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STAGES OF EM FIELD EVOLUTION

valence electric charges
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Energy Stopping Hydrodynamic
Hard Collisions Evolution

Initial state

EM field is generated by Z protons of each heavy-ion moving on the light-
cones.
1. Before the collision: ions move towards each other.

2. After the collision, but before the QGP formation: valence quarks move away from
each other; there is a small correction due to the baryon stopping.

3. After the QGP formation: valence quarks move away from each other; electric
currents in QGP contribute to the field.



STAGE 1 (BEFORE THE COLLISION)

freeze out

hadrons — kinetic theory

gluons & quarks in eq. — ideal hydro

gluons & quarks out of eq. — viscous hydro

strong fields — classical dynamics

R Incoming nuclei CGCs
QA

EM field of each ion is a boosted Coulomb field
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STAGE 2 (AFTER THE COLLISION, BEFORE OQOGP)

lons about to collide
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It is too “expensive” to transfer net baryon
and electric charge to the central plateau
region.

dNya) o~ e ARY—Y) | ,~Ar(Y+y)
dy

Number of valence quarks (us) at y=0
decreases with energy: “baryon stopping”.

= The contribution of the “stopped”
baryons is exponentially (in y) small

EM field = sum of two boosted
Coulomb fields of each ion



STAGE 2 (AFTER THE COLLISION, BEFORE OQOGP)

Maxwell equations in the Lorentz gauge:  VZAi(r,t) = 0f Ai(r,t) — j(r, 1),

] = /ion . evzd(z — vt)d(b) — / evzd(z + vt)o(b)

ion B

Solution:

Al(r,t):/ Yevz 1 _/ YevZ 1

onA 4T /02 +~2(vt—2)2  JionB 4T /b2 + 2(vt + 2)?




STAGE 3 (AFTER QOGP FORMATION)

Assumptions:

1. QGP emerges instantaneously at =ty

2. QGP is nonmagnetic (z=1), neutral (no net electric charge), electric currents are Ohmic
with constant electric conductivity (o):

e=1+i0/w

—  Emergent plasma at r=tp produces no new EM field (which would’ve been an
artifact of the initial conditions) because it is neutral and go=1.

= Initial conditions: E, B must be continuous at t=#



STAGE 3 (AFTER QOGP FORMATION) CONT.

Assumptions (cont.):

3. Electromagnetic field does not affect QGP flow. This seem to hold to a few % accuracy.

Roy, Pu, Rezzolla, Rischke, Pang, Endrodi, Petersen  Greif, Greiner, Xu
Voronyuk, Toneev, Cassing, Bratkovkaya, Konchalovski, Voloshin

Gursoy, Kharzeev, Marcus, Rajagopal
(Mohapatra, Saumina, Srivastava disagree)

= Do not need to solve the Relativistic MHD to compute E,B =

Using the gauge condition 0;p+V -A+4+0p =0 Maxwell equations read

_ V2902 —|—6’fgpg +00p2 = p,
—V?Ay + 97 As +00; Ay —ou x (V x Ag) =7,

N\

plasma velocity



INITIAL VALUE PROBLEM FOR EM FIELD IN OGP

— V2A, +0%A5 + 00, A5 —ou x (V X Ay) = 3

AL (r tg) = A (7r,tg) = A¥(r),

O AL (r,t)|,_ =0 A (r t)‘t:to = V¥ (r)
to+
Solution: AL (r,t) / dt’ /dST/j r' )G (r, tlr', 1)
see Morse, Feshbach T /d?’r' [UAM(T ) + VH(r! )] Go(r, tlr',t) -

—/dST’A“('r’)@t/GQ('r,t|'r’,t’)

t'=to

Need: the retarded Green'’s function G-



COMPUTING THE GREEN'S FUNCTION G

1. Assume that the u-term is small. For example, in the blast wave model:

Up z _
’U,('r; t) = R_Ob H(Ro — b) + ? where R;LO _:)555fm Teaney

typical distances b<R,

Treat the u-term perturbatively: A = A + A1)
~V2A© 4 9240 4 50,40 = 5,
~v2AM 4 9240 1 59,AM = gu x BO .

— VG + 0G4+ 00,G =6t —t)o(r —7').

Substitute G(r,t|r',t') = e 7 2G(r, tlr' t)) = —V2G + 082G + m2G = °VI25(t — t)d(r — 1)

where m = i0/2

Klein-Gordon equation



COMPUTING THI

L]

GRI

L]

EN'S FUNCTION G (CONT.)

1 nNO(t—t — R
GQ(’I",t"r’/,t,) _ Ee—%a(t—t) ( - )

ie—%a(t—t’) 0/2 z — N2 _ D2 oy Y,
|———>+47T \/(t—t’)2—R2h(2\/(t t') R)e(t ' — ROt —t)

wake produced by

the induced currents = solve for A" \A

~v2AW 4+ 5240 1 56,AM = gu x BO)
\ -

same Green’s function Go

ot —t') the original pulse
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COMPUTING THE GRI

L]

EN'S FUNCTION G (CONT.)

IAD|NAQ)] vs ¢t v
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FIG. 3. The vector potential A = A©®) + AW created at a representative point z =0, b = 1 fm, ¢ = 7/6
(see Fig.[2) in QGP by a remnant of the gold ion moving with the boost-factor v = 100 (y/s = 0.2 TeV) and

impact parameter |s| = 3 fm.

Conclusion: QGP expansion is a small correction to the total EM field

11



THE PULSE FIELD

1 no(t —t —
Gz(r,t‘r’,t/) — Ee—%o(t—t) ( - R)

0t —t")

Dissipation due to work done by
the field on the medium currents

(0) — I 4/ ! 4/ 3./ /:e’Uﬁ 1 _O-—’YQ o D 9 9
A0 ) = [ Glrtl g Ol = ﬁ”bz/%exp{ L (~ve+ vETER)|
E=vt— 2z~

A good approximation: & +b2/42>1/o7?~10°fm and b/y <& =

(O) ev ’\O-b _0——£ _b20’ TN . . . 1)
BY) ~ = 5_26 2 e” % . ¢>0. (the “diffusion approximation”)
/A8

Note: no dependence on the collision energy!

Full solution: AL (r,t) = ﬁ{ /d?’rlée_%aRj“(r’,t _ R)8(t — to — R) | Si—to
IS a sphere of
T (t— tg)e37U10) ]4 oA () + VA(r)]d9 radius t-ty with
S 7 the center at r

+ 8 [(t — tg)e 2o(tt0) A“(r)dQ] }
sito
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4

THE WAKE FIELD

2

PUTEE S E )

- 2
A (r,t) = =2 exp {—% (—ve+vE+ b2/72)}

The pulse dominates when /& +v?/7% < 4/0 ~ 10 fm.

= in QGP the wake plays no role!

pulse

wake
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HIGH-ENERGY (DIFFUSION) APPROXIMATION

For an ultrarelativistic charge 92 — 07 ~ k2/v* < k%, ok,

= The retarded Green’s function obeys the 2D diffusion equation

—V2Gp+00,Gp =6(t —t)s(r —7")

Solution:
d3p o Juy e~ Ww(t—t")+ip-(r—r’) 1 Co(ry—r))?
G et :/ / — — 5(z = N0t -+ a(t—t))
p(rtr. 1) (2m)3 J_oo 2m p? —iwo A7t (2= =)0 )e
ez __ab®
= AUy = e M-/ (¢t — z/v)

A7 (t — z/v)

We can solve this problem even for time-dependent conductivity!

t /
Introduce a new “time-variable” \(t) = / dt,
to O-(t )
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MAGNETIC FIELD IN CONFIGURATION SPACE

B = Bval + Binit

b2
S TG T P | T e O — 0 v

A b
eral(ra t) :('b o

eBinit (7, 1) :gﬁfyav/ dk ki J1(k 1 b)exp {—kIA(t) — k1|2 — vio|}
0

Remarks:

1. Electric conductivity of QGP plays a crucial role in EM dynamics.

2 see KT, arXiv:1305.5806
eBya /m: '

0.1

001 :
000 iIn plasma

107

e

o = 0(vacuum)

—

1077
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MAGNETIC FIELD IN CONFIGURATION SPACE

B = Bval + Binit

. amb b”
eral(rat) _('bQO'(z/U)[)\(t) — )\(z/’l})]z b {_4[)\(t) — )\(Z/U)]

} 0(tv — 2)0(z — vty)

eBuyy (1. 1) —dryau / dk 1k Jy (ko b) exp {—K2A(E) — kiv]z — vto|}
0

Remarks:

1. Electric conductivity of QGP plays a crucial role in EM dynamics.

2. Energy dependence: Bii(;t)~y, While Bya(r,t)~y!

3. Late time-dependence: Bini(rt)~1/£72, while Byau(rt)~1/t2
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TWO COUNTER-PROPAGATING CHARGES

eB/m? eB/my,
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FIG. 3: Magnetic field in units of m2/e. 0 = 5.8 MeV, z = 0.6 fm (n = 0.086). Left panel: |ty = 0.2 fm,

right panel:| {5 = 0.5 fm.|Solid, dashed and dotted lines stand for B, B, and Byai.
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FIG. 4: Magnetic field in units of m2 /e. ¢ = 5.8 MeV, z = 0.2 fm ¢y = 0.2 fm. Solid, dashed and dotted
lines stand for B, Bjnit and Byay. Left panel: v = 100 (RHIC), right panel: v = 2000 (LHC).
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ANOMALOUS CURRENTS IN OGP

VxB=0FE+j3+cy

The anomalous currents

a

Initial state

(0.0 B

_|_

Vo x E

RN

]CME — O-X

Jaug = b X E

Chiral magnetic effect ~ Anomalous Hall Effect

Kharzeev, McLerran, Warringa (2008)

Energy Stopping
Hard Collisions

Hydrodynamic

Evolution
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INSTABILITY EM FIELD

V.-B=0,
V-D =ej(z—vt)ib),
VXEZ-&:B,

VxH=0D+o0,B+ evzd(z —vt)i(b)

. 2 2 2 2
—zakl:lzklax\/kL o4 — 0O
2 2
0%+ oy

The dispersion relation w12 =

B - / dEL s { L e )0k — o) — e ()] Ol

wo — W1

- e fanfloy — ko) |

w2 — w1
\ acausal term is a

manifestation of instability.
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OSCILLATIONS OF MAGNETIC FIELD

By

2
eb _bo b’c b’c
B 4o _ X X
b = 5 € O COS + 0 SIn B
Smxs 4o _ T_ r
B- Vv
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F —¢
0.03 . O‘)(:2_6O _ N
0.02f i ; 0.006F \ By
L :n{‘ ) e =t~ i l: lr“ \\\
0.01F 3tV i/ DA Y N —
. ,F‘ — e TS e . H B- N Oy 0.260
(K = (1] [} 3
I ol N
[ ] - -
r L o] 4 \‘
S00TE Ry S - i
; HYL 0.002F i DN
_002__ '.‘:' - " \‘ ‘\‘
r - | f \\\
~0.03} - N
: Ly LT T T ———————_
~0.04} - - 0.2 0.4+t V6oTInT (9 el 1.0

FIG. 2: Magnetic field of a point charge as a function of time ¢ at z = 0. (Free space contribution is not
shown). Electrical conductivity o = 5.8 MeV. Solid line on both panels corresponds to B = By at 0, = 0.
Broken lines correspond to By (dashed), B, (dashed-dotted) and B, (dotted) with o, = 15 MeV on the left
panel and o, = 1.5 MeV on the right panel. Note that the vertical scale on the two panels is different.
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SUMMARY

1. To compute EM field in HIC one has to solve the initial value problem

2. Electric conductivity of QGP plays a crucial role in EM dynamics:

3. Contribution of the initial conditions increases with energy, while the
valence one doesn't.

4. The topological effects may be important
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TIME-DEPENDENT CONDUCTIVITY
Two models: o(t) = 21751 i PRTVER Model A.
o(t)=o0 (1 — e_t/T) ,  Model B =1fm

0.010} 0.010}

0.001 0.001

FIG. 5: Magnetic field in units of m2/e. z = 0.2 fm to = 0.2 fm. Left panel: model A. Right panel: model

SRR R

B. Solid, dashed and dotted lines stand for B ,ﬁ Binit and Bya).

Time-dependence of conductivity is important at later times.
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