 as the “right” variable

In addition, for 7 evolution the initial condition
at 7 = 0 is just the physical IC (GBW, MV, ...)

Why did we start with Y evolution?
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Collinear-improved BK in n

The NLO BK equation was derived for Y evolution (Balitsky, Chirilli):
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But we can obtain NLO BK in n with the change Y — 1+ p. At NLO:

o Such a change only affects the LO piece. In the O(a2) terms we can
just replace S(Y) — S(n)
o We can use LO BK to evaluate 95 (n)/0n in
5 (x — 2)* 9S2=(n)

_ o (@2 )
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Collinear-improved BK in n

This leads to NLO BK for 7 evolution:
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The extra term (3rd line) coming from the change Y — 7 cancels the double
logs for large daughter dipoles

But this term creates new large double logs for small daughter dipoles!

Such atypical configurations are allowed by BFKL diffusion
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Collinear-improved BK in n

Similarly to Y evolution, the large double logs can be resummed by a rapidity
shift in the LO piece:

082y(n) _ & dz(x—y)* _ _
o g/m [Sez(n—0az:r)Say (1—02y:r) = Sy ()]

But this time the resummation only affects small daughter dipoles:

@ pzir ~In ﬁ when (z — 2)? < r?

@ 0zz;r — 0 when (z — z)2 > r?
This is the equation we will study numerically in the following

The missing O(a2) terms can be added (being careful to avoid double
counting) to get full NLO accuracy + resummation of double logs
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Numerical results

Saturation exponent as a function of the coupling for different resummations:

A 1dnQ?
Qs as dn

8| i

The results depend much less on the scheme than when considering Y evolution

This is likely due to the fact that the double logs do not become large for the
typical evolution

Expect an even smaller dependence after adding the missing O(&?) terms
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Numerical results

Comparison with inclusive HERA DIS data (LO ~* impact factor + evolution in
1 with resummation of double and single logs + running coupling):
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Good description of the data (x?/ndf < 1.2) with two types of initial
conditions (GBW and rcMV) and two different prescriptions for the running
coupling (smallest dipole prescription and fastest apparent convergence)
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Conclusions

NLO equation in Y: unstable because of double collinear logarithms which
become large for the typical evolution. These logs can be resummed but:

@ Not a simple initial condition problem

@ Large scheme dependence
On the contrary, 7 is the “right” variable to consider the evolution: also double
logarithms, but they become large only for the atypical evolution:

o Milder instability

@ Small resummation scheme dependence

o Initial condition problem formulated at zg; = 1

We propose a non-local equation for 7 evolution which resums the double
logarithms to all orders and can be promoted to full NLO accuracy

LO BK supplemented by the resummation of double and single logs: good
description of inclusive HERA data
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