Longitudinal fluctuations and decorrelations of anisotropic flows

Guang-You Qin Central China Normal University

Initial Stages 2019 Columbia University, NY, USA

Based on Wu, Pang, GYQ, Wang, PRC 2018; etc.

Outline

- Introduction
 - Initial state fluctuations and final anisotropic flows
- Model
 - (3+1)-dimensional viscous (ideal) hydrodynamics (CLVisc)
- Numerical results
 - Longitudinal decorrelations of v_n
 - Collision energy and centrality dependences
 - Longitudinal structures in the initial states
 - Small collision systems
- Summary

Flow and sQGP

• The interaction among QGP constituents translates initial state geometric anisotropy to final state momentum anisotropy.

• Relativistic hydrodynamics has been very successful in describing medium evolution and collective flows. => strongly-coupled QGP

IS fluctuations and FS flows

• Event-by-event initial state density and geometry fluctuations play an important role in understanding final state anisotropic flows.

• Many flow observables (high-order v_n , v_n fluctuations, $v_n \& \Phi_n$ correlations, symmetric cumulants, non-linear response, etc) focus on the fluctuations in the transverse directions.

Longitudinal fluctuations

• The initial states are fluctuating also in longitudinal (rapidity) directions

- Longitudinal fluctuations can lead to rapidity-dependent particle yield and v_n
- The rapidity dependence of v_n may be used to probe the QGP properties

Gabriel et al. PRL 2016; Pang, Petersen, Wang PRC 2018

Longitudinal fluctuations

• Longitudinal fluctuations can also cause rapidity decorrelations (asymmetry) of v_n

 Our study: longitudinal decorrelations of anisotropic flows for different collision energy, centrality & systems, with different observables (flow vector, magnitude, orientations/angles)

Jia, Huo, PRC 2014; CMS, PRC 2015; L.G. Pang et al, EPJA 2016; Jia et al, JPG 2017; ATLAS EPJC 2018; Bozek, Broniowski, PRC 2018

Hydrodynamics model

- CLVisc (ideal) (3+1)-D hydrodynamics model
- Initial condition: AMPT model

$$T^{\mu\nu}(\tau_0, x, y, \eta_s) = K \sum_{i} \frac{p_i^{\mu} p_i^{\nu}}{p_i^{\tau}} \frac{1}{\tau_0 \sqrt{2\pi\sigma_{\eta_s}^2}} \frac{1}{2\pi\sigma_r^2} \times \exp\left[-\frac{(x - x_i)^2 + (y - y_i)^2}{2\sigma_r^2} - \frac{(\eta_s - \eta_{si})^2}{2\sigma_{\eta_s}^2}\right]$$

• τ_0 (LHC) = 0.2fm/c, τ_0 (RHIC) = 0.4fm, σ_r = 0.6fm, σ_η = 0.6, T_f = 137MeV Pang, Wang, Wang, PRC 2012; Pang, Petersen, Wang PRC 2018; Lin, Ko, Li, Zhang, Pal, PRC 2005

Longitudinal decorrelations

$$r[n,k](\eta) = \frac{\langle \mathbf{Q}_n^k(-\eta)\mathbf{Q}_n^{*k}(\eta_r)\rangle}{\langle \mathbf{Q}_n^k(\eta)\mathbf{Q}_n^{*k}(\eta_r)\rangle}$$
$$\mathbf{Q}_n(\eta) = q_n(\eta)\hat{Q}_n(\eta) = q_n(\eta)e^{in\Psi_n(\eta)} = \frac{1}{N}\sum_{i=1}^N e^{in\phi_i}$$

$$r_{M}[n,k](\eta) = \frac{\langle q_{n}^{k}(-\eta)q_{n}^{k}(\eta_{\mathrm{r}})\rangle}{\langle q_{n}^{k}(\eta)q_{n}^{k}(\eta_{\mathrm{r}})\rangle} \qquad r_{\Phi}[n,k](\eta) = \frac{\langle \hat{Q}_{n}^{k}(-\eta)\hat{Q}_{n}^{*k}(\eta_{\mathrm{r}})\rangle}{\langle \hat{Q}_{n}^{k}(\eta)\hat{Q}_{n}^{*k}(\eta_{\mathrm{r}})\rangle}$$

Jia, Huo, PRC 2014; CMS, PRC 2015; Jia et al, JPG 2017; ATLAS EPJC 2018; Bozek, Broniowski, PRC 2018

Decorrelations in PbPb collisions @ 5.02TeV

- $r_{\Phi}[n,k] < r[n,k] < r_{M}[n,k]$ (larger decorrelation effects for flow angles than flow magnitudes)
- Decorrelation funcitons are linear along η around $\eta = 0$

Decorrelations in PbPb collisions @ 2.76TeV

- $r_{\Phi}[n,k] < r[n,k] < r_{M}[n,k]$ (larger decorrelation effects for flow angles than flow magnitudes)
- Decorrelation funcitons are linear along η around η = 0
- Decorrelation effects: [2.76TeV] > [5.02TeV]

Decorrelations in AuAu collisions @ 200GeV

- $r_{\Phi}[n,k] < r[n,k] < r_{M}[n,k]$ (larger decorrelation effects for flow angles than flow magnitudes)
- Decorrelation funcitons are linear along η around η = 0
- Decorrelation effects: [200GeV] > [2.76TeV] > [5.02TeV] (larger decorrelations for smaller energies)

Slope parameters for longitudinal decorrelations

• Linear parameterizations of decorrelation functions around $\eta = 0$:

 $r[n,k](\eta) \approx 1 - 2f[n,k]\eta$ $r_{M}[n,k](\eta) \approx 1 - 2f_{M}[n,k]\eta$ $r_{\Phi}[n,k](\eta) \approx 1 - 2f_{\Phi}[n,k]\eta$

• The slope parameters can be measured via the following:

$$f[n,k] = \frac{\sum_{i} \{1 - r[n,k](\eta_i)\} \eta_i}{2\sum_{i} \eta_i^2}$$

• The slope parameters probe similar information to decorelation functions: the larger values for f[n,k], larger decorrelation effects.

Slope parameters for longitudinal decorrelations

Decorrelation functions: $r_{\Phi}[n,k] < r[n,k] < r_{M}[n,k]$ Decorrelation effects: f[200GeV] > f[2.76TeV] >f[5.02TeV]

For v_2 , non-monotontic centrality dependence due to initial collision geometry For $v_3 \& v_4$, weak centrality dependence, slight increase of decorrelation effects from central to peripheral collisions

Collision energy and centrality dependences

- Decorrelation effects: f[200GeV] > f[2.76TeV] > f[5.02TeV]
- For v₂, non-monotontic centrality dependence due to initial collision geometry.
- For v₃ & v₄, weak centrality dependence, slight increase of decorrelation effects from central to peripheral collisions.
- Where do these interesting patterns come from?

Longitudinal fluctuations in initial states

- Divide initial partons into clusters according to their transverse positions.
- Partons in the same cluster are arranged in longitudinal direction according to their rapidities to form a string-like object.
- The length of each string is estimated using the difference between maximum & minimum rapidities of initial patrons in the same cluster.
- $L_{s}[200 \text{GeV}] < L_{s}[2.76 \text{TeV}] < L_{s}[5.02 \text{TeV}]$

Dependence on collision energy, collision centrality and initial string lengths

- f[200GeV] > f[2.76TeV] > f[5.02TeV]
- $L_{s}[200 \text{GeV}] < L_{s}[2.76 \text{TeV}] < L_{s}[5.02 \text{TeV}]$
- Given collision energy, the string lengths are longer for more central collisions.
- v₂ decorrelation depends on both string lengths and collision geometry.
- v₃ & v₄ decorrelations depend mainly on string lengths.

Small collision systems

- The decorrelation effects are larger for smaller collision systems
- f[OO] > f[ArAr] > f[XeXe] > f[PbPb]
- The decorrelation effects are typically larger for more peripheral collisions
- v₂ decorrelation has some dependence on initial collision geometry

Conclusions

- Detailed analysis on longitudinal decorrelations of v_n at RHIC & LHC
 - Decorrelation functions: $r_{\Phi}[n,k] < r[n,k] < r_{M}[n,k]$
 - Slope parameters (decorrelation effects): f[200GeV] > f[2.76TeV] > f[5.02TeV]
 - For v₂, non-monotontic centrality dependence due to collision geometry
 - For v₃ & v₄, weak centrality dependence, slight increase of decorrelation effects from central to peripheral collisions
- The collision energy dependence of v_n decorrelations can be traced back to the longitudinal structures of initial states (string lengths in AMPT)
 - $L_{s}[200GeV] < L_{s}[2.76TeV] < L_{s}[5.02TeV]$
 - f[200GeV] > f[2.76TeV] > f[5.02TeV]
- Larger longitudinal fluctuations for smaller collision systems
 - f[OO] > f[ArAr] > f[XeXe] > f[PbPb]

Viscous effect on longitudinal decorrelations

Dependence on collision energy, collision centrality and initial string length fluctuations

- The variance-to-mean-ratio of the string lengths is typically larger for lower collision energies and more peripheral collisions.
- For given collision energy, v₂, v₃ and v₄ decorreations typically increase with increasing variance-to-mean-ratio of the string lengths, but the pattern is more complex for v₂ decorrelation due to its dependence on collision centrality.