MAGNETIC FIELD IN EXPANDING QUARK-GLUON PLASMA

Kirill Tuchin

1.Time and space dependence of the electromagnetic field in relativistic heavy-ion collisions, arXiv:1305.5806
2.Electromagnetic field and the chiral magnetic effect in the quark-gluon plasma, arXiv:1411.1363
3.Initial value problem for magnetic fields in heavy ion collisions, arXiv:1508.06925
4.Magnetic field in expanding quark-gluon plasma (with Evan Stewart), arXiv:1710.08793

"Initial Stages 2019", New York, June 25, 2019

STAGES OF EM FIELD EVOLUTION

valence electric charges

EM field is generated by Z protons of each heavy-ion moving on the lightcones:

- 1. Before the collision: ions move towards each other.
- 2. After the collision, but before the QGP formation: valence quarks move away from each other; there is a small correction due to the baryon stopping.
- 3. After the QGP formation: valence quarks move away from each other; electric currents in QGP contribute to the field.

STAGE 1 (BEFORE THE COLLISION)

lons about to collide

STAGE 2 (AFTER THE COLLISION, BEFORE QGP)

It is too "expensive" to transfer net baryon and electric charge to the central plateau region.

$$\frac{dN_{\text{val}}}{dy} \sim e^{-\Delta_R(Y-y)} + e^{-\Delta_R(Y+y)}$$
$$\Delta_R \approx 0.47$$

Number of valence quarks (μ_B) at y=0 decreases with energy: "baryon stopping".

⇒ The contribution of the "stopped" baryons is exponentially (in y) small

EM field = sum of two boosted Coulomb fields of each ion

STAGE 2 (AFTER THE COLLISION, BEFORE QGP)

Maxwell equations in the Lorentz gauge: $\nabla^2 A_1(\mathbf{r},t) = \partial_t^2 A_1(\mathbf{r},t) - \mathbf{j}(\mathbf{r},t)$,

$$\boldsymbol{j} = \int_{\text{ion A}} ev \hat{\boldsymbol{z}} \delta(\boldsymbol{z} - vt) \delta(\boldsymbol{b}) - \int_{\text{ion B}} ev \hat{\boldsymbol{z}} \delta(\boldsymbol{z} + vt) \delta(\boldsymbol{b})$$

Solution:

$$\boldsymbol{A}_{1}(\boldsymbol{r},t) = \int_{\text{ion A}} \frac{\gamma e v \hat{\boldsymbol{z}}}{4\pi} \frac{1}{\sqrt{b^{2} + \gamma^{2} (vt-z)^{2}}} - \int_{\text{ion B}} \frac{\gamma e v \hat{\boldsymbol{z}}}{4\pi} \frac{1}{\sqrt{b^{2} + \gamma^{2} (vt+z)^{2}}}$$

STAGE 3 (AFTER QGP FORMATION)

Assumptions:

- 1. QGP emerges instantaneously at $t=t_0$
- 2. QGP is nonmagnetic (μ =1), neutral (no net electric charge), electric currents are Ohmic with constant electric conductivity (σ):

$$\varepsilon = 1 + i\sigma/\omega$$

⇒ Emergent plasma at $t=t_0$ produces no new EM field (which would've been an artifact of the initial conditions) because it is neutral and $\varepsilon_0=1$.

⇒ **Initial conditions:** E, B must be continuous at $t=t_0$

STAGE 3 (AFTER QGP FORMATION) CONT.

Assumptions (cont.):

3. Electromagnetic field does not affect QGP flow. This seem to hold to a few % accuracy.

Roy, Pu, Rezzolla, Rischke, Pang, Endrodi, Petersen Greif, Greiner, Xu Voronyuk, Toneev, Cassing, Bratkovkaya, Konchalovski, Voloshin Gursoy, Kharzeev, Marcus, Rajagopal (Mohapatra, Saumina, Srivastava disagree)

 \Rightarrow Do not need to solve the Relativistic MHD to compute E,B \downarrow

Using the gauge condition $\partial_t \varphi + \nabla \cdot A + \sigma \varphi = 0$ Maxwell equations read

$$egin{aligned} &-
abla^2 arphi_2 + \partial_t^2 arphi_2 =
ho\,, \ &-
abla^2 oldsymbol{A}_2 + \partial_t^2 oldsymbol{A}_2 + \sigma \partial_t oldsymbol{A}_2 - \sigma oldsymbol{u} imes (oldsymbol{
abla} imes oldsymbol{A}_2) = oldsymbol{j}\,, \ &oldsymbol{
abla}_{ ext{plasma velocity}} \end{aligned}$$

INITIAL VALUE PROBLEM FOR EM FIELD IN QGP

$$-\nabla^{2} \boldsymbol{A}_{2} + \partial_{t}^{2} \boldsymbol{A}_{2} + \sigma \partial_{t} \boldsymbol{A}_{2} - \sigma \boldsymbol{u} \times (\boldsymbol{\nabla} \times \boldsymbol{A}_{2}) = \boldsymbol{j}$$
$$A_{2}^{\mu}(\boldsymbol{r}, t_{0}) = A_{1}^{\mu}(\boldsymbol{r}, t_{0}) \equiv \mathcal{A}^{\mu}(\boldsymbol{r}),$$
$$\partial_{t} A_{2}^{\mu}(\boldsymbol{r}, t)\big|_{t=t_{0}} = \partial_{t} A_{1}^{\mu}(\boldsymbol{r}, t)\big|_{t=t_{0}} \equiv \mathcal{V}^{\mu}(\boldsymbol{r})$$

•

Solution:

$$A_{2}^{\mu}(\boldsymbol{r},t) = \int_{\tau}^{t_{0}+} dt' \int d^{3}r' j^{\mu}(\boldsymbol{r}',t') G_{2}(\boldsymbol{r},t|\boldsymbol{r}',t')$$
Morse, Feshbach

$$+ \int d^{3}r' \left[\sigma \mathcal{A}^{\mu}(\boldsymbol{r}') + \mathcal{V}^{\mu}(\boldsymbol{r}')\right] G_{2}(\boldsymbol{r},t|\boldsymbol{r}',t')|_{t'=t_{0}}$$

$$- \int d^{3}r' \mathcal{A}^{\mu}(\boldsymbol{r}') \partial_{t'} G_{2}(\boldsymbol{r},t|\boldsymbol{r}',t')|_{t'=t_{0}}$$

see

Need: the retarded Green's function G_2

COMPUTING THE GREEN'S FUNCTION G₂

1. Assume that the u-term is small. For example, in the blast wave model:

$$\boldsymbol{u}(\boldsymbol{r},t) = \frac{u_o}{R_o} \boldsymbol{b} \, \theta(R_o - b) + \frac{\boldsymbol{z}}{t}$$
 where $\begin{array}{c} R_o = 7.5 \, \, \mathrm{fm} \\ u_o = 0.55 \end{array}$ Teaney

typical distances $b \ll R_o$

Treat the u-term perturbatively: $A = A^{(0)} + A^{(1)}$

$$-\nabla^2 \mathbf{A}^{(0)} + \partial_t^2 \mathbf{A}^{(0)} + \sigma \partial_t \mathbf{A}^{(0)} = \mathbf{j} ,$$

$$-\nabla^2 \mathbf{A}^{(1)} + \partial_t^2 \mathbf{A}^{(1)} + \sigma \partial_t \mathbf{A}^{(1)} = \sigma \mathbf{u} \times \mathbf{B}^{(0)} .$$

$$-\nabla^2 G + \partial_t^2 G + \sigma \partial_t G = \delta(t - t') \delta(\mathbf{r} - \mathbf{r}') .$$

Substitute $G(\mathbf{r}, t | \mathbf{r}', t') = e^{-\sigma t/2} \mathcal{G}(\mathbf{r}, t | \mathbf{r}', t') \implies -\nabla^2 \mathcal{G} + \partial_t^2 \mathcal{G} + m^2 \mathcal{G} = e^{\sigma t'/2} \delta(t - t') \delta(\mathbf{r} - \mathbf{r}')$. where $m = i\sigma/2$

Klein-Gordon equation

COMPUTING THE GREEN'S FUNCTION G₂ (CONT.)

 \Rightarrow

$$G_{2}(\boldsymbol{r},t|\boldsymbol{r}',t') = \frac{1}{4\pi} e^{-\frac{1}{2}\sigma(t-t')} \frac{\delta(t-t'-R)}{R} \theta(t-t') \quad \longleftarrow \quad \text{the original pulse}$$
$$+ \frac{1}{4\pi} e^{-\frac{1}{2}\sigma(t-t')} \frac{\sigma/2}{\sqrt{(t-t')^{2}-R^{2}}} I_{1}\left(\frac{\sigma}{2}\sqrt{(t-t')^{2}-R^{2}}\right) \theta(t-t'-R)\theta(t-t')$$

wake produced by the induced currents

10

COMPUTING THE GREEN'S FUNCTION G₂ (CONT.)

FIG. 3. The vector potential $\mathbf{A} = \mathbf{A}^{(0)} + \mathbf{A}^{(1)}$ created at a representative point z = 0, b = 1 fm, $\phi = \pi/6$ (see Fig. 2) in QGP by a remnant of the gold ion moving with the boost-factor $\gamma = 100$ ($\sqrt{s} = 0.2$ TeV) and impact parameter $|\mathbf{s}| = 3$ fm.

Conclusion: QGP expansion is a small correction to the total EM field

THE PULSE FIELD

$$G_{2}(\mathbf{r},t|\mathbf{r}',t') = \frac{1}{4\pi} e^{-\frac{1}{2}\sigma(t-t')} \frac{\delta(t-t'-R)}{R} \theta(t-t')$$

Dissipation due to work done by the field on the medium currents

$$\boldsymbol{A}^{(0)}(\boldsymbol{r},t) = \int G(\boldsymbol{r},t|\boldsymbol{r}',t')\boldsymbol{j}(\boldsymbol{r}',t')d^{3}\boldsymbol{r}'dt' = \frac{ev\hat{\boldsymbol{z}}}{4\pi}\frac{1}{\sqrt{\xi^{2}+b^{2}/\gamma^{2}}}\exp\left\{-\frac{\sigma\gamma^{2}}{2}\left(-v\xi+\sqrt{\xi^{2}+b^{2}/\gamma^{2}}\right)\right\}$$
$$\xi = vt-z^{-1}$$

A good approximation: $\sqrt{\xi^2 + b^2/\gamma^2} \gg 1/\sigma\gamma^2 \sim 10^{-5} \text{ fm}$ and $b/\gamma \ll \xi \Rightarrow$

$$B_a^{(0)} \approx \frac{ev}{8\pi} \hat{\phi} \frac{\sigma b}{\xi^2} e^{-\frac{\sigma \xi}{2(1+v)}} e^{-\frac{b^2 \sigma}{4\xi}}, \quad \xi > 0.$$
 (the "diffusion approximation")

Note: no dependence on the collision energy!

Full solution: $A_{2}^{\mu}(\boldsymbol{r},t) = \frac{1}{4\pi} \left\{ \int d^{3}r' \frac{1}{R} e^{-\frac{1}{2}\sigma R} j^{\mu}(\boldsymbol{r}',t-R)\theta(t-t_{0}-R) + (t-t_{0})e^{-\frac{1}{2}\sigma(t-t_{0})} \oint_{S_{\boldsymbol{r}}^{t-t_{0}}} [\sigma \mathcal{A}^{\mu}(\boldsymbol{r}) + \mathcal{V}^{\mu}(\boldsymbol{r})] d\Omega + \partial_{t} \left[(t-t_{0})e^{-\frac{1}{2}\sigma(t-t_{0})} \oint_{S_{\boldsymbol{r}}^{t-t_{0}}} \mathcal{A}^{\mu}(\boldsymbol{r}) d\Omega \right] \right\}$

 $S_{r}^{t-t_{0}}$ is a sphere of radius t-t₀ with the center at r

THE WAKE FIELD

$$A_{a}^{(0)}(\boldsymbol{r},t) = \frac{ev\hat{\boldsymbol{z}}}{4\pi} \frac{1}{\sqrt{\xi^{2} + b^{2}/\gamma^{2}}} \exp\left\{-\frac{\sigma\gamma^{2}}{2}\left(-v\xi + \sqrt{\xi^{2} + b^{2}/\gamma^{2}}\right)\right\} \qquad \text{pulse}$$

$$\boldsymbol{A}_{b}^{(0)}(\boldsymbol{r},t) \approx \frac{e\hat{\boldsymbol{z}}}{4\pi} \frac{\sigma v}{4} \exp\left\{-\frac{\sigma \gamma^{2}}{2} \left(-v\xi + \sqrt{\xi^{2} + b^{2}/\gamma^{2}}\right)\right\} \qquad \qquad \text{wake}$$

The pulse dominates when $\sqrt{\xi^2 + b^2/\gamma^2} \ll 4/\sigma \sim 10^2 \text{ fm}.$

 \Rightarrow in QGP the wake plays no role!

HIGH-ENERGY (DIFFUSION) APPROXIMATION

For an ultrarelativistic charge $\partial_z^2 - \partial_t^2 \sim k_z^2/\gamma^2 \ll k_\perp^2, \sigma k_z$

 \Rightarrow The retarded Green's function obeys the 2D diffusion equation

$$-\nabla_{\perp}^{2}G_{\mathcal{D}} + \sigma \partial_{t}G_{\mathcal{D}} = \delta(t - t')\delta(\boldsymbol{r} - \boldsymbol{r}')$$

Solution:

$$G_{\mathcal{D}}(\boldsymbol{r},t|\boldsymbol{r}',t') = \int \frac{d^3p}{(2\pi)^3} \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \frac{e^{-i\omega(t-t')+i\boldsymbol{p}\cdot(\boldsymbol{r}-\boldsymbol{r}')}}{p_{\perp}^2 - i\omega\sigma} = \frac{1}{4\pi t} \delta(z-z')\theta(t-t')e^{-\frac{\sigma(\boldsymbol{r}_{\perp}-\boldsymbol{r}'_{\perp})^2}{4(t-t')}}.$$

$$\Rightarrow \quad \boldsymbol{A}^{(0)}(\boldsymbol{r},t) = \frac{e\hat{\boldsymbol{z}}}{4\pi(t-z/v)}e^{-\frac{\sigma b^2}{4(t-z/v)}}\theta(t-z/v)$$

We can solve this problem even for time-dependent conductivity!

Introduce a new "time-variable"
$$\lambda(t) = \int_{t_0}^t \frac{dt'}{\sigma(t')}$$

MAGNETIC FIELD IN CONFIGURATION SPACE

$$m{B}=m{B}_{
m val}+m{B}_{
m init}$$

$$e\boldsymbol{B}_{\text{val}}(\boldsymbol{r},t) = \hat{\boldsymbol{\phi}} \frac{\alpha \pi b}{2\sigma(z/v)[\lambda(t) - \lambda(z/v)]^2} \exp\left\{-\frac{b^2}{4[\lambda(t) - \lambda(z/v)]}\right\} \theta(tv - z)\theta(z - vt_0),$$

$$e\boldsymbol{B}_{\text{init}}(\boldsymbol{r},t) = \hat{\boldsymbol{\phi}}\gamma\alpha v \int_0^\infty dk_\perp k_\perp J_1(k_\perp b) \exp\left\{-k_\perp^2 \lambda(t) - k_\perp \gamma |z - vt_0|\right\}$$

Remarks:

1. Electric conductivity of QGP plays a crucial role in EM dynamics.

MAGNETIC FIELD IN CONFIGURATION SPACE

$$m{B}=m{B}_{
m val}+m{B}_{
m init}$$

$$e\boldsymbol{B}_{\text{val}}(\boldsymbol{r},t) = \hat{\boldsymbol{\phi}} \frac{\alpha \pi b}{2\sigma(z/v)[\lambda(t) - \lambda(z/v)]^2} \exp\left\{-\frac{b^2}{4[\lambda(t) - \lambda(z/v)]}\right\} \theta(tv - z)\theta(z - vt_0),$$

$$e\boldsymbol{B}_{\text{init}}(\boldsymbol{r},t) = \hat{\boldsymbol{\phi}}\gamma\alpha v \int_0^\infty dk_\perp k_\perp J_1(k_\perp b) \exp\left\{-k_\perp^2 \lambda(t) - k_\perp \gamma |z - vt_0|\right\}$$

Remarks:

- 1. Electric conductivity of QGP plays a crucial role in EM dynamics.
- 2. Energy dependence: $B_{init}(r,t) \sim \gamma$, while $B_{val}(r,t) \sim \gamma^0$
- 3. Late time-dependence: $B_{init}(r,t) \sim 1/t^{3/2}$, while $B_{val}(r,t) \sim 1/t^2$

TWO COUNTER-PROPAGATING CHARGES

FIG. 3: Magnetic field in units of m_{π}^2/e . $\sigma = 5.8$ MeV, z = 0.6 fm ($\eta = 0.086$). Left panel: $t_0 = 0.2$ fm, right panel: $t_0 = 0.5$ fm. Solid, dashed and dotted lines stand for B, B_{init} and B_{val} .

FIG. 4: Magnetic field in units of m_{π}^2/e . $\sigma = 5.8$ MeV, z = 0.2 fm $t_0 = 0.2$ fm. Solid, dashed and dotted lines stand for B, B_{init} and B_{val} . Left panel: $\gamma = 100$ (RHIC), right panel: $\gamma = 2000$ (LHC).

INSTABILITY EM FIELD

$$\begin{aligned} \nabla \cdot \boldsymbol{B} &= 0, \\ \nabla \cdot \boldsymbol{D} &= e\delta(z - vt)\delta(\boldsymbol{b}), \\ \nabla \times \boldsymbol{E} &= -\partial_t \boldsymbol{B}, \\ \nabla \times \boldsymbol{H} &= \partial_t \boldsymbol{D} + \sigma_{\chi} \boldsymbol{B} + ev\hat{z}\delta(z - vt)\delta(\boldsymbol{b}) \end{aligned} \\ \text{The dispersion relation} \quad \omega_{1,2} &= \frac{-i\sigma k_{\perp}^2 \pm k_{\perp}\sigma_{\chi}\sqrt{k_{\perp}^2 - \sigma^2 - \sigma_{\chi}^2}}{\sigma^2 + \sigma_{\chi}^2} \end{aligned} \\ \boldsymbol{B} &= \int \frac{d^2 k_{\perp}}{(2\pi)^2} e^{i\boldsymbol{k}_{\perp}\cdot\boldsymbol{b}} \bigg\{ \frac{i}{\omega_2 - \omega_1} \left[e^{-i\omega_1 x_-} \boldsymbol{f}(\omega_1)\theta(k_{\perp} - \sigma_{\chi}) - e^{-i\omega_2 x_-} \boldsymbol{f}(\omega_2) \right] \theta(x_-) \\ &- \frac{i}{\omega_2 - \omega_1} e^{-i\omega_1 x_-} \boldsymbol{f}(\omega_1)\theta(\sigma_{\chi} - k_{\perp})\theta(-x_-) \bigg\} \end{aligned}$$
 acausal term is a manifestation of instability.

OSCILLATIONS OF MAGNETIC FIELD

FIG. 2: Magnetic field of a point charge as a function of time t at z = 0. (Free space contribution is not shown). Electrical conductivity $\sigma = 5.8$ MeV. Solid line on both panels corresponds to $B = B_{\phi}$ at $\sigma_{\chi} = 0$. Broken lines correspond to B_{ϕ} (dashed), B_r (dashed-dotted) and B_z (dotted) with $\sigma_{\chi} = 15$ MeV on the left panel and $\sigma_{\chi} = 1.5$ MeV on the right panel. Note that the vertical scale on the two panels is different.

SUMMARY

1. To compute EM field in HIC one has to solve the initial value problem

2. Electric conductivity of QGP plays a crucial role in EM dynamics:

3. Contribution of the initial conditions increases with energy, while the valence one doesn't.

4. The topological effects may be important

Two models:
$$\sigma(t) = \frac{\sigma}{2^{-1/3}(1+t/t_0)^{1/3}}$$
, Model A.
 $\sigma(t) = \sigma\left(1 - e^{-t/\tau}\right)$, Model B τ =1fm

FIG. 5: Magnetic field in units of m_{π}^2/e . z = 0.2 fm $t_0 = 0.2$ fm. Left panel: model A. Right panel: model B. Solid, dashed and dotted lines stand for B, B_{init} and B_{val} .

Time-dependence of conductivity is important at later times.