

Principal Component Analysis And its application to Relativistic Heavy-Ion Collisions

For Initial Stages 2019

Ziming Liu

Peking University

June 25, 2019

Overview

Introduction to PCA

Paper I:
 PCA Analysis of Collective Flow

Paper II:
 PCA Analysis of flow factorization breaking

Machine learning

What is PCA?

An intuitive way for PCA

Principal component analysis ——Application

Dataset:Faces of different people

Top eigenvectors: u1,...uk

Eigenfaces

Principal component analysis ——Application

Each face is decomposed into superposition of eigenfaces.

 We can drop unimportant high order eigenfaces. So we can use a few coefficients and corresponding eigenfaces to reconstruct original faces. (Image compression)

Principal component analysis -- math

Theorem: SVD(Singular Value Decomposition)

For a complex (real) matrix $A \in \mathbb{R}^{n \times m}$, \exists unitary (orthogonal) matrices $U_{n \times n}$ and $V_{m \times m}$, along with a sub-diagonal matrix $\Sigma_{n \times m}$ such that

$$A = U\Sigma V$$

Where $\Sigma = diag(\sigma_1, \sigma_2, ...,)$ such that $\sigma_1 \ge \sigma_2 \ge = \cdots \ge 0$

 σ : singular values

 $v_{i,:}$: eigenmodes/ eigenvectors/principal components

Principal component analysis -- math

Now, the *i*th event can be decomposed as summation of eigenvectors z_i :

$$A_{i,:} \approx \sum_{j=1,2,...,k} \sigma_j u_{i,j} v_{:,j}$$

k is the cut we choose to drop out minor modes.

PCA in physics

 eigenfrequencies in particle motion

 Multi-resolution PCA to discover El Nino.

H. Y. Chen, Raphal Ligeois, John R. de Bruyn, and Andrea Soddu Phys. Rev. E 91, 042308 Published 15 April 2015

https://arxiv.org/pdf/1506.00564.pdf

PCA in physics

Machine learning helps discover

Correlations between spin configurations

 Phase transition $\mathcal{H} = J \sum \cos(\theta_i - \theta_j)$ (b) 15 1.6 λ_{k} 40 0.2 0.6 -15 10 0.1 -15 0 15 0 10 20 0.2 K 1.0 0.4 0.8 1.2 0.6 T/J

PCA in Heavy-Ion

 subleading modes of factorization breaking

Rajeev S. Bhalerao, Jean-Yves Ollitrault, Subrata Pal, Derek

Teaney Phys.Rev.Lett. 114 (2015) no.15, 152301

Nonlinear response coefficients

Piotr Bozek, Phys.Rev. C97 (2018) no.3, 034905

Best linear descriptor

$$\zeta_{n,pred}^{(a)} = \varepsilon_{n,n} + c_1 \varepsilon_{n,n+2}$$

Aleksas Mazeliauskas, Derek Teaney Phys.Rev.**C93** (2016) no.2, 024913

Experimental data

CMS collaboration, Phys.Rev. C96 (2017) no.6, 064902

Principal Component Analysis(PCA) in Heavyion Physics

arXiv: 1903.09833
Ziming Liu, Wenbin Zhao, **Huichao Song**Principal Component Analysis (PCA) of Collective Modes
in Relativistic Heavy-Ion Collisions

Recent work, paper in preparation
Ziming Liu, Arabinda Behera, **Huichao Song, and Jiangyong Jia**Reconsideration on studying sub-leading flow with PCA

Can a machine automatically discover flow?

arXiv: 1903.09833

Ziming Liu, Wenbin Zhao, **Huichao Song**Principal Component Analysis (PCA) of Collective Modes
in Relativistic Heavy-Ion Collisions

Previous work utilizes Fourier Transformation in the ϕ direction:

$$\frac{dN}{dp} = \sum_{n=-\infty}^{+\infty} V_n(p) e^{in\phi} \quad p = (p_t, \eta)$$

PCA decomposes $V_n(p)$ into eigenmodes:

$$V_n(p) = \sum_{\alpha=1}^k \xi^{(\alpha)} V_n^{(\alpha)}(p)$$

However, we apply PCA directly to $dN/d\phi$ data without FT:

$$\frac{dN}{d\phi} = \sum_{\alpha=1}^{k} \xi^{(\alpha)} (\frac{dN}{d\phi})^{(\alpha)}$$

Pb+Pb collisions at 2.76 A TeV

No hadron rescattering or resonance decays to simplify problem settings.

PCA for flow analysis

Data sets: $\frac{1}{d\phi}$

top eigenvectors: $\sigma_1, \sigma_2, \sigma_3$

With PCA, each flow distribution is decomposed into superposition of eigenmodes.

PCA

$$\frac{dN}{d\phi}$$

μ

 $x_1 z_1 + x_2 z_2 + x_3 z_3 + \dots$

Elliptic flow Triangular flow

Machines can automatically discover flow without any guidance from human beings!

Event-by-event comparisons

Symmetric cumulants

Fourier:
$$SC^{v}(m,n) = \langle v_m^2 v_n^2 \rangle - \langle v_m^2 \rangle \langle v_n^2 \rangle$$

PCA: $SC^{v'}(m,n) = \langle v'_m^2 v'_n^2 \rangle - \langle v'_m^2 \rangle \langle v'_n^2 \rangle$

Correlation between different harmonics decrease for PCA!

Pearson correlation between initial and final

Pearson correlation between initial and final

20%-30% centrality data

Fourier: PCA:

PCA has a more diagonal pattern!

Conclusion for paper 1

- Without defining Fourier bases, PCA can automatically discover flow.
- We use PCA bases to re-define flow harmonics and find that
 - PCA bases lead to less correlations between different flow harmonics.
 - PCA flow harmonics have a more diagonal pattern with initial eccentricities as compared to traditional one.

The limitation of studying sub-leading flow with PCA

Recent work, paper in preparation Ziming Liu, Arabinda Behera, **Huichao Song, and Jiangyong Jia** Reconsideration on studying sub-leading flow with PCA

Principal component analysis of event-by-event fluctuations PRL 114, 152301 (2015)

Rajeev S. Bhalerao, Jean-Yves Ollitrault, Subrata Pal, and Derek Teaney

Single particle distribution

Two-particle correlation

Decompose $V_n(p_T)$ with PCA modes

Principal component analysis of event-by-event fluctuations PRL 114, 152301 (2015)

Rajeev S. Bhalerao, Jean-Yves Ollitrault, Subrata Pal, and Derek Teaney

Cause for Sub-leading flow

Phys.Rev. C91 (2015) no.4, 044902 Aleksas Mazeliauskas, Derek Teany

Sub-leading flow is theoretically important!!!

Experimental results

Phys. Rev. C 96, 064902 The CMS Collaboration

Think more about it.

Model setup:

- AMPT model
- 1M UCC events
- subevent method

(paper in preparation) Ziming Liu, Arabinda Behera, Huichao Song, and Jiangyong Jia

Reproduce CMS results

Same p_T cut and proper η gap $|\Delta\eta| < 0.8$. Our model can properly reproduce the results @CMS

Problem 1: How to choose p_T bins?

Orthogonal on this large interval

Not orthogonal on this small interval

Drop one p_T bin each time, and redo the PCA

Will the modes still be stable?

Problem 1: How to choose p_T bins?

Different choice of p_T bins can introduce systematic errors! PCA modes are sensitive to our choice of p_T bins!

Problem 2: Normalization

Traditional PCA

$$\langle V_{n\Delta}(p_a, p_b) \rangle = \langle V_n(p_a)V_n^*(p_b) \rangle$$

$$V_n(p_T) = \zeta_n^{(1)} V_n^{(1)}(p_T) + \zeta_n^{(2)} V_n^{(2)}(p_T) + \zeta_n^{(3)} V_n^{(3)}(p_T) + \dots + \zeta_n^{(k)} V_n^{(k)}(p_T)$$

Different?

$$v_n^{(\alpha)}(p_T) = \frac{V_n^{(\alpha)}(p_T)}{\langle M(p_T) \rangle}$$

New PCA

$$\langle V_{n\Delta}(p_a, p_b) \rangle = \langle V_n(p_a)V_n^*(p_b) \rangle$$

$$v_{n\Delta}(p_a, p_b) = \frac{\langle V_{n\Delta}(p_a, p_b) \rangle}{\langle M(p_a) \rangle \langle M(p_b) \rangle}$$

$$\tilde{v}_n(p_T) = \frac{V_n(p_T)}{\langle M(p_T) \rangle}$$

$$\begin{split} \tilde{v}_n(p_T) &= \zeta_n^{(1)} \tilde{v}_n^{(1)}(p_T) + \zeta_n^{(2)} \tilde{v}_n^{(2)}(p_T) \\ &+ \zeta_n^{(3)} \tilde{v}_n^{(3)}(p_T) + \dots + \ \zeta_n^{(k)} \tilde{v}_n^{(k)}(p_T) \end{split}$$

Problem 2: Normalization

But which scheme can reveal more physics about initial profiles? More analysis should be done to fully unravel the mystery of PCA!

Conclusion for paper 2

- The choice of p_T bins introduces systematic errors, but we have no guidance from physics about how to choose them
- Technically, the normalization procedure before/after PCA also lead to different results. Which is the real physics? Need more discussion.

Summary & Outlook

Principal Component Analysis:

- Unsupervised learning (dimensionality reduction)
- Good at discovering hidden correlations in data

PCA for flow discovery

- Integrate p_T , so stable
- discover flow automatically
- Reduce mode coupling

PCA for sub-leading flow

- p_T differential, sensitive to p_T bins
- Ambiguity in normalization

All in all, PCA is a transparent yet powerful machine learning tool to extract main information/ hidden correlations in data! But we should also be more careful about its results.

Outlook

Can PCA detect modes or structures from the massive data that is not realized or easily defined by human being?

More advanced PCAs

High-order PCA

Suitable for high-order data, not constrained to 2-part correlation matrix

Kernel PCA

Able to capture non-linearity. Hope can help study non-linearity in hydro.

Robust PCA

Hope: Eliminate non-flow in the single particle distribution level, without the trouble to construct 2-part data.

Observed = Collective Flow + non-flow

Thank you for your attention!

VI. Back up

Model Details

- 2.76 A TeV Pb+Pb
- Viscous Hydro: VISH2+1
- EOS: s95-PCE
- Initial condition: TRENTo
- Hydrodynamic starting time $\tau_0 = 0.6 fm/c$
- Decoupling temperature $T_{SW} = \frac{148 MeV}{c}$
- $0.3 < p_T < 3 GeV$, Pions only
- 0%-10%,.....,50%-60% totally 6 centrality bins, 2000 events for each bin

PCA Implementation

- Python sklearn
- From sklearn.decomposition import PCA
- Mode cut k = 12
- https://scikitlearn.org/stable/modules/generated/sklear n.decomposition.PCA.html

Signal & Noise

Copper-Fryer:

$$\frac{dN}{dy p_T dp_T d\varphi} = \int_{\Sigma} \frac{g}{(2\pi)^3} p^{\mu} d^3 \sigma_{\mu} f(x, p)$$

• Left : Fourier, $v_4 \sim \varepsilon_2$

• Right : PCA, $v_4' \sim \varepsilon_2$

• Left : Fourier, $v_4 \sim \varepsilon_4$

• Right : PCA, $v_4' \sim \varepsilon_4$

PCA for Initial Profiles

Smoothing Procedure

$$\left(\frac{dS}{d\varphi}\right)_{smooth} = \int K(\varphi', \varphi) \frac{dS}{d\varphi'} d\varphi'$$

$$K(\varphi', \varphi) = \frac{1}{\sqrt{2\pi}a} e^{-\frac{(\varphi' - \varphi)^2}{2a^2}}, a = 0.251 \, rad$$

Angle shift

Angle Shift

- The PCA is implemented in the reaction plane, so that eigenvectors mix 2nd and 4th flow harmonics.
- If randomly shifting every event (as in experiments), the bases will be exact Fourier bases due to rotational symmetry.

Good about Neural Networks

Universal Approximation Theorem:

A neural network with one layer but infinitely many neurons can approximate

Width v.s. Deep Theorem:

An exponentially number of neurons in one layer = linear number of layers

How to train a model?

Train/Evaluate a model

 The evaluation is to evaluate the difference between the network's outputs and learning targets. — loss function

For supervised learning, since there has been a target y(x), loss function can be defined as

•
$$\ell(\theta) = \frac{1}{2n} \sum_{x} [y(x) - \hat{y}(x)]^2$$

•
$$\ell(\theta) = -\frac{1}{n} \sum_{x} [y(x) \ln \hat{y}(x) - (1 - y(x)) \ln(1 - \hat{y}(x))]$$

Train a model ⇔ Minimize the loss function

Stochastic Gradient Descent

$$\theta' = \theta - \epsilon \frac{\partial \ell(\theta)}{\partial \theta}$$

Ian Goodfellow, Yoshua Bengio, and Aaron Courville, http://www.deeplearningbook.org MIT Press, 2016

What is Machine Learning?

Machine learning (ML) is the scientific study of algorithms and statistical models that computer systems use to effectively perform a specific task without using explicit instructions.

----wikipedia

Linear Regression is also Machine Learning!

How PCA bases mix Fourier bases?

z: PCA eigenmodes
$$\begin{pmatrix}
z_1 \\
z_5/z_6 \\
z_6
\end{pmatrix} = \begin{pmatrix}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{pmatrix} \begin{pmatrix}
\cos(2\phi) \\
\sin(2\phi) \\
\cos(4\phi) \\
\sin(4\phi)
\end{pmatrix}$$

If the eigenmodes of PCA is the same as fourier bases, the mixing matrix A should be identity. But actually, the matrix is not diagonal. Take data from centrality 30% - 40% for example

$$A = \begin{pmatrix} 0.956 & 0.295 & 0.213 & 0.053 \\ -0.295 & 0.956 & -0.057 & 0.215 \\ -0.217 & -0.041 & 0.960 & 0.209 \\ 0.035 & -0.215 & -0.219 & 0.951 \end{pmatrix}$$

It is interesting to find that the mixing matrix A follows the form below for all centrality classes. The parameters do not hold, but the form does.

$$A = \begin{pmatrix} \cos(\theta_2) & \sin(\theta_2) & a\cos(\theta_2) & a\sin(\theta_2) \\ -\sin(\theta_2) & \cos(\theta_2) & -a\sin(\theta_2) & a\cos(\theta_2) \\ -a\cos(\theta_4) & -a\sin(\theta_4) & \cos(\theta_4) & \sin(\theta_4) \\ a\sin(\theta_4) & -a\cos(\theta_4) & -\sin(\theta_4) & \cos(\theta_4) \end{pmatrix}$$

To make notations easier, we denote

$$U_1 = \begin{pmatrix} \cos(\theta_2) & \sin(\theta_2) \\ -\sin(\theta_2) & \cos(\theta_2) \end{pmatrix}, U_2 = \begin{pmatrix} \cos(\theta_4) & \sin(\theta_4) \\ -\sin(\theta_4) & \cos(\theta_4) \end{pmatrix}$$

Note that U_1 and U_2 are just rotation matrix in 2-d Cartesian coordinate.

$$A = \begin{pmatrix} U_1 & aU_1 \\ -aU_2 & U_2 \end{pmatrix}$$

It is interesting to note that A can be decomposed into multiplication of simpler matrices.

A new observable

$$A = \begin{pmatrix} U_1 & 0 \\ 0 & I_2 \end{pmatrix} \begin{pmatrix} I_1 & 0 \\ 0 & U_2 \end{pmatrix} \begin{pmatrix} I_2 & a \\ -a & I_2 \end{pmatrix}$$
 defined by PCA to characterize v2/v4 correlation

If we sees matrix as an operation, then the operation was decomposed into three steps:

- First, PCA mixed 2nd harmonic flow and 4th harmoninc flow, by adjusting a.
- Second, PCA mixed within 4th order plane by adjusting θ_4 .
- Third, PCA mixed within 2nd order plane by adjusting θ_2 .