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STAGES OF EM FIELD EVOLUTION
valence electric charges

✓
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3. After the QGP formation: valence quarks move away from each other; electric 
currents in QGP contribute to the field.

EM field is generated by Z protons of each heavy-ion moving on the light-
cones:
1. Before the collision: ions move towards each other.

2. After the collision, but before the QGP formation: valence quarks move away from 
each other; there is a small correction due to the baryon stopping.
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STAGE 1 (BEFORE THE COLLISION)
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Fig. 1: Schematic representation of the various stages of a HIC as a function of time t and the longitudinal
coordinate z (the collision axis). The ‘time’ variable which is used in the discussion in the text is the proper time
⌧ ⌘

p
t2 � z2, which has a Lorentz–invariant meaning and is constant along the hyperbolic curves separating

various stages in this figure.

concern the partonic stages of a heavy ion collision, at sufficiently early times. These are also the stages
to which refers most of the experimental and theoretical progress over the last decade.

2 Stages of a heavy ion collision: the case for effective theories
The theoretically motivated space–time picture of a heavy ion collision (HIC) is depicted in Fig. 1. This
illustrates the various forms of QCD matter intervening during the successive phases of the collision:

1. Prior to the collision, and in the center-of-mass frame (which at RHIC and the LHC is the same as
the laboratory frame), the two incoming nuclei look as two Lorentz–contracted ‘pancakes’, with a
longitudinal extent smaller by a factor � ⇠ 100 (the Lorentz boost factor) than the radial extent in
the transverse plane. As we shall see, these ‘pancakes’ are mostly composed with gluons which
carry only tiny fractions x ⌧ 1 of the longitudinal momenta of their parent nucleons, but whose
density is rapidly increasing with 1/x. By the uncertainty principle, the gluons which make up
such a high–density system carry relatively large transverse momenta. A typical value for such a
gluon in a Pb or Au nucleus is k? ' 2 GeV for x = 10�4. By the ‘asymptotic freedom’ property of
QCD, the gauge coupling which governs the mutual interactions of these gluons is relatively weak.
This gluonic form of matter, which is dense and weakly coupled, and dominates the wavefunction
of any hadron (nucleon or nucleus) at sufficiently high energy, is universal — its properties are the
same form all hadrons. It is known as the colour glass condensate (CGC).

2. At time ⌧ = 0, the two nuclei hit with each other and the interactions start developing. The
‘hard’ processes, i.e. those involving relatively large transferred momenta Q & 10 GeV, are those
which occur faster (within a time ⌧ ⇠ 1/Q, by the uncertainty principle1). These processes are
responsible for the production of ‘hard particles’, i.e. particles carrying transverse energies and
momenta of the order of Q. Such particles, like (hadronic) jets, direct photons, dilepton pairs,
heavy quarks, or vector bosons, are generally the most striking ingredients of the final state and
are often used to characterize the topology of the latter — e.g., one speaks about ‘a dijet event’, cf.
Fig. 2 left, or ‘a photon–jet’ event, cf. Fig. 2 right.

3. At a time ⌧ ⇠ 0.2 fm/c, corresponding to a ‘semi-hard’ transverse momentum scale Q ⇠ 1 GeV,
1Throughout these notes, we shall generally use the natural system of units ~ = c = kB = 1, so in particular there is no

explicit factor ~ in the uncertainty principle. Yet, in some cases, we shall restore this factor for more clarity.

3

Ions about to collide

EM field of each ion is a boosted Coulomb field

B1 =
�ev�̂

4⇡

b

(b2 + �2(vt� z)2)3/2
<latexit sha1_base64="oKX+j1BgxB9WHJZsp5EJn3QRL8M="></latexit>
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STAGE 2 (AFTER THE COLLISION, BEFORE QGP)

Ions about to collide
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FIG. 17: Same as Fig. 16 but for Au+Au collisions at
√
sNN =

130 GeV. The solid curves represent best fits to the data over
the region -4.9< η <4.9 using Eq. 12 (see text) and the shaded
regions represent the systematic error band at 90% confidence
limit. The open points were obtained by the tracklet analysis
in the range |η| < 1.

ybeam is independent of collision energy - the limiting
fragmentation hypothesis. The N tot

ch estimate is thus the
integral of the average of this extended distribution and
the fit using Eq. 12(dashed curve in Fig. 22b).

Tables VII and VIII (see Appendix) summarize the to-
tal charged particle multiplicity results for Au+Au and
Cu+Cu collisions, respectively. The estimated average
number of participants associated with each centrality
bin was obtained from Glauber model (Monte Carlo ver-
sion) [29] and listed in column two. Column three lists
the full width at half maximum (FWHM) of the dNch/dη
distributions, whereas the three total multiplicity esti-
mates discussed above are listed in columns 4-6.

The upper panels of Figs. 23 and 24 display the values
Np

ch (solid points) and Nch ||η|<5.4 (open circles). In all
cases one observes participant scaling (Ref. [28]), an es-
sentially linear dependence on ⟨Npart⟩. This is illustrated
more clearly in the middle panels, where the participant-
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FIG. 18: Same as Fig. 17 but for Au+Au collisions at
√
sNN

= 200 GeV. The solid curves represent best fits to the data
over the full η range using Eq. 12 and the shaded regions
represent 90% C.L. systematic errors. The open points were
obtained by the tracklet analysis in the range |η| < 1.

scaled results, dNch/dη/⟨Npart/2⟩ are seen to be essen-
tially independent of ⟨Npart/2⟩ and exceeding the values
obtained in pp/pp collisions. We observe that this quan-
tity is almost constant with collision centrality. It is in-
teresting to note that the normalized particle production
in heavy-ion collisions is larger by about 40% than those
of p̄p collisions (solid squares)[43] and pp collisions (solid
diamonds) [42].

The widths of the dNch/dη-distributions, represented
by the Full Width at Half Maximum (FWHM) are shown
in the bottom panels in Figs. 23 and 24 for Au+Au and
Cu + Cu collisions, respectively. The FWHM exhibit a
decline with centrality, which indicates that the increased
particle production with centrality preferentially occurs
in the midrapidity region. Note also that the FWHM
for p̄p reactions at 200 GeV and pp reactions at 62.4
GeV and 19.6 GeV follow the trend of the Au+Au data
extrapolated to ⟨Npart ⟩ = 2. A similar trend is found for
Cu+ Cu collisions.

y

dNval

dy
⇠ e��R(Y�y) + e��R(Y+y) , �R ⇡ 0.47

-Y

It is too “expensive” to transfer net baryon 
and electric charge to the central plateau 
region.

dNval

dy
⇠ e��R(Y�y) + e��R(Y+y) , �R ⇡ 0.47

dNπ/dy Matter distribution 
Number of valence quarks (μB) at y=0 
decreases with energy: “baryon stopping”.

+Y

Plasma
⇒ The contribution of the “stopped” 

baryons is exponentially (in y) small

EM field = sum of two boosted 
Coulomb fields of each ion
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STAGE 2 (AFTER THE COLLISION, BEFORE QGP)

r2A1(r, t) = @2
tA1(r, t)� j(r, t) ,

<latexit sha1_base64="6WHkMoniAt010bRUTxltdZYFgdQ="></latexit>

Maxwell equations in the Lorentz gauge:

Solution:

j =

Z

ion A
evẑ�(z � vt)�(b)�

Z

ion B
evẑ�(z + vt)�(b)

<latexit sha1_base64="RHR3PPIFmH0a1kqkhntyKhEtxig="></latexit>

A1(r, t) =

Z

ion A

�evẑ

4⇡

1p
b2 + �2(vt� z)2

�
Z

ion B

�evẑ

4⇡

1p
b2 + �2(vt+ z)2

<latexit sha1_base64="lnXQtSVyZsyzsrIxduklGVNu9E4="></latexit>
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STAGE 3 (AFTER QGP FORMATION)

Assumptions:

1. QGP emerges instantaneously at t=t0 

⇒

2. QGP is nonmagnetic (µ=1), neutral (no net electric charge), electric currents are Ohmic  
with constant electric conductivity (σ):  

" = 1 + i�/!
<latexit sha1_base64="hic2VFU0ClSmOTDN3cCFygRlHoA=">AAACBnicbVDJSgNBEO2Je9yiHkVoDIIgxJko6EUQvHiMYBIhE0JNp5I09jJ09wRC8OTFX/HiQRGvfoM3/8bOcnB7UPB4r4qqekkquHVh+BnkZmbn5hcWl/LLK6tr64WNzZrVmWFYZVpoc5OARcEVVh13Am9SgyATgfXk9mLk1/toLNfq2g1SbEroKt7hDJyXWoWduA8GU8uFVmc0OuCx5V0Jh7GW2IVWoRiWwjHoXxJNSZFMUWkVPuK2ZplE5ZgAaxtRmLrmEIzjTOBdPs4spsBuoYsNTxVItM3h+I07uueVNu1o40s5Ola/TwxBWjuQie+U4Hr2tzcS//MameucNodcpZlDxSaLOpmgTtNRJrTNDTInBp4AM9zfSlkPDDDnk8v7EKLfL/8ltXIpOiqVr46L56fTOBbJNtkl+yQiJ+ScXJIKqRJG7skjeSYvwUPwFLwGb5PWXDCd2SI/ELx/AZvfmIk=</latexit>

Emergent plasma at t=t0  produces no new EM field (which would’ve been an 
artifact of the initial conditions) because it is neutral and ε0=1.

Initial conditions:⇒ E, B must be continuous at t=t0 
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STAGE 3 (AFTER QGP FORMATION) CONT.

3. Electromagnetic field does not affect QGP flow. This seem to hold to a few % accuracy. 

Roy, Pu, Rezzolla, Rischke, Pang, Endrodi, Petersen
Voronyuk, Toneev, Cassing, Bratkovkaya, Konchalovski, Voloshin

Greif, Greiner, Xu

(Mohapatra, Saumina, Srivastava disagree)

⇒ Do not need to solve the Relativistic MHD to compute E,B 👍

Gursoy, Kharzeev, Marcus, Rajagopal

Assumptions (cont.):

Using the gauge condition @t'+r ·A+ �' = 0
<latexit sha1_base64="+4GJKPyH6618g8kkarb4Sbt4K1I="></latexit>

Maxwell equations read

�r2'2 + @2
t '2 + �@t'2 = ⇢ ,

�r2A2 + @2
tA2 + �@tA2 � �u⇥ (r⇥A2) = j ,

<latexit sha1_base64="Ois8eFyujOddIbtPgGWVjOx7G5I="></latexit>

plasma velocity 
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INITIAL VALUE PROBLEM FOR EM FIELD IN QGP

Solution:

�r2'2 + @2
t '2 + �@t'2 = ⇢ ,

�r2A2 + @2
tA2 + �@tA2 � �u⇥ (r⇥A2) = j ,

<latexit sha1_base64="Ois8eFyujOddIbtPgGWVjOx7G5I="></latexit>

Aµ
2 (r, t0) = Aµ

1 (r, t0) ⌘ Aµ(r) ,

@tA
µ
2 (r, t)

��
t=t0

= @tA
µ
1 (r, t)

��
t=t0

⌘ Vµ(r)
<latexit sha1_base64="ckbnnoUw5ynegD0rGoBUKgXiFz8="></latexit>

see Morse, Feshbach

Aµ
2 (r, t) =

Z t0+

⌧
dt0

Z
d3r0jµ(r0, t0)G2(r, t|r0, t0)

+

Z
d3r0

⇥
�Aµ(r0) + Vµ(r0)

⇤
G2(r, t|r0, t0)

��
t0=t0

�
Z

d3r0Aµ(r0)@t0G2(r, t|r0, t0)
��
t0=t0

<latexit sha1_base64="/UebAuM6RoY7zf2d/9gVmWrEBTE="></latexit>

Need: the retarded Green’s function G2
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COMPUTING THE GREEN’S FUNCTION G2
1. Assume that the u-term is small. For example, in the blast wave model: 

u(r, t) =
uo
Ro

b ✓(Ro � b) +
z

t
<latexit sha1_base64="OoSxc3UCHoRYbnJT41qMpRkEgj8="></latexit> uo = 0.55

<latexit sha1_base64="6guqQulyhhog6V4Rg7egDvQF58A="></latexit>

Ro = 7.5 fm
<latexit sha1_base64="VC8h75fwP3tsKmbwXVMC/tyw+s0="></latexit>where Teaney

typical distances b≪Ro

Treat the u-term perturbatively:

4

and using the gauge condition

@t' + r · A + �' = 0 (3)

we arrive at the equations

� r2
' + @

2
t ' + �@t' = ⇢ , (4a)

� r2A + @
2
t A + �@tA � �u ⇥ (r ⇥ A) = j , (4b)

We consider a point charge e moving in the positive z direction with constant velocity v:

j = evẑ�(b)�(z � vt) , ⇢ = 0 . (5)

In the experimentally interesting region of small z’s (see Fig. 1), |u| ⌧ 1. This allows us to treat

the corresponding term in (4b) as a perturbation. Thus, writing A = A(0) + A(1) we obtain two

equations

� r2A(0) + @
2
t A

(0) + �@tA
(0) = j , (6a)

� r2A(1) + @
2
t A

(1) + �@tA
(1) = �u ⇥ B(0)

. (6b)

The first of these equations describes the field created by the external currents in the stationary

plasma, whereas the second one takes expansion of plasma into account.

To find the particular solutions to these equations we introduce the retarded Green’s function

G(r, t|r0
, t

0) that obeys the equation

� r2
G + @

2
tG + �@tG = �(t � t

0)�(r � r0) . (7)

We note that the function G defined as

G(r, t|r0
, t

0) = e
��t/2G(r, t|r0

, t
0) (8)

is a Green’s function of the Klein-Gordon equation with imaginary mass m = i�/2

� r2G + @
2
t G + m

2G = e
�t0/2

�(t � t
0)�(r � r0) . (9)

The corresponding retarded Green’s function in the coordinate representation reads (see e.g. [58])

G(r, t|r0
, t

0) =
1

4⇡
e

1
2�t

0
⇢
�(t � t

0 � R)

R

� mp
(t � t0)2 � R2

J1

⇣
m

p
(t � t0)2 � R2

⌘
✓(t � t

0 � R)

)
✓(t � t

0) . (10)
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Klein-Gordon equation
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the original pulse

wake produced by 
the induced currents
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⇒ solve for 

same Green’s function G2
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FIG. 3. The vector potential A = A(0) + A(1) created at a representative point z = 0, b = 1 fm, � = ⇡/6

(see Fig. 2) in QGP by a remnant of the gold ion moving with the boost-factor � = 100 (
p
s = 0.2 TeV) and

impact parameter |s| = 3 fm. Left panel: vector potential A(0) in the non-expanding plasma. Right panel:

the relative contribution of the plasma expansion. The plasma emerges at ⌧ = 0.2 fm/c.

not consider the contributions from the fields that existed at t < ⌧ . They are given by Eqs. (34b)

and (34c) and are not a↵ected by the plasma flow, even though they give a significant contribution

to A(0) as shown in [38].

In the right panel of Fig. 3 we show the time-dependence of the ratio A
(1)

/A
(0) at a representative

point inside QGP, which illustrates the relative significance of the plasma expansion in the magnetic

field calculations. The main observation is that the relative contribution of the plasma expansion

is below 10%. With this accuracy, the plasma expansion e↵ect on the magnetic field can be safely

neglected.

FIG. 4. Dotted line: A
(1)
z , dashed line: A

(1)
� , solid line �A

(1)
b components of the correction A(1) to the

vector potential (in units of m⇡/e) due to the plasma expansion. The geometric and kinematic parameters

are the same as in Fig. 3. The cylindrical coordinates are defined with respect to the z-axis of Fig. 2, which

is the lab frame for heavy-ion collisions.

b

b′

b̃

dq

b′′

s/2
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x
O 1O 2

φ

Conclusion: QGP expansion is a small correction to the total EM field 
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THE PULSE FIELD
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is a sphere of 
radius t-t0  with 
the center at r

St�t0
r
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Dissipation due to work done by 
the field on the medium currents

5

Eqs. (8) and (10) furnish the retarded Green’s function for the original Eq. (7):

G(r, t|r0
, t
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We separated the Green’s function into a sum of the two terms: the original pulse Ga and the

wake Gb created by the currents induced in the plasma. The exponential factor exp[��(t � t
0)/2]

indicates the decrease of the field strength due to the work done by the field on the electric currents

in the plasma.

III. SOLUTION FOR THE STATIC PLASMA

The particular solution to (6a), namely the one induced by the external currents, is given by

A(0)(r, t) =

Z
G(r, t|r0

, t
0)j(r0

, t
0)d3r0dt0 , (12)

where the retarded Green’s function is given by (11). Since the retarded Green’s function breaks

up into two physically meaningful terms we compute and analyze each term independently.

A. The pulse field

The argument of the delta function in Ga vanishes when t� t
0 = |r � vt

0ẑ|. The corresponding

retarded time t
0 satisfying t > t
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It is readily seen that as � ! 0 this term reproduces the vector potential of a charge uniformly

moving in vacuum. The magnetic field corresponding to the vector potential (15) is given by
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indicates the decrease of the field strength due to the work done by the field on the electric currents
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wake Gb created by the currents induced in the plasma. The exponential factor exp[��(t � t
0)/2]

indicates the decrease of the field strength due to the work done by the field on the electric currents
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moving in vacuum. The magnetic field corresponding to the vector potential (15) is given by
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The first term in the curly brackets dominates when
p

⇠2 + b2/�2 � 1/��2 ⇠ 10�5 fm. Assuming

that this is the case, (17) simplifies in the limit b/� ⌧ ⇠ yielding the “di↵usion approximation”

B(0)
a ⇡ ev

8⇡
�̂
�b

⇠2
e
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2(1+v) e
� b2�

4⇠ , ⇠ > 0 . (18)

Clearly, the second exponential factor in (18) can be dropped at later times ⇠ � b
2
�/4 ⇠ 0.5 fm.

The expression for the magnetic field was previously derived by one of us in [36] (see Eq. (7)

there) and, unlike (17), is represented in a form of a one-dimensional integral. Both formulas

reduce to (18) in the di↵usion approximation.

B. The wake field

It has been tacitly assumed in [36] that the wake term is small. Using the Green’s function

(11c) we can compute this term explicitly:
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It is useful to introduce a new integration variable � such that
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It is straightforward to check that this implies
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The vector potential (19) can now be represented as
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The main contribution to this integral comes from the integration region
p
�2⇠2 + b2 ⌧ � ⌧ 2/��

where the integrand is approximately constant. At smaller �’s it vanishes as ⇠ �, while at larger

�’s it is exponentially suppressed. Thus, we can approximate the integral in (22) as
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4⇡

�v

2

Z 1

0

d�
1
2
�
2�p

⇠2 + (b2 + �2)/�2
exp

⇢
���

2

2

⇣
�v⇠ +

p
⇠2 + (b2 + �2)/�2

⌘�

=
eẑ
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Using (16) we derive the magnetic field
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Comparing (23) and (15) we conclude that the contribution of the wake to the retarded Greens

function (11) is small in the phenomenologically relevant region
p
⇠2 + b2/�2 ⌧ 4/� ⇠ 102 fm.

However, it dominates in the opposite limit, i.e. at very late times.

A good approximation:
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�’s it is exponentially suppressed. Thus, we can approximate the integral in (22) as

A(0)
b (r, t) ⇡ eẑ

4⇡

�v

2

Z 1

0

d�
1
2
�
2�p

⇠2 + (b2 + �2)/�2
exp

⇢
���

2

2

⇣
�v⇠ +

p
⇠2 + (b2 + �2)/�2

⌘�

=
eẑ

4⇡

�v

4
exp

⇢
���

2

2

⇣
�v⇠ +

p
⇠2 + b2/�2

⌘�
. (23)

Using (16) we derive the magnetic field

B(0)
b (r, t) =

e�̂

4⇡

�
2
vb

4

1p
⇠2 + b2/�2

exp

⇢
���

2

2

⇣
�v⇠ +

p
⇠2 + b2/�2

⌘�
. (24)

Comparing (23) and (15) we conclude that the contribution of the wake to the retarded Greens

function (11) is small in the phenomenologically relevant region
p

⇠2 + b2/�2 ⌧ 4/� ⇠ 102 fm.

However, it dominates in the opposite limit, i.e. at very late times.

and ⇒

(the “diffusion approximation”)

6

The first term in the curly brackets dominates when
p

⇠2 + b2/�2 � 1/��2 ⇠ 10�5 fm. Assuming

that this is the case, (17) simplifies in the limit b/� ⌧ ⇠ yielding the “di↵usion approximation”

B(0)
a ⇡ ev

8⇡
�̂
�b

⇠2
e
� �⇠

2(1+v) e
� b2�

4⇠ , ⇠ > 0 . (18)

Clearly, the second exponential factor in (18) can be dropped at later times ⇠ � b
2
�/4 ⇠ 0.5 fm.

The expression for the magnetic field was previously derived by one of us in [36] (see Eq. (7)

there) and, unlike (17), is represented in a form of a one-dimensional integral. Both formulas

reduce to (18) in the di↵usion approximation.

B. The wake field

It has been tacitly assumed in [36] that the wake term is small. Using the Green’s function

(11c) we can compute this term explicitly:

A(0)
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eẑ
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(t � t0)2 � b2 � (z � vt0)2

I1
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�

2

p
(t � t0)2 � b2 � (z � vt0)2

⌘
dt

0
. (19)

It is useful to introduce a new integration variable � such that

t
0 = �

2
⇣
t � vz �

p
(z � vt)2 + (b2 + �2)/�2

⌘
. (20)

It is straightforward to check that this implies

�
2 = (t � t

0)2 � b
2 � (z � vt

0)2 . (21)

The vector potential (19) can now be represented as

A(0)
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eẑ
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�
�
2�

�
p
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exp
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���
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2
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⌘�
. (22)

The main contribution to this integral comes from the integration region
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where the integrand is approximately constant. At smaller �’s it vanishes as ⇠ �, while at larger

�’s it is exponentially suppressed. Thus, we can approximate the integral in (22) as
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Using (16) we derive the magnetic field

B(0)
b (r, t) =
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vb

4

1p
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exp

⇢
���
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. (24)

Comparing (23) and (15) we conclude that the contribution of the wake to the retarded Greens

function (11) is small in the phenomenologically relevant region
p

⇠2 + b2/�2 ⌧ 4/� ⇠ 102 fm.

However, it dominates in the opposite limit, i.e. at very late times.

Note: no dependence on the collision energy!

Full solution:
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A(0)
b (r, t) ⇡ eẑ

4⇡

�v

4
exp

⇢
���2

2

⇣
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p
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5

Eqs. (8) and (10) furnish the retarded Green’s function for the original Eq. (7):

G(r, t|r0
, t

0) = Ga(r, t|r0
, t

0) + Gb(r, t|r0
, t

0) (11a)

Ga(r, t|r0
, t

0) =
1

4⇡
e
� 1

2�(t�t0) �(t � t
0 � R)

R
✓(t � t

0) (11b)

Gb(r, t|r0
, t

0) =
1

4⇡
e
� 1

2�(t�t0) �/2p
(t � t0)2 � R2

I1

⇣
�

2

p
(t � t0)2 � R2

⌘
✓(t � t

0 � R)✓(t � t
0) . (11c)

We separated the Green’s function into a sum of the two terms: the original pulse Ga and the

wake Gb created by the currents induced in the plasma. The exponential factor exp[��(t � t
0)/2]

indicates the decrease of the field strength due to the work done by the field on the electric currents

in the plasma.

III. SOLUTION FOR THE STATIC PLASMA

The particular solution to (6a), namely the one induced by the external currents, is given by

A(0)(r, t) =

Z
G(r, t|r0

, t
0)j(r0

, t
0)d3r0dt0 , (12)

where the retarded Green’s function is given by (11). Since the retarded Green’s function breaks

up into two physically meaningful terms we compute and analyze each term independently.

A. The pulse field

The argument of the delta function in Ga vanishes when t� t
0 = |r � vt
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retarded time t
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p
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⌘
. (13)
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(14)

and denoting ⇠ = vt � z we find

A(0)
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evẑ
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1p
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⇢
���

2

2

⇣
�v⇠ +

p
⇠2 + b2/�2

⌘�
. (15)

It is readily seen that as � ! 0 this term reproduces the vector potential of a charge uniformly

moving in vacuum. The magnetic field corresponding to the vector potential (15) is given by

B(0)
a = �@A

(0)
az

@b
�̂ (16)

=
ev

4⇡
�̂

⇢
�b/2

⇠2 + b2/�2
+

b

�2[⇠2 + b2/�2]3/2

�
exp

⇢
���

2

2

⇣
�v⇠ +

p
⇠2 + b2/�2

⌘�
. (17)

pulse

wake

The pulse dominates when
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Clearly, the second exponential factor in (18) can be dropped at later times ⇠ � b
2
�/4 ⇠ 0.5 fm.

The expression for the magnetic field was previously derived by one of us in [36] (see Eq. (7)

there) and, unlike (17), is represented in a form of a one-dimensional integral. Both formulas

reduce to (18) in the di↵usion approximation.

B. The wake field

It has been tacitly assumed in [36] that the wake term is small. Using the Green’s function

(11c) we can compute this term explicitly:

A(0)
b (r, t) =

eẑ

4⇡

�v

2

Z t0

�1

e
��(t�t0)/2

p
(t � t0)2 � b2 � (z � vt0)2

I1

⇣
�

2

p
(t � t0)2 � b2 � (z � vt0)2

⌘
dt

0
. (19)

It is useful to introduce a new integration variable � such that

t
0 = �

2
⇣
t � vz �

p
(z � vt)2 + (b2 + �2)/�2

⌘
. (20)

It is straightforward to check that this implies

�
2 = (t � t

0)2 � b
2 � (z � vt

0)2 . (21)

The vector potential (19) can now be represented as

A(0)
b (r, t) =

eẑ

4⇡

�v

2

Z 1

0

d� I1
�
�
2�

�
p
⇠2 + (b2 + �2)/�2

exp

⇢
���

2

2

⇣
�v⇠ +

p
⇠2 + (b2 + �2)/�2

⌘�
. (22)

The main contribution to this integral comes from the integration region
p
�2⇠2 + b2 ⌧ � ⌧ 2/��

where the integrand is approximately constant. At smaller �’s it vanishes as ⇠ �, while at larger

�’s it is exponentially suppressed. Thus, we can approximate the integral in (22) as

A(0)
b (r, t) ⇡ eẑ

4⇡

�v

2

Z 1

0

d�
1
2
�
2�p

⇠2 + (b2 + �2)/�2
exp

⇢
���

2

2

⇣
�v⇠ +

p
⇠2 + (b2 + �2)/�2

⌘�

=
eẑ

4⇡

�v

4
exp

⇢
���

2

2

⇣
�v⇠ +

p
⇠2 + b2/�2

⌘�
. (23)

Using (16) we derive the magnetic field

B(0)
b (r, t) =

e�̂

4⇡

�
2
vb

4

1p
⇠2 + b2/�2

exp

⇢
���

2

2

⇣
�v⇠ +

p
⇠2 + b2/�2

⌘�
. (24)

Comparing (23) and (15) we conclude that the contribution of the wake to the retarded Greens

function (11) is small in the phenomenologically relevant region
p
⇠2 + b2/�2 ⌧ 4/� ⇠ 102 fm.

However, it dominates in the opposite limit, i.e. at very late times.

⇒ in QGP the wake plays no role!
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C. Di↵usion approximation

It is instructive to derive Eq. (18) directly from (7) as has been done in [38]. The di↵usion

approximation in (7) amounts to the assumption that @2
z � @

2
t ⇠ k

2
z/�

2 ⌧ k
2
?,�kz. In this case the

retarded Green’s function GD(r, t|r0
, t

0) obeys the equation

� r2
?GD + �@tGD = �(t � t

0)�(r � r0) . (25)

Its solution is

GD(r, t|r0
, t

0) =

Z
d
3
p

(2⇡)3

Z 1

�1

d!

2⇡

e
�i!(t�t0)+ip·(r�r0)

p2? � i!�
=

1

4⇡t
�(z � z

0)✓(t � t
0)e

��(r?�r0?)2

4(t�t0) . (26)

Employing (5) and (12) one derives

A(0)(r, t) =
eẑ

4⇡(t � z/v)
e
� �b2

4(t�z/v) ✓(t � z/v) , (27)

which yields (18) for ⇠ ⌧ 4/� .

IV. SOLUTION FOR THE EXPANDING PLASMA

A. Contribution of the plasma flow

Now we turn to Eq. (6b) that takes the plasma flow into account. Suppose that a point source

is moving along the trajectory z = vt, x = x̃, y = ỹ, where x̃ and ỹ are constants, see Fig. 2.

Denote by r̃ a vector with components x̃, ỹ, z and let b̃ be its transverse part. The magnetic field

created by this charge in the stationary plasma is then given by (17) and (24) with the replacement

b ! |b � b̃|; denote it as B(0)(r � r̃, t). The solution to (6b) can be written right away using the

Green’s function as

A(1)(r, t|r̃) = �

Z
Ga(r, t|r0

, t
0)u(r0

, t
0) ⇥ B(0)

a (r0 � r̃, t0)d3r0dt0 . (28)

The contribution of the wake is neglected as per the results of the previous section.

The longitudinal expansion of QGP is usually described by the Bjorken model [39] in which the

flow velocity in the lab frame is given by

u(r, t) =
z

t
. (29)

Since the plasma velocity is non-vanishing only in the forward light-cone, i.e. u2  1, the integral

in (28) is restricted to the region |z0|  t
0. Using t

0 = t � R this implies that the integral over z
0

The retarded Green’s function obeys the 2D diffusion equation⇒
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⇒

We can solve this problem even for time-dependent conductivity!

For an ultrarelativistic charge 

�(t) =

Z t

t0

dt0

�(t0)
Introduce a new “time-variable” 
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MAGNETIC FIELD IN CONFIGURATION SPACE

eBval(r, t) =�̂
↵⇡b

2�(z/v)[�(t)� �(z/v)]2
exp

⇢
� b2

4[�(t)� �(z/v)]

�
✓(tv � z)✓(z � vt0) ,

eBinit(r, t) =�̂�↵v

Z 1

0
dk?k?J1(k?b) exp

�
�k2?�(t)� k?�|z � vt0|

 

1. Electric conductivity of QGP plays a crucial role in EM dynamics.  

B = Bval +Binit

eBval(r, t) =�̂
↵⇡b

2�(z/v)[�(t)� �(z/v)]2
exp

⇢
� b2

4[�(t)� �(z/v)]

�
✓(tv � z)✓(z � vt0) ,

eBinit(r, t) =�̂�↵v

Z 1

0
dk?k?J1(k?b) exp

�
�k2?�(t)� k?�|z � vt0|

 

Remarks:

0 2 4 6 8 10
t H fmL

10-7

10-5

0.001

0.1

eHêmp2

� = 0(vacuum)

in plasma

eBval/m
2
⇡

<latexit sha1_base64="b9kpRfw0rvfQIK52tZXWvwBxYZI="></latexit>

see KT, arXiv:1305.5806
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MAGNETIC FIELD IN CONFIGURATION SPACE

eBval(r, t) =�̂
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2�(z/v)[�(t)� �(z/v)]2
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�
�k2?�(t)� k?�|z � vt0|

 

1. Electric conductivity of QGP plays a crucial role in EM dynamics.   

2. Energy dependence: Binit(r,t)~𝛾, while Bval(r,t)~𝛾0 

3. Late time-dependence: Binit(r,t)~1/t3/2, while Bval(r,t)~1/t2

B = Bval +Binit

eBval(r, t) =�̂
↵⇡b

2�(z/v)[�(t)� �(z/v)]2
exp

⇢
� b2

4[�(t)� �(z/v)]

�
✓(tv � z)✓(z � vt0) ,

eBinit(r, t) =�̂�↵v

Z 1

0
dk?k?J1(k?b) exp

�
�k2?�(t)� k?�|z � vt0|

 

Remarks:
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TWO COUNTER-PROPAGATING CHARGES 9
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FIG. 3: Magnetic field in units of m2
⇡/e. � = 5.8 MeV, z = 0.6 fm (⌘ = 0.086). Left panel: t0 = 0.2 fm,

right panel: t0 = 0.5 fm. Solid, dashed and dotted lines stand for B, Binit and Bval.

Fig. 2–Fig. 4 depict magnetic field at constant electrical conductivity � = 5.8 MeV [13]. In Fig. 2

I compare magnetic field that is generated when QGP emerges at t0 = 0.2 fm and at t0 = 0.5 fm.

Since magnetic field in vacuum decreases as 1/t3, see (7), the late emergence of conducting medium

means that the magnitude of the field in the former case is about 15 times larger than in the later.

In both cases time-dependence of magnetic field in plasma is mild. Because of the step functions

in (34) magnetic field at midrapidity z = 0 is entirely due to the initial field Binit.

Fig. 3 is similar to Fig. 2 except that z = 0.6 fm unlocking the “valence” contribution. Being

independent of the initial value of magnetic field at t0 the “valence” contribution rapidly increases

to its maximal value, that can be determined from (34) [12]. It then decreases at larger t and

becomes smaller than Binit. Sharp lines seen in Fig. 3 indicate that the transition dynamics near

t = t0 is not fully captured by the di↵usion approximation.

Energy dependence of magnetic field between the RHIC and LHC energies can be seen in

Fig. 4. Binit grows approximately proportional to the collision energy �, whereas Bval is energy

independent. Thus, at the LHC magnetic field induced by valence charges is negligible.

So far I considered only the case of constant electrical conductivity. In practice, however electri-

cal conductivity is time-dependent. To see the impact of � time-dependence on the time evolution

of magnetic field I consider two models. In model A I assume that QGP emerges instantly at

t = t0 with � = 5.8 MeV and then cools down as it expands according to the Bjorken scenario

[17]. Namely, expansion is supposed to be isentropic nV = const, where n is the particle number

density and V is plasma volume. Since n ⇠ T 3 and at early times expansion is one-dimensional

V ⇠ t it follows that T / t�1/3. Since �(t) / T I conclude that �(t) ⇠ t�1/3. Thus a reasonable
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FIG. 4: Magnetic field in units of m2
⇡/e. � = 5.8 MeV, z = 0.2 fm t0 = 0.2 fm. Solid, dashed and dotted

lines stand for B, Binit and Bval. Left panel: � = 100 (RHIC), right panel: � = 2000 (LHC).

model for time dependence of electrical conductivity is

�(t) =
�

2�1/3(1 + t/t0)1/3
, Model A. (41)

Another possibility is that the QGP does not appear as a thermal medium right away at t = t0,

rather it takes time ⌧ until the conductivity reaches its equilibrium value �. This can be described

as

�(t) = �
⇣
1 � e�t/⌧

⌘
, Model B. (42)

I set conservatively ⌧ = 1 fm. Note that I cannot let �(t) vanish at t = t0 because that would

violate the di↵usion approximation that lead to (20). However, (42) insures that �(t0) ⌧ �.

In Fig. 5 I contrast the two models. Similar calculation at constant conductivity is shown in the

left panel of Fig. 4. I observe that time-dependence (41) (model A) significantly reduces magnetic

field at later times. As far as model B is concerned, time dependence (42) a↵ects mostly Bval

because it directly depends on �(t), whereas Binit depends only on �(t), see (34),(35). Model B

has minor e↵ect on the total magnetic field, although one can certainly find regions in space-time

where its e↵ect is more pronounced. What actually matters is the initial time t0 at which one can

treat the produced particle system as a medium. As long as conductivity is large enough at later

times, magnetic field is fairly insensitive to the precise QGP dynamics.

VI. SUMMARY

Just before the QGP emerges, the interaction region is permitted by the primordial electromag-

netic field created by valence charges of two heavy-ions. At the initial time t0 this magnetic field

Binit
Bval Bval

Binit

Binit
Binit

Bval Bval
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ANOMALOUS CURRENTS IN QGP
r ·B = 0

r ·E = ⇢� cA r✓ ·B
r⇥E = �@tB

r⇥B = @tE + j + cA(@t✓B +r✓ ⇥E)

The anomalous currents 

Kharzeev, McLerran, Warringa (2008)

Chiral magnetic effect

jAHE = b⇥E
<latexit sha1_base64="QqlGtfVBaJJfPfXhMi57/0v5Owc="></latexit>

jCME = ��B
<latexit sha1_base64="UzpI2njfDuaFxTFyJ+wQeQFQ1+M="></latexit>

Anomalous Hall Effect

✓
<latexit sha1_base64="D6R9D5qWYsf/x4P1p+BGOMAy74c=">AAAB/XicdVBNS8NAEN34WetX1aOXxSJ4Ckkt1t4KXjxWsB/QhrLZbtq1m03YnQglFP+CV717E6/+Fq/+ErdpBC36YODx3gwz8/xYcA2O82GtrK6tb2wWtorbO7t7+6WDw7aOEkVZi0YiUl2faCa4ZC3gIFg3VoyEvmAdf3I19zv3TGkeyVuYxswLyUjygFMCRmr3YcyADEplx65nwAtSq+ak7mLXdjKUUY7moPTZH0Y0CZkEKojWPdeJwUuJAk4FmxX7iWYxoRMyYj1DJQmZ9tLs2hk+NcoQB5EyJQFn6s+JlIRaT0PfdIYExnrZm4t/en64tBmCSy/lMk6ASbpYHCQCQ4TnUeAhV4yCmBpCqOLmdkzHRBEKJrCiCeX7c/w/aVds99yu3FTLjYs8ngI6RifoDLmohhroGjVRC1F0hx7RE3q2HqwX69V6W7SuWPnMEfoF6/0L2CuWWQ==</latexit>



�19

INSTABILITY EM FIELD

r ·B = 0 ,

r ·D = e�(z � vt)�(b) ,

r⇥E = �@tB ,

r⇥H = @tD + ��B + evẑ�(z � vt)�(b)

The dispersion relation !1,2 =
�i�k2? ± k?��

q
k2? � �2 � �2

�

�2 + �2
�

B =

Z
d2k?
(2⇡)2

eik?·b
⇢

i

!2 � !1

⇥
e�i!1x�f(!1)✓(k? � ��)� e�i!2x�f(!2)

⇤
✓(x�)

� i

!2 � !1
e�i!1x�f(!1)✓(�� � k?)✓(�x�)

�

acausal term is a 
manifestation of instability.



�20

B� =
eb

8⇡x2�
e
� b2�

4x�


� cos

✓
b2��
4x�

◆
+ �� sin

✓
b2��
4x�

◆�
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FIG. 2: Magnetic field of a point charge as a function of time t at z = 0. (Free space contribution is not

shown). Electrical conductivity � = 5.8 MeV. Solid line on both panels corresponds to B = B� at �� = 0.

Broken lines correspond to B� (dashed), Br (dashed-dotted) and Bz (dotted) with �� = 15 MeV on the left

panel and �� = 1.5 MeV on the right panel. Note that the vertical scale on the two panels is di↵erent.

we find for the longitudinal field component:

Bz =
eb

4⇡x�
e
� b2�

4x�


� sin

✓
b2��
4x�

◆
� �� cos

✓
b2��
4x�

◆�
. (67)

It is seen in (65) and (67) that the field components Br and Bz are generated only at a finite chiral

conductivity ��.

Eqs. (62),(63) and (67) is the main result of this paper. It shows that at finite ��, magnetic

field of a point charge acquires two components that are absent in the chirally neutral medium:

the radial and the longitudinal components. All field components oscillate at early times. This is

clearly seen in Fig. 2. The Bz and Br components change sign at light-cone times

x(n)� =
b2��

4[arctan ��

� + ⇡n]
, n = 0, 1, . . . , (68)

while the B� components changes sign at

x̃(n)� =
b2��

4[� arctan �
��

+ ⇡n]
, n = 0, 1, . . . , (69)

The latest oscillation corresponds to n = 0; it increases with ��.

VI. DISCUSSION AND SUMMARY

There are two major results presented in this paper.

(i) I showed that solutions to the Maxwell equations are not stable in the presence of the chirality

imbalance. It is possible that electromagnetic field collapses into a set of magnetic knots. This

B𝜙

Br
Bz v

B𝜙

B𝜙

Br

Bz σ𝜒=0.26σ

σ𝜒=2.6σ

OSCILLATIONS OF MAGNETIC FIELD
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SUMMARY

2. Electric conductivity of QGP plays a crucial role in EM dynamics:  

3. Contribution of the initial conditions increases with energy, while the 
valence one doesn’t.

1. To compute EM field in HIC one has to solve the initial value problem

4. The topological effects may be important 



�22



�23

TIME-DEPENDENT CONDUCTIVITY

Two models: �(t) =
�

2�1/3(1 + t/t0)1/3
, Model A.

�(t) = �
⇣
1� e�t/⌧

⌘
, Model B 𝜏=1fm
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FIG. 5: Magnetic field in units of m2
⇡/e. z = 0.2 fm t0 = 0.2 fm. Left panel: model A. Right panel: model

B. Solid, dashed and dotted lines stand for B, Binit and Bval.

smoothly connects to the magnetic field in plasma and evolves according to the Maxwell equations

in the electrically conducting medium. In addition to this “initial” magnetic field, there is another

“valence” contribution that arises from the external valence electric charges inducing currents in

the QGP. It has been tacitly assumed that the former contribution is not important [6]. In this

paper I argued to the contrary, that the initial magnetic field dominates at very early and later

times and increases much faster with the collision energy than the “valence” contribution.

I also studied the e↵ect of time dependence of electrical conductivity and concluded that at early

times it has a rather minor e↵ect on the field strength, as long as the produced particle system can

be treated as a medium at early enough time. However, towards the later times of plasma evolution,

time-dependence of electrical conductivity plays an important role. In the Bjorken scenario it leads

to much weaker fields as compared to the constant conductivity case.

I considered the case of two counter-propagating charges that gives an accurate picture for the

time dependence of the event-averaged fields in heavy-ion collisions. Scaling the result with Z I can

obtain an estimate of the magnetic field strength in heavy-ion collisions. Calculating the spatial

distribution requires an accurate account of the exact nuclear geometry, which is not di�cult using

the results reported in this paper.

Time-dependence of conductivity is important at later times.


