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Motivations

At high energy, the evolution of gluon densities is governed by:

the BFKL equation in the linear regime

the BK / JIMWLK equations in the saturation regime
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Our goal here is to go beyond the leading order (+ running coupling
corrections) approximation used until now in the saturation regime (BK)

2 / 17



The LO BK equation

At high energy, DIS can be viewed as a virtual photon (virtuality Q2, �ying
almost along P+) splitting into a qq̄ pair which then interacts eikonally with
the target (transverse scale Q2

0, �ying almost along P−)

Kinematics of interest: Q2 � Q2
0

Leading logarithmic approximation: resum any
number of gluons strongly ordered in longitudinal
momentum (rapidity)

Can look at the evolution

in p−: q−0 � k−n � · · · � k−1 � q−

�η evolution�: resum (αsη)n

in p+: q+ � k+1 � · · · � k+n � q+0
�Y evolution�: resum (αsY )n

The corresponding rapidity intervals are:
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Note that the di�erence between Y and η is relevant only at NLO and beyond
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The LO BK equation

Resummation of all soft emissions: Balitsky-Kovchegov (BK) equation:

∂Sxy

∂Y
=
ᾱs

2π

∫
d2z (x−y)2

(x−z)2(z−y)2
(SxzSzy − Sxy) , Sxy ≡

1

Nc

〈
TrUxU

†
y

〉
Possibility for a parent dipole with size r = |x− y| to emit two daughter dipoles
with sizes |x− z|, |z − y| or to remain intact

One step in the high energy evolution

‘Real corrections’ : the soft gluon crosses the shockwave
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Starting with a given initial condition at Y = 0 (e.g. the simple GBW model

S(0)
xy = e−(x−y)2Q2

0), solve the BK equation numerically to larger rapidities

Can then compute various observables, e.g. FL(xBj, Q
2) =

Q2

4π2αem
σL(xBj, Q

2)

with σL(xBj, Q
2) ∝

∑
f

e2f

∫
dz1d

2rQ2z21(1− z1)2K2
0

(
Q
√
z1(1− z1)r2

)(
1− Sr

(
Y = ln

1

xBj

))
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The NLO BK equation in Y

NLO BK for Y evolution has been derived by Balitsky, Chirilli:

∂Sxy

∂Y
=
ᾱs

2π

∫
d2z

(x−y)2

(x−z)2(y−z)2
(SxzSzy − Sxy)

×
{

1 + ᾱs

[
b̄ ln(x−y)2µ2 − b̄ (x−z)2 − (y−z)2

(x−y)2
ln

(x−z)2

(y−z)2

+
67

36
− π2

12
−1

2
ln

(x−z)2

(x−y)2
ln

(y−z)2

(x−y)2

]}

+
ᾱ2
s

8π2

∫
d2u d2z

(u−z)4
(SxuSuzSzy − SxuSuy)

×
{
−2 +

(x−u)2(y−z)2 + (x−z)2(y−u)2 − 4(x−y)2(u−z)2

(x−u)2(y−z)2 − (x−z)2(y−u)2
ln

(x−u)2(y−z)2

(x−z)2(y−u)2

+
(x−y)2(u−z)2

(x−u)2(y−z)2

[
1 +

(x−y)2(u−z)2

(x−u)2(y−z)2 − (x−z)2(y−u)2

]
ln

(x−u)2(y−z)2

(x−z)2(y−u)2

}

green: leading order

violet: running coupling corrections

red: double collinear logarithm

blue: single collinear logarithm (DGLAP)
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The NLO BK equation in Y

First numerical solution of the NLO BK equation (Lappi, Mäntysaari):
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Very large and negative NLO corrections which make the evolution unstable

The main source of the instability is the collinear double log. A similar issue
arises with NLO BFKL. Solved long time ago by a resummation to all orders
(Salam et al.)
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Collinear-improved BK in Y

Physical origin of the instability: time ordering problem

Two successive emissions k1, k2 must have ordered lifetimes τ ∼ 1

p−
∼ p+

p2⊥
i.e. one should have ordering in both p+ and p−

Typical Y evolution: k+1 > k+2 , k1⊥ & k2⊥

→ the ordering
k+1
k21⊥

>
k+2
k22⊥

is not guaranteed

The ordering in lifetimes is not automatic and must
be imposed by hand (�kinematical constraint�)

Problem with large daughter dipoles, i.e. small k⊥ emissions

k1

k2
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Collinear-improved BK in Y

The double logs can be resummed in several ways:

A non-local equation, similar to �kinematically-improved BK� proposed by Beuf

∂Sxy(Y )

∂Y
=
ᾱs

2π

∫
d2z (x−y)2

(x−z)2(z−y)2
[Sxz(Y−∆xz;r)Szy(Y−∆zy;r)−Sxy(Y )]

with ∆xz;r ∼ ln
(x− z)2

r2
when (x− z)2 � r2 and ∆xz;r → 0 when (x− z)2 � r2

A local equation with a modi�ed kernel (Iancu, Madrigal, Mueller, Soyez,

Triantafyllopoulos)

∂Sxy

∂Y
=
ᾱs

2π

∫
d2z (x−y)2

(x−z)2(z−y)2
KDLA

(√
ln

(x− z)2

(x− y)2
ln

(y − z)2

(x− y)2

)
(SxzSzy − Sxy)

with KDLA(ρ) = J1

(
2
√
ᾱsρ2

)
/
√
ᾱsρ2 . Expansion in powers of ᾱs:

∂Sxy

∂Y
=
ᾱs

2π

∫
d2z (x−y)2

(x−z)2(z−y)2

(
1− ᾱs

2
ln

(x− z)2

(x− y)2
ln

(y − z)2

(x− y)2
+ · · ·

)
(SxzSzy − Sxy)
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Collinear-improved BK in Y

The resummation of the double logs indeed makes the evolution stable:
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solid: non-local

dashed: modi�ed kernel

Good �ts to HERA data obtained with these resummations
(Iancu, Madrigal, Mueller, Soyez, Triantafyllopoulos; Albacete)

But not consistent:

Evolved over the rapidity interval η instead of Y = η + ρ

Did not treat the initial condition properly: only values Y > ρ are physical
(⇔ xBj < 1). These equations should not be solved with a standard GBW or
MV-like initial condition at Y = 0

Very large scheme dependence
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Collinear-improved BK in Y

The results for quantities such as the saturation exponent show a very large
resummation scheme dependence when expressed as a function of the target
rapidity η = ln 1/xBj :
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λ̄s

ᾱs
=

1

ᾱs

d lnQ2
s

dη

∣∣∣∣
η→∞

ᾱs

∆=max
{
0, ln min{(x−z)2,(z−y)2}

r2

}

∆=max
{
0, ln (x−z)2

r2

}

CollBK in Y

The resummed evolution is stable, but it lacks predictive power
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Collinear-improved BK in η

Because of these issues, it appears that working in Y is not the best choice

This is con�rmed by looking at the typical evolution in η : k−1 < k−2 , k1⊥ & k2⊥

⇒ k21⊥
k−1

>
k22⊥
k−2
⇔ k+1 > k+2 : both p

+ and p− are

correctly ordered for the typical η evolution

This is in contrast to what happens for Y evolution
and motivates the use of η as the �right� variable

In addition, for η evolution the initial condition
at η = 0 is just the physical IC (GBW, MV, ...)

Why did we start with Y evolution?

k1

k2
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Collinear-improved BK in η

The NLO BK equation was derived for Y evolution (Balitsky, Chirilli):

∂Sxy(Y )

∂Y
=
ᾱs

2π

∫
d2z (x−y)2

(x−z)2(z−y)2
[Sxz(Y )Szy(Y )− Sxy(Y )]

− ᾱ2
s

4π

∫
d2z (x−y)2

(x−z)2(z−y)2
ln

(x−z)2

(x−y)2
ln

(y−z)2

(x−y)2
[Sxz(Y )Szy(Y )− Sxy(Y )]

+ ᾱ2
s × �regular� .

But we can obtain NLO BK in η with the change Y → η + ρ . At NLO:

Such a change only a�ects the LO piece. In the O(ᾱ2
s) terms we can

just replace S(Y )→ S̄(η)

We can use LO BK to evaluate ∂S̄xz(η)/∂η in

Sxz(Y ) = Sxz(η + ρ) ≡ S̄xz

(
η + ln

(x− z)2

(x− y)2

)
' S̄xz(η) + ln

(x− z)2

(x− y)2
∂S̄xz(η)

∂η
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Collinear-improved BK in η

This leads to NLO BK for η evolution:

∂S̄xy(η)

∂η
=
ᾱs

2π

∫
d2z (x−y)2

(x−z)2(z−y)2
[
S̄xz(η)S̄zy(η)−S̄xy(η)

]
− ᾱ2

s

4π

∫
d2z (x−y)2

(x−z)2(z−y)2
ln

(x−z)2

(x−y)2
ln

(y−z)2

(x−y)2
[
S̄xz(η)S̄zy(η)− S̄xy(η)

]
+
ᾱ2
s

2π2

∫
d2z d2u (x−y)2

(x−u)2(u−z)2(z−y)2
ln

(u−y)2

(x−y)2
S̄xu(η)

[
S̄uz(η)S̄zy(η)− S̄uy(η)

]
+ ᾱ2

s × �regular�

The extra term (3rd line) coming from the change Y → η cancels the double
logs for large daughter dipoles

But this term creates new large double logs for small daughter dipoles!

Such atypical con�gurations are allowed by BFKL di�usion
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Collinear-improved BK in η

Similarly to Y evolution, the large double logs can be resummed by a rapidity
shift in the LO piece:

∂S̄xy(η)

∂η
=
ᾱs

2π

∫
d2z (x−y)2

(x−z)2(z−y)2
[
S̄xz(η−δxz;r)S̄zy(η−δzy;r)−S̄xy(η)

]
But this time the resummation only a�ects small daughter dipoles:

δxz;r ∼ ln r2

(x−z)2
when (x− z)2 � r2

δxz;r → 0 when (x− z)2 � r2

This is the equation we will study numerically in the following

The missing O(ᾱ2
s) terms can be added (being careful to avoid double

counting) to get full NLO accuracy + resummation of double logs
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Numerical results

Saturation exponent as a function of the coupling for di�erent resummations:
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ᾱs

δ=max
{
0, ln (x−y)2

min{(x−z)2,(z−y)2}
}

δ=ln max{(x−z)2,(x−y)2}
(x−z)2

δ=ln max{(x−z)2,(y−z)2}
(x−z)2

The results depend much less on the scheme than when considering Y evolution

This is likely due to the fact that the double logs do not become large for the
typical evolution

Expect an even smaller dependence after adding the missing O(ᾱ2
s) terms

15 / 17



Numerical results

Comparison with inclusive HERA DIS data (LO γ∗ impact factor + evolution in
η with resummation of double and single logs + running coupling):
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Good description of the data (χ2/ndf < 1.2) with two types of initial
conditions (GBW and rcMV) and two di�erent prescriptions for the running
coupling (smallest dipole prescription and fastest apparent convergence)
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Conclusions

NLO equation in Y : unstable because of double collinear logarithms which
become large for the typical evolution. These logs can be resummed but:

Not a simple initial condition problem

Large scheme dependence

On the contrary, η is the �right� variable to consider the evolution: also double
logarithms, but they become large only for the atypical evolution:

Milder instability

Small resummation scheme dependence

Initial condition problem formulated at xBj = 1

We propose a non-local equation for η evolution which resums the double
logarithms to all orders and can be promoted to full NLO accuracy

LO BK supplemented by the resummation of double and single logs: good
description of inclusive HERA data
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