

Measurements of nuclear parton distribution functions using dijets, forward jets, and photo-nuclear jets at the CMS detector

Alexander Bylinkin

On behalf of the CMS Collaboration

IS 2019: 24-28 June 2019, New York, USA

Outline

- Motivation to study processes with jets
- CMS Experiment is a perfect facility to study jet production
- Forward jets with CASTOR
 - Both pp @13 TeV and pPb @5 TeV measurements
- Dijet production in pp and pPb collisions
 - Constraining the nPDFs with heavy ion collisions
 - Prospects for further measurements at HL-LHC
- Outlook

Motivation

- Jet production has very high cross section, among other processes at LHC parton-parton scatterings
 - Important background for most measurements and searches at the LHC that must be modeled very precisely
- Scattering at large momentum transfer lead to jet production.
 - Such processes are described in QCD using parton distribution functions (PDFs)
 - Jet production is a useful tool to study the parton structure of hadrons
- Jet production in heavy-ion collisions can reveal signals of parton saturation
 - Knowledge of nPDFs is crucial in extracting QGP properties from the experimental data
 - Negligible final-state effects in pPb collisions

Forward CMS Detectors

Hadron Barrel Calorimeter (HB): $|\eta| < 1.3$ Hadron Endcap Calorimeter (HE): $1.3 < |\eta| < 3.0$ Hadron Forward Calorimeter (HF): $3.0 < |\eta| < 5.2$ CASTOR Calorimeter: $-6.6 < \eta < -5.2$

CMS offers perfect rapidity coverage to measure jets

Forward jets with CASTOR

- Very forward pseudorapidities are sensible to the low-x values $x \approx \frac{p_T}{\sqrt{s}} e^{\pm \eta} \approx 10^{-6} [p_T = 10 \, GeV; \eta = -6; \sqrt{s} = 13 \, TeV]$
- Breakdown of DGLAP evolution (as a function of Q²)
 - Use of BFKL approach (evolution as a function of 1/x)
 - Access to nonlinear parton "saturation" regime (BK)

CASTOR Calorimeter: $-6.6 < \eta < -5.2$

- CASTOR is a sampling calorimeter using layers of quartz plates and tungsten absorbers
- CASTOR is segmented in 14 longitudinal and 16 azimuthal channels
- 15% energy scale uncertainty

Forward jets with CASTOR: Analysis strategy

pp collisions @13 TeV (FSQ-PAS-16-003)

- Luminosity 0.212 nb⁻¹
- Fully corrected inclusive jet cross sections and jet yields normalized to number of visible jets as function of jet p_T
 - Anti- k_T jets with R=0.5
 - -6.6 < η < -5.2
 - p_T unfolded from E•cosh η , [η = -5.9]
 - Low pile-up runs
 - $E > 150 \text{ GeV or } p_T > 3 \text{ GeV}$
- EPOS-LHC and PYTHIA8 used for correction

Forward jets with CASTOR: Results

pp collisions @13 TeV (FSQ-PAS-16-003)

- EPOS-LHC and QGSJetII.4 lower than the data
- PYTHIA overpredicts the cross section

Jet p_T yield (normalized by number of jets)

- EPOS-LHC and QGSJetII.4 softer than the data
- All PYTHIA versions reproduce the shape well

Presented differential spectra have only a moderate sensitivity to the underlying PDF

Forward jets with CASTOR in pPb

pPb collisions @5 TeV (JHEP 05 (2019) 043)

- 3.13 nb⁻¹ for pPb and 6.71 nb⁻¹ for Pbp
 - MB trigger with track ($|\eta| < 2.5$)
 - E_{tower} > 4 GeV in HF+ and HF- (3.0<| η |<5.2)
 - Anti- k_T jets with R=0.5
 - $-6.6 < \eta < -5.2$
- All results shown in lab frame
- HIJING v1.383 (used for constructing the response matrix)
 - DGLAP parton evolution via PYTHIA
 - Saturation effects via nuclear shadowing
- EPOS-LHC
 - Combination of parton model with pomeron exchange
 - Saturation is modeled through pomeron-pomeron interactions
- QGSJETII-04
 - Similar to EPOS but implements saturation via pomeron self-interactions

Cancellation of energy scale uncertainty in pPb/Pbp ratio allows better discrimination between data and models

- None of the models describe the pPb/Pbp ratio
 - HIJING describes the shape well but is off in normalization (due to the poor Pb+p description)
 - EPOS-LHC describes the lower energy part of the ratio well, but fails to describe the shape at high energies
 - QGSJETII-04 significantly fail to describe both the shape and the normalization of the pPb/Pbp ratio

Dijets in pp and pPb @5 TeV

- 35 nb⁻¹ for pPb and 27.4 pb⁻¹ for pp
- Ratios of the normalized pPb and pp η_{dijet} distributions (pPb/pp) are studied
- Event selection:
 - Singe Jet Trigger ($p_T > 40, 60, 80 \text{ GeV}$)
 - At least one HF tower > 3 GeV for pPb $(3.0 < |\eta| < 5.2)$
 - Primary vertex with ≥ 2 tracks
 - PF-jets using the anti- k_t algorithm with R=0.3
 - $|\eta_{lab}| < 3.0, p_{T,1} > 90$ GeV, $p_{T,2} > 20$ GeV, $\Delta \phi_{1,2} = |\phi_1 \phi_2| > 2\pi/3$

- The ratios of pPb and pp data are seen to deviate significantly from unity in the small (EMC) and large (shadowing) η_{dijet} regions.
- Neither DSSZ, nor EPS09 can describe in the full rapidity region
- For $\eta_{dijet} < -1$, which is sensitive to the gluon EMC effect, NLO pQCD calculations with EPS09 nPDF match the data
- The first evidence that the gluon PDF at large Bjorken x in lead ions is strongly suppressed 11

Dijets in pp and pPb @8.8 TeV (FTR-18-027) h-1 for pPh collisions Projection

- 2 pb⁻¹ for pPb collisions
- Extension towards lower η_{dijet} values

Summary

- CMS Experiment is a perfect facility to study jet production
- Forward jets with CASTOR
 - Both pp @13 TeV and pPb @5 TeV have been measured
 - Moderate sensitivity to the underlying PDF in **pp**
 - No model is able to describe all aspects of the **pPb** data
- Dijet production in pp and pPb collisions
 - Significant modifications of the η_{dijet} distributions are observed in pPb data
 - The first evidence that the gluon PDF at large x in lead ions is suppressed
 - Projectionss for further measurements at HL-LHC have been presented

Thank you very much for your attention!