Instituto de Física
Universidade Federal Fluminense

Hydrodynamics far from equilibrium: a concrete example

Gabriel S. Denicol (UFF)

What you will see:

\checkmark Motivation: why fluid-dynamical descriptions work?
\checkmark Derivation of fluid dynamics using method of moments

- Can we have hydrodynamic behavior far from equilibrium?

Empirical: fluid-dynamical models of heavy ion collisions work well at RHIC and LHC energies

Validity of fluid dynamics traditionally associated with:
 \rightarrow proximity to (local) equilibrium -> "small" gradients

Separation of scales \rightarrow macroscopic: L microscopic: ℓ Knudsen number:
 $$
K_{N} \sim \frac{\ell}{L} \ll 1
$$

Do these things occur early in Heavy Ion Collisions? No reason to believe that they do. Then why does hydro work? What assumptions are really required?

We can study this problem in Kinetic theory

$$
k^{\mu} \partial_{\mu} f_{\mathbf{k}}=C[f]
$$

Boltzmann eq.

$$
\begin{array}{r}
\tau_{\Pi} \dot{\Pi}+\Pi=-\zeta \theta+\ldots \\
\tau_{\pi} \dot{\pi}^{\mu \mu \nu}+\pi^{\mu \nu}=2 \eta \sigma^{\mu \nu}+\ldots
\end{array} \quad 2^{\text {nd }} \text { - order hydro }
$$

In particular, we can use Israel-Stewart's approach

Israel-Stewart theory: basic ideas

Israel-Stewart theory:14-moment approximation

$$
f_{\text {equilibrium }}^{f_{\mathbf{k}}=f_{0 \mathbf{k}}+f_{0 \mathbf{k}}\left(1-a f_{0 \mathbf{k}}\right) \phi_{\mathbf{k}}}
$$

1 - Truncated Taylor series in momentum

$$
\phi_{\mathbf{k}}=\varepsilon+\varepsilon_{\mu} k^{\mu}+\varepsilon_{\mu \nu} k^{\mu} k^{\nu}
$$

- degrees of freedom reduced by the explicit truncation of expansion!
- 14 fields left
W. Israel \& J M.Stewart, Ann. Phys. (N.Y.) 118, 341 (1979).

Israel-Stewart theory:14-moment approximation

$$
\underbrace{f_{\mathbf{k}}=f_{0 \mathbf{k}}+f_{0 \mathbf{k}}\left(1-a f_{0 \mathbf{k}}\right) \phi_{\mathbf{k}}}_{\text {equilibrium }}
$$

2 - Expansion coefficients mapped to conserved currents via matching conditions

10 eqs.

$$
\begin{aligned}
\pi^{\mu \nu} & =\Delta_{\alpha \beta}^{\mu \nu} T^{\alpha \beta} \\
n^{\mu} & =\Delta_{\alpha}^{\mu} N^{\alpha} \\
\Pi & =-\frac{1}{3} \Delta_{\mu \nu} T^{\mu \nu}
\end{aligned}
$$

W. Israel \& J M.Stewart, Ann. Phys. (N.Y.) 118, 341 (1979).

Israel-Stewart theory:14-moment approximation

$$
f_{\mathbf{k}}=f_{0 \mathbf{k}}+f_{0 \mathbf{k}}\left(1-a f_{0 \mathbf{k}}\right) \phi_{\mathbf{k}}
$$

equilibrium
non-equilibrium
3 - Equations of motion taken from the second moment of the Boltzmann equation
$\Delta_{\mu \nu}^{\lambda \rho}\left(\partial_{\alpha} \int_{K} k^{\alpha} k^{\mu} k^{\nu} f_{\mathbf{k}}=\int_{K} C[f] k^{\mu} k^{\nu}\right)$
\longleftrightarrow shear
$u_{\nu} \Delta_{\mu}^{\lambda}\left(\partial_{\alpha} \int_{K} k^{\alpha} k^{\mu} k^{\nu} f_{\mathbf{k}}=\int_{K} C[f] k^{\mu} k^{\nu}\right)$
$u_{\mu} u_{\nu}\left(\partial_{\alpha} \int_{K} k^{\alpha} k^{\mu} k^{\nu} f_{\mathbf{k}}=\int_{K} C[f] k^{\mu} k^{\nu}\right)$
\longleftrightarrow diffusion
\longleftrightarrow bulk W. Israel \& J M.Stewart, Ann. Phys. (N.Y.) 118, 341 (1979).

Final Equations of motion

GSD et al, PRD 85, 114047 (2012)

$$
\begin{align*}
\dot{\Pi}= & -\frac{\Pi}{\tau_{\Pi}}-\beta_{\Pi} \theta-\ell_{\Pi n} \partial \cdot n-\tau_{\Pi n} n \cdot \dot{u}-\delta_{\Pi \Pi} \Pi \theta \\
& -\lambda_{\Pi n} n \cdot \nabla \alpha_{0}+\lambda_{\Pi \pi} \pi^{\mu \nu} \sigma_{\mu \nu}, \tag{20}\\
\dot{n}^{\langle\mu\rangle}= & -\frac{n^{\mu}}{\tau_{n}}+\beta_{n} \nabla^{\mu} \alpha_{0}-n_{\nu} \omega^{\nu \mu}-\delta_{n n} n^{\mu} \theta-\ell_{n \Pi} \nabla^{\mu} \Pi \\
& +\ell_{n \pi} \Delta^{\mu \nu} \partial_{\lambda} \pi_{\nu}^{\lambda}+\tau_{n \Pi} \Pi \dot{u}^{\mu}-\tau_{n \pi} \pi_{\nu}^{\mu} \dot{u}^{\nu} \\
& -\lambda_{n n} n^{\nu} \sigma_{\nu}^{\mu}+\lambda_{n \Pi \Pi} \Pi \nabla^{\mu} \alpha_{0}-\lambda_{n \pi} \pi^{\mu \nu} \nabla_{\nu} \alpha_{0},(21) \tag{21}\\
\dot{\pi}^{\langle\mu \nu\rangle}= & -\frac{\pi^{\mu \nu}}{\tau_{\pi}}+2 \beta_{\pi} \sigma^{\mu \nu}+2 \pi_{\alpha}^{\langle\mu} \omega^{\nu\rangle \alpha}-\tau_{\pi n} n^{\langle\mu} \dot{u}^{\nu\rangle} \\
& +\ell_{\pi n} \nabla^{\langle\mu} n^{\nu\rangle}-\delta_{\pi \pi} \pi^{\mu \nu} \theta-\tau_{\pi \pi} \pi_{\alpha}^{\langle\mu} \sigma^{\nu\rangle \alpha} \\
& +\lambda_{\pi n} n^{\langle\mu} \nabla^{\nu\rangle} \alpha_{0}+\lambda_{\pi \Pi} \Pi \sigma^{\mu \nu} .
\end{align*}
$$

Many terms originally omitted by Israel and Stewart.
W. Israel \& J M.Stewart, Ann. Phys. (N.Y.) 118, 341 (1979).

- Nontrivial assumption: application of matching conditions
- This step does not require proximity to eq.
- All previous steps can be applied assuming the form: $f_{0 \mathbf{k}}\left(\lambda, u_{\mu} k^{\mu} / \Lambda\right)$ scalars

$$
f_{\mathbf{k}}=\underset{\substack{\text { isotropic, } \\ \text { non-equilibrium }}}{f_{\mathrm{Ok}}}+\underset{\substack{\text { correction, } \\ \text { anisotropic }}}{f_{\mathbf{k}}}
$$

Matching conditions

$$
f_{\mathbf{k}}=f_{0 \mathbf{k}}\left(\lambda, u_{\mu} k^{\mu} / \Lambda\right)+\delta f_{\mathbf{k}}
$$

5 parameters - can be associated \int

$$
\begin{aligned}
\lambda & =\lambda(n, \varepsilon) \\
\Lambda & =\Lambda(n, \varepsilon)
\end{aligned}
$$

14-moment approx.: shear term only

$$
\begin{aligned}
f_{\mathbf{k}} & =f_{0 \mathbf{k}}+\frac{1}{2 I_{42}} \pi^{\mu \nu} k_{\mu} k_{\nu} \\
I_{42} & =\frac{1}{15} \int \frac{d^{3} k}{(2 \pi)^{3} k^{0}}|\mathbf{k}|^{4} f_{0 \mathbf{k}}
\end{aligned}
$$

Equations of motion: ultrarelativistic gas of hard spheres

We recover the usual equation for the shear stress:

$$
\dot{\pi}^{\langle\mu \nu\rangle}+\frac{\pi^{\mu \nu}}{\tau_{\pi}}-\frac{2 I_{40}}{3 I_{50}} \sigma \pi^{\lambda\langle\mu} \pi_{\lambda}^{\nu\rangle}=2 \frac{\eta}{\tau_{\pi}} \sigma^{\mu \nu}-2 \sigma_{\lambda}^{\langle\mu} \pi^{\nu\rangle \lambda}-\frac{4}{3} \pi^{\mu \nu} \theta
$$

$\begin{aligned} \begin{array}{c}\text { Transport coefficients: } \\ \begin{array}{c}\text { unctional dependence } \\ \text { on fok }\end{array}\end{array} & =\left(1+4 \frac{1}{\tau_{\pi}} \frac{P_{0} I_{40}}{n_{0} I_{50}}\right) \frac{1}{3 \ell_{\mathrm{mfp}}} \\ \eta & =\frac{4 I_{40} 2^{2}}{3 n_{0} I_{50}+12 P_{0} I_{40}} \ell_{\mathrm{mfp}}\end{aligned}$
Thermodynamic integrals: $I_{n q}=\frac{(-1)^{q}}{(2 q+1)!!} \int d K E_{\mathbf{k}}^{n-2 q}\left(\Delta^{\alpha \beta} k_{\alpha} k_{\beta}\right)^{q} f_{\text {ok }}$

Equations of motion: ultrarelativistic gas of hard spheres

We recover the usual equation for the shear stress:

$$
\dot{\pi}^{\langle\mu \nu\rangle}+\frac{\pi^{\mu \nu}}{\tau_{\pi}}-\frac{2 I_{40}}{3 I_{50}} \sigma \pi^{\lambda\langle\mu} \pi_{\lambda}^{\nu\rangle}=2 \frac{\eta}{\tau_{\pi}} \sigma^{\mu \nu}-2 \sigma_{\lambda}^{\langle\mu} \pi^{\nu\rangle \lambda}-\frac{4}{3} \pi^{\mu \nu} \theta
$$

"Equilibrium" Transport coefficients:

$$
\begin{aligned}
\tau_{\pi} & =\frac{9}{5} \ell_{\mathrm{mfp}} \\
\eta & =\frac{6}{5} \frac{T}{\sigma}
\end{aligned}
$$

Coefficients derived by Israel-Stewart

Example of non-equilibrium state:

 "over-occupied" state$f_{0 \mathrm{k}}$

$$
\begin{gathered}
f_{0 \mathbf{k}}=\lambda \Theta\left(\Lambda-E_{\mathbf{k}}\right) \\
\\
\left(\begin{array}{l}
\text { matching } \\
\Lambda=4 \mathrm{~T} \\
\lambda \sim \exp (\alpha)
\end{array}\right)
\end{gathered}
$$

Λ
$|k|$

Equations of motion: ultrarelativistic gas of hard spheres

We recover the usual equation for the shear stress:

$$
\dot{\pi}^{\langle\mu \nu\rangle}+\frac{\pi^{\mu \nu}}{\tau_{\pi}}-\frac{2 I_{40}}{3 I_{50}} \sigma \pi^{\lambda\langle\mu} \pi_{\lambda}^{\nu\rangle}=2 \frac{\eta}{\tau_{\pi}} \sigma^{\mu \nu}-2 \sigma_{\lambda}^{\langle\mu} \pi^{\nu\rangle \lambda}-\frac{4}{3} \pi^{\mu \nu} \theta
$$

Over-occupied Transport coefficients:

$$
\begin{aligned}
\tau_{\pi} & =\frac{18}{13} \ell_{\operatorname{mfp}} \\
\eta & =\frac{84}{65} \frac{T}{\sigma_{T}}
\end{aligned}
$$

- qualitatively the same
- appears to be slightly more viscous

Equations of motion: ultrarelativistic gas of hard spheres

We recover the usual equation for the shear stress:

$$
\dot{\pi}^{\langle\mu \nu\rangle}+\frac{\pi^{\mu \nu}}{\tau_{\pi}}-\frac{2 I_{40}}{3 I_{50}} \sigma \pi^{\lambda\langle\mu} \pi_{\lambda}^{\nu\rangle}=2 \frac{\eta}{\tau_{\pi}} \sigma^{\mu \nu}-2 \sigma_{\lambda}^{\langle\mu} \pi^{\nu\rangle \lambda}-\frac{4}{3} \pi^{\mu \nu} \theta
$$

$f_{0 \mathbf{k}}$	$\lambda \exp \left(-E_{\mathbf{k}} / \Lambda\right)$	$\lambda \Theta\left(\Lambda-E_{\mathbf{k}}\right)$	$\lambda \delta\left(E_{\mathbf{k}}-\Lambda\right)$
τ_{π}	$\frac{9}{5} \ell_{\mathrm{mfp}}$	$\frac{18}{13} \ell_{\mathrm{mfp}}$	$\frac{9}{7} \ell_{\mathrm{mfp}}$
η	$\frac{6}{5} \frac{T}{\sigma_{T}}$	$\frac{84}{65} \frac{T}{\sigma_{T}}$	$\frac{9}{7} \frac{T}{\sigma_{T}}$

Coefficients do not change much with fok. Can we see this?

Boltzmann eq. + Bjorken flow: ultrarelativistic gas of hard spheres

Initial conditions, fixed energy
shear viscosity
$\frac{\eta}{n}$
Evolution of shear stress does not see this non-equilibrium effect

Conclusions

- The applicability of fluid-dynamical models of heavy ion collisions cannot be easily justified
- The derivation of hydrodynamics using the method of moments is more general than previously considered: hydrodynamic equations can be obtained even far from equilibrium.

